
CARE: A Computer-Aided Requirements

Engineering Tool for Problem-Oriented Software

Development

Guoyuan Liu

College of Computer Science and

Information Technology

Guangxi Normal University

No. 15 Yu Cai Road, Guilin,

Guangxi 541004, China

153123439@qq.com

Zhi Li*

College of Computer Science and

Information Technology

Guangxi Normal University

No. 15 Yu Cai Road, Guilin,

Guangxi 541004, China

zhili@gxnu.edu.cn

Zhaofeng Ouyang

College of Computer Science and

Information Technology

Guangxi Normal University

No. 15 Yu Cai Road, Guilin,

Guangxi 541004, China

751194151@qq.com

Abstract—This paper presents a tool to help software design in

the development process. This software prototype will promote

further development of Problem Frames framework (PF) and

drive it to maturity, i.e., from theoretical research to practical

applications.

Keywords-Problem Frames (PF);Problem diagram;Computer-

Aided Requirements Engineering (CARE)

I. INTRODUCTION


Software requirements engineering plays an important role
in software development projects. So how to conduct the
practice of requirements elicitation, modeling, analysis and
transform the results into correct software specifications is a
key factor contributing to the successes of software
development projects. We designed and implemented a
prototype based on the theoretical foundations and principles of
a problem-oriented requirements modeling framework–
Jackson’s Problem Frames approach [1,2] (PF for short). PF
has been regarded as one of the major requirements
engineering approaches for assisting system analysts in
structuring software development problems. They deploy
problem diagrams for capturing and describing important
contextual information for the software solutions to be built.

Over the years, there have been many extensions and
advancements in Problem Frames research. For example, Hall
et al have proposed Problem-Oriented Software Engineering
(POSE) as a theoretic framework for software development
[3,4]. Other researchers have made many theoretical extensions
to PF and applied them to requirements analysis and reasoning
for safety-critical systems [5,6], and identifying reliability
concerns [7]. However, how to embed the PF framework in a
software development practice remains an open problem.


Zhi Li is the corresponding author. The research was supported in part by the

Natural Science Foundation of China under Grant No.61262004, and the

authors’ joint research is sponsored by the National Science Foundation of
Guangxi Province under Grant No.2012GXNSFCA053010, and the Guangxi

Scientific Research and Technological Development Project under Contract

No.(Gui-Ke-He)1347004-22. Zhaofeng Ouyang is sponsored by University
Innovation and Startup Project (No. 201410602104).

In this paper, we present a computer-aided requirements
engineering (CARE) tool for system analysts to use in the
requirements analysis phase of software development. This
work is motivated by the challenges and difficulties faced by
many software development practitioners when communicating,
modeling, analyzing and elaborating requirements in the early
phase of a software development project. The tool not only can
animate a visual transformation of requirements models, but
also provide a vehicle for an automated textual transformation
of requirements statement, accordingly.

II. PROBLEM MODELLING AND ITS

TRANSFORMATION RULES

The PF is further development of Jackson’s work on JSP
(Jackson Structured Programming) and JSD (Jackson System
Development) [9]. Its basic tenet is that in requirements
analysis phase, we should first understand the contextual
environment in which the problem occurs, before giving any
software solution. The rationale behind it is that most modern
software systems inevitably interact with their surrounding
environment to serve their ultimate purposes – satisfying the
problem owner’s needs. PF deploys problem diagrams – a
visual modeling notation as a way of concretizing the problem
owner’s needs or wishes into observable or measurable
phenomena [2]. The following is a typical problem diagram
describing an insulin injection control system for diabetes.

Power

supply C

ControllerAlarm
C

Clock
C

Keypad
C

Display
C

Medical

record X

Pump
C

Sensor
C

Needle
C

Patient
B

Proper and

reliable injection

of insulin

g
c

d

h

i

j

k

a

b
f

e

e

Fig. 1 Insulin injection control system for diabetes

 Figure 1 shows that problem diagrams are extended
context diagrams, with the following extensions:

 Rectangles with double stripes represent the

computerized machine domain on which the software

runs, e.g. the Controller domain; 

 Application domains are represented by rectangles,

which represent physical equipment (e.g., the Pump

domain and the Sensor domain - the sub-labels with the

symbol “C” represent “causal”, which means their

properties or behaviors are predictable); or living beings

(usually people, e.g., the Patient domain – the sub-label

with the symbol “B” represents “biddable”, which means

the domain has his own freewill but can follow orders or

pre-determined rules after being trained or notified); 

