

Reliability-Based Software Rejuvenation Scheduling
for Cloud-Based Systems

Jean Rahme and Haiping Xu

Computer and Information Science Department
University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA

E-mail: {jrahme, hxu}@umassd.edu

Abstract—The reliability and availability of a cloud-based system
play an important role in evaluating its system performance. Due
to the promised high reliability of physical facilities provided for
cloud services, software faults have become a major factor for
failures of cloud-based systems. In this paper, we focus on the
software aging phenomenon where system performance may be
progressively degraded due to exhaustion of system resources,
fragmentation and accumulation of errors. We present a
proactive technique, called software rejuvenation, to counteract
the software aging problem. The dynamic fault tree (DFT)
formalism is adopted to model the system reliability before and
during a software rejuvenation process in an aging cloud-based
system. Then it is converted into Markov Chains to derive the
system reliability function. We use a case study of a cloud-based
system to illustrate the validity of our approach. Based on the
reliability analysis results, we show how to estimate software
rejuvenation schedules that can keep the system reliability above
a predefined critical level for required system availability.

Keywords-Software aging; software rejuvenation; reliability
analysis; dynamic fault tree (DFT); Markov chain; scheduling.

I. INTRODUCTION
With the promised high reliability and availability of

physical facilities, including the hardware facilities and their
associated redundancy mechanisms, provided by cloud service
providers, software faults have now become a major factor of
cloud-based system failures. Since software reliability is
considered one of the weakest points in system reliability,
software fault tolerance and failure forecasting require more
attentions than hardware fault tolerance in modern computer-
based systems [1][2]. This work is motivated to deal with the
software faults in cloud computing in order to assure high
reliability and availability of cloud-based software systems.
Reliability and availability are two common ways to express
system fault tolerance in industry. A reliable computer-based
system typically has high availability if unreliability is the
major cause for unavailability. In this paper, we focus on
analyzing the reliability of cloud-based systems for software
fault tolerance in software reliability engineering (SRE).
Traditional SRE has been based on analysis of software
defects and bugs such as Bohrbugs or Heisenbugs without
considering software aging related bugs [1]. The concept of
software aging phenomenon was introduced in the middle 90s,
which explains that the system resources used by the software
degrade gradually in function of time [3][4]. Software aging

starts to show up due to multiple factors such as memory
bloating, memory leaks, unterminated threads, data corruption,
unreleased file-locks, storage space and fragmentation, and
accumulation of round-off errors when running a software.
Software aging has considerably changed the SRE field of
study, and become a major factor for the reliability of fully
tested and deployed software systems. To deal with software
aging and to assure software fault tolerance, software
rejuvenation process has been introduced as a proactive
approach to counteracting software aging and maintaining a
reliable software system [3]. Software rejuvenation involves
actions such as stopping the running software occasionally,
cleaning its internal state (e.g., garbage collection, flushing
operating system kernel tables, and reinitializing internal data
structures). The simplest way to perform software rejuvenation
is to restart the application that causes the aging problem, or to
reboot the whole system.

Due to the ever-growing cloud computing technology and
its vast markets, the workload of a cloud-based system has
increased dramatically. A heavy workload of cloud-based
system will inevitably lead to more software aging problems.
In this paper, we introduce an approach to developing
rejuvenation schedules for cloud-based systems in order to
maintain their high system reliability. In our approach, we
adopt an analytical-based approach to compute the reliability
of a cloud-based system using Dynamic Fault Tree (DFT). To
maintain high system reliability and ensure a zero-downtime
rejuvenation process, we introduce cloud-based spare parts as
major software components. Once the DFT model is
developed, it is converted into Continuous Time Markov
Chains (CTMC) to calculate the system reliability. We assume
a practical reliability threshold for the core software
components of the system. When the threshold is reached, the
software rejuvenation process is triggered, and the reliability
of the cloud-based system is boosted to its initial state. Our
case study shows that software rejuvenation scheduling based
on the reliability analysis of a cloud-based system can
significantly enhance its system reliability and availability.