 Rectangles with a single stripe represent domains which

can store information, e.g., the Medical record domain -

the sub-label with the symbol “X” represents “lexical”,

for instance, USB disks or other data storing devices;

 The solid lines labeled “a”, “b”, “c”, “d” , “e” , “f” , “g”,

“h”, “i”, “j”, “k”, “l”, represent observable or measurable

phenomena shared between domains;

 The dotted oval labeled “Proper and reliable injection of

insulin” in Figure 1 represents the requirements. The text

is a statement of needs or wishes of the problem owner

(the diabetic patient in this case). The application

domains that the statement concerns are connected with

the oval by dotted lines – the Needle domain and the

Patient domain; the label “e” and “f” represent the

observable or measurable phenomena (either internal to

the domains or external phenomena of the Needle and

Sensor domain shared with other domains); 

 The dotted rectangle which is connected with the Patient

domain represents the Patient domain’s properties, i,e,

“f” represents the phenomena “the patient’s blood sugar

reaches abnormal level”, “d” represents the phenomena

“the sensor detects the patient’s blood sugar reaches

critical threshold level”, then f->d represents a cause-

and-effect relationship that is the property of the Patient

domain
 From Figure 1, we can observe that PF represents a broad

perspective on software development problems, in which the
hardware, software and relevant application domains should all
be treated as first-class citizens in the modeling process.
Solving this kind of problems is a process of reasoning and
moving from the dotted oval and the dotted lines towards the
controller machine domain. In PF modeling, this process is
known as problem transformation. In order to implement this
transformation, we have defined three classes of transformation
rules, namely the “cause-and-effect substitution rules”,
“switching [domain’s] perspective rules”, and “removing
[unconnected] domain rules”, see [8] for more details.

The contribution of this paper is that we have developed a

computer-aided tool to implement the three classes of rules for

problem transformation.

 The “cause-and-effect substitution” rule: since the

application domain’s properties in PF modeling mainly

describe causal-and-effect relationships in a form like “a-

>b”, we can substitute “cause” events with “effect”

events or vice versa. The algorithm of this rule can be

described by the following pseudo-code (variables are in

italics):

 foreach (i in D.event) //search all events of Domain D

 if (i == a) //find the event a

 foreach (j in R.event) //search all events of requirement R

if ((a -> b)is in D.propety) //if a->b belongs to D’s property

R.event [j]=a; //substitute a for b

 The “switching perspectives” rule: since adjacent

domains share exactly the same set of phenomena, the

requirement statement involving the shared phenomena

can be switched from the viewpoint of the receiving end

to the sending end, and vice versa. The algorithm of this

rule can be described by the following pseudo-code:

foreach (i in D.event) //search all events from domain D

 foreach (j in R.event) //search all events of requirements R

 if (i == j) //if a equals b

 { D’.lines++; //add a new line to domain D’ of R

 D.lines--; //delete the old line connected to domain D

 }

 The “removing domain” rule: after the requirements are

connected with the computing machine domain, all

references and constraints of the requirements are on the

computing machine, therefore, a requirements

engineering problem becomes a pure programming

problem, thus all other diagrammatic elements can be

deleted. The algorithm of this rule can be described by

the following pseudo-code:

if (R.ID is in Controller S.connectedID) //if requirement R is connected to the

//Controller

 for (int i=0; i <Domain.count; i++) //search all the domains

 delete (Domain[i]); //delete domain

 for (int i = 0; i> Model.count; i++) //search all the models

 delete (Model[i]); //delete model

III. TOOL OVERVIEW AND IMPLEMENTATION

A. Tool Overview

Figure 2 shows the overview of CARE, which consists of
three main modules: the Application Domain module, the
Transformation module and the Requirement module.

By combining the three modules we can draw a full
problem diagram, in order to system analysts in requirements
elicitation and analysis. More importantly, the transformation
module can enable diagrammatic transformation, which is the
core innovative part of the tool. So a computer-aided
requirements engineering (CARE) prototype system has been
designed. Its aim is to try to get prospective user involved in
the process of requirements elicitation, modeling, analysis and
transformation as early as possible and as visually engaging as
possible. Another motivation for developing the prototype is to
empirically evaluate the feasibility and practicality of the PF
modeling and transformation framework.

Fig.2 Design overview of CARE

B. Implementation

Since symbols and diagrams can be recognized at a glance
and quite often, good representation can assist intuitive
understanding of the meanings of visual and diagrammatic
modeling. In addition, they can highlight some complex and
important relationships among different entities without
verbose or ambiguous texts.