Previous studies on software aging and software
rejuvenation for predicting a rejuvenation schedule can be
classified into two categories, namely analytical-based and
measurement-based approaches [5]. In an analytical-based
approach, a failure distribution is assumed for software faults
related to the software aging phenomenon, and software
rejuvenation is executed at a fixed interval based on the
analytical results of the system reliability and availability [6].

(DOI Reference Number: 10.18293/SEKE2015-233)

Several analytic models have been proposed to determine the
optimal time for rejuvenation. Bobbio et al. proposed a fine-
grained software degradation model for optimal rejuvenation
policies [7]. Based on the assumption that the current
degradation level of the system can be identified, they
presented two different strategies to determine whether and
when to rejuvenate. Vaidyanathan et al. presented an
analytical model of a software system using inspection-based
software rejuvenation [8]. In their approach, they showed that
inspection-based maintenance was advantageous in many
cases over non-inspection based maintenance. Although the
above approaches proposed various models for software
rejuvenation, they are not intended to address complex system
components’ behaviors and interactions, such as dynamic
relationships between software components including sparing
relationship and functional dependency. Different from the
existing analytical-based approaches, we focus on the dynamic
behaviors of software components in the context of cloud-
based systems. We use sparing relationships as an example to
show how dynamic relationships of software components in a
cloud-based system can be modeled using DFT.

On the other hand, measurement-based approach applies
statistical analysis to the measured data of resources usage and
degradation that may lead to the software aging problem. In a
measurement-based approach, a monitoring program is used to
continuously collect the system performance data, which are
analyzed to estimate the system degradation level. When
exhaustion reaches a critical level, the software rejuvenation
process is triggered. Machida et al. used Mann-Kendall test to
detect software aging from traces of computer system metrics
[9]. They tested for existence of monotonic trends in time
series, which are often considered indication of software
aging. Grottke et al. studied the resource usage in a web server
subject to an artificial workload [10]. They applied non-
parametric statistical methods to detect and estimate trends in
the data sets for predicting future resource usage and software
aging issues. The existing measurement-based approaches are
feasible ways to detect software aging problems in real-world
computer-based systems; however, they typically involve
processing of large amount of system data. Thus, they are not
as efficient as analytical-based approaches. On the other hand,
measurement-based approaches do provide useful insights
about the system behaviors and failure distributions related to
software aging. As such, our research is complementary to
research efforts that investigate the relationships of static
features of software and metrics for software faults with the
software aging phenomenon using statistical analysis.

II. REJUVENATION OF CLOUD-BASED COMPONENTS

In a cloud-based system, virtualization allows one to share
a machine’s physical resources among multiple virtual
environments, called virtual machines (VM). As shown in Fig.
1, a VM is not bounded to the hardware directly; rather it is
bounded to generic drivers that are created by a virtual
machine manger (VMM) or a hypervisor. Since a VM can be
easily created and destroyed, it is particularly useful in a
disaster recovery process of a cloud-based system. In this
paper, we refer a cloud-based system as a software system that
consists of multiple VMs, where each VM is considered a
software component of the cloud-based system.

Figure 1. An example of reliable cloud-based systems

As a proactive fault management technique, software
rejuvenation has been used to refresh system internal states
and prevent the occurrence of software failures due to
software aging. As we have mentioned, a simple way of
software rejuvenation in a cloud-based system is system
reboot, e.g., to restart a VM or all VMs of the system. The
basic idea of our approach is to create a new instance of VM
that replaces the one to be rejuvenated. Since the newly
deployed VM instance has not yet been affected by the
software aging phenomenon, the reliability of the software
component is boosted back to its initial condition. To achieve
high fault tolerance and reliability, we further adopt the
software redundancy technique using two different types of
software standby spares, namely Cold Spare Part (CSP) and
Hot Spare Part (HSP). In the context of cloud-based systems,
cold standby means that the software component is available
as an image of a VM, rather than an active VM instance. Data
between primary component and the spare one is regularly
mirrored based on a specified schedule, e.g., multiple times a
day. Since a CSP is not up running continuously and does not
take any workload, its reliability approaches to 1 with a failure
rate 0. Since a CSP can be started very quickly, the recovery
time using CSP typically takes just a few minutes to no more
than two hours. Note that a software-defined CSP is different
from a hardware-based CSP in terms of its cost and efficiency.
The cost of a software-defined CSP is its storage and very
little CPU time; while a hardware-based CSP is a physical
device that must be available all the time in order to assure fast
failover [1]. Furthermore, a software-defined CSP can be
started very quickly, but a hardware-based CSP typically
requires manual configuration and adjustment in the event of
partial or total failure.