 Our prototype tool is designed to facilitate system analysts
in drawing and editing problem diagrams, inputting a semi-
structured textual statement of requirements, as a way of
modeling requirements and relevant contexts. In addition, the
tool also allows for visual transformation of the model and a
textual transformation of requirements, which we believe can
simulate or animate system engineers’ process of reasoning
while trying to solve engineering problems. From a
requirements engineering perspective, this tool supports
retaining requirements traceability, which is essential for
requirements engineering [10]. The template is used to format
your paper and style the text. All margins, column widths, line
spaces, and text fonts are prescribed; please do not alter them.
You may note peculiarities. For example, the head margin in
this template measures proportionately more than is customary.
This measurement and others are deliberate, using
specifications that anticipate your paper as one part of the
entire proceedings, and not as an independent document. Please
do not revise any of the current designations.fig.3 shows the
interface of our CARE.

Fig.3 CARE: the Computer-Aided Requirement Engineering tool

IV. EVALUATION SETUP

We evaluated the usability of the CARE tool under both
MS Windows and Android with many practical examples. We
also report on the results of an initial empirical evaluation of
the approach based on the prototype problem transformation
tool. A total of 47 students took part in the evaluation, and the
results are shown in table I.

TABLE I. PARTICIPANTS’ ANSWERS TO THE QUESTIONNAIRE

How helpful is the tool to you in understanding Problem Frames?

Extremely

helpful

very helpful somewhat

helpful

not helpful

15 20 7 5

V. CONCLUSION

In this paper, we present a computer-aided requirements
engineering tool. This is part of the second authors’ long-term
research towards moving PF closer to practice [8,12,13].
Currently, an early version of the prototype can be downloaded
from the website http://www.se.gxnu.edu.cn/tooldemo. There
are also several versions of the tool on mobile platforms, for
example, an Android version and a Windows Phone version of
the tool are also available on the website. When all tools are
matured enough, we plan to empirically evaluate them by
embedding PF theory and the CARE tools in realistic software
development projects.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for the
valuable comments, which helps improve this paper.

REFERENCES

[1] Jackson M. Software requirements and specifications: a lexicon of

principles, practices and prejudices［M］ . Boston: Addison-Wesley,
1995.

[2] Jackson M. Problem frames: analyzing and structuring software
development problems［M］. Boston: Addison-Wesley, 2001.

[3] Hall G H, Rapanotti L, Jackson M. Problem-oriented software
engineering: a design-theoretic framework for software engineering，
2007[C]//Proceedings of the 5th IEEE International Conference on
Software Engineering and Formal Methods.Los Alamitos： IEEE CS
Press，2007：15-24.

[4] Hall G H, Rapanotti L, Jackson M. Problem-oriented software
engineering: solving the package router control problem[J].IEEE
Transactions on Software Engineering,2008,34(2):226-241.

[5] Strunk E A, Knight J C. The essential synthesis of problem frames and
assurance cases[J]. Expert Systems, 2008, 25(1): 9-27.

[6] Mannering D, Hall J G, Rapanotti L. Towards normal design for safety-
critical systems[C]//Fundamental Approaches to Software Engineering.
Springer Berlin Heidelberg, 2007: 398-411.

[7] Yin B, Jin Z, Li Z. Reliability concerns in the Problem Frames Approach
and system reliability enhancement patterns[J]. Jisuanji Xuebao(Chinese
Journal of Computers), 2013, 36(1): 74-87.

[8] Li Z, Hall J G, Rapanotti L. On the systematic transformation of
requirements to specifications[J]. Requirements Engineering, 2013,(doi:
10.1007/s00766-013-0173-8),online first article.

[9] Berry M D. Software requirements and design: the work of Michael
Jackson[J].ACM SIGSOFT Software Engineering Notes,2011,36(2):39-
40.

[10] Jane Cleland-Huang, Orlena Gotel, Jane Huffman Hayes, Patrick Mäder,
Andrea Zisman:Software traceability: trends and future directions. FOSE
2014: 55-69

[11] Sommerville I. Software Engineering 9th Edition[M]. Boston:Addison-
Wesley, 2011.

[12] Rapanotti L,Hall G J, Li Z. Deriving specifications from requirements
through problem reduction[J].Journal of IEE Proceedings-
Software,2006,153(5):183-198.

[13] Li Z,Hall G J,Rapanotti L, On the construction of specifications from
requirements[C]//Procs of the 14th Workshop on Requirements
Engineering. Rio de Janeiro, Brazil: BDBComp, 2011: 431-442

http://www.se.gxnu.edu.cn/tooldemo