Similarly, an HSP in the context of cloud-based systems is
a hot standby VM instance. This means the software
component serving as an HSP must be installed and deployed,
and it must be instantly available in a case that the primary
component fails. Although an HSP is deployed and running
along with the primary component, it typically does not take
any workload for processing user requests. To ensure fault
tolerance, critical data is mirrored in near real time from the
primary VM instance. This generally provides a recovery time
of a few seconds in case of a failure. In our system design,
each critical primary component is equipped with at least one
HSP and one CSP in order to maintain the needed reliability.
When calculating the system reliability, we only need to
consider the primary component and its HSP; while the failure
rate of a CSP is constantly 0. In the following, for simplicity,
we denote a primary VM instance/component as P, which is
active and processing workload, an HSP as H, which is active

Physical Machine 1

VMM 1

P

VM
1-1

P’

VM
1-2

...

...

Zone 1 2Zone

... H

VM
k-1

H’

VM
k-2

VMM k

...Physical Machine k

but does not take any workload, and a CSP as C, which is
inactive and also does not take any workload.

In our approach, a rejuvenation scheduling is based on the
results of reliability modeling and analysis of a cloud-based
system. When the reliability of a system component or the
whole system reaches a predefined threshold, the rejuvenation
process is triggered. We assume the rejuvenation process takes
about 30 minutes, which is typically sufficient for starting a
CSP and transfer all requests to the new VM. As a simple
example illustrated in Fig. 1, suppose we have two instances,
i.e., a primary component P and a hot standby one H, which
are deployed on two different physical machines. The two
physical machines usually belong to two different zones
(denoted as Zone 1 and Zone 2 in Fig. 1), so a power/network
outage in one zone, will not affect the availability of the other
one. To rejuvenate the whole system, we need to start two
CSPs P’ and H’ to replace P and H, respectively. As shown in
Fig. 1, P’ and H’ are deployed on the same physical machine
where P and H are deployed, respectively, but in reality, both
P’ and H’ can be deployed on any physical servers.

Once the spare components P’ and H’ are up and running,
P’ will start processing new system requests, while H’ is kept
alive and will not take any workload. Meanwhile, we allow 30
minutes for the old components P and H to finish processing
their existing requests. After 30 minutes, we shut down and
delete the components P and H, which has been successfully
replaced by P’ and H’ after completion of the rejuvenation
process. Note that we do not try to restart and reuse the same
instances P and H in our approach. This is because different
from a physical machine, a VM can be easily created and
deployed, thus deploying new instances P’ and H’ is a much
more efficient way than restarting P and H.

During the rejuvenation procedure, we consider two
scenarios. One scenario is to rejuvenate the major software
components all together. In this case, we replicate the whole
system at the same time when the system reliability reaches its
threshold. We call this scenario as a system-specific
rejuvenation. The second scenario is a component-specific
one, meaning that each time, we only rejuvenate the critical
component whose reliability is the lowest one when the
system reliability reaches its reliability threshold. As we will
show in a case study, the component-specific rejuvenation
usually demonstrates certain advantages over the system-
specific approach.

III. MODELING AND ANALYSIS USING DFT

In this section, we first briefly introduce DFT, then we
show how to use DFT to model and analyze the reliability of a
cloud-based system subject to software rejuvenation. To
simplify matters, we assume that the time-to-failure for the
software components (i.e., the VMs) has a probability density
function that is exponentially distributed. Therefore, all VMs
have constant failure rates.

A. Dynamic Fault Tree

The fault tree modeling technique was introduced in 1962
at Bell Telephone Lab, which provides a conceptual modeling
approach to representing system level reliability in terms of
interactions between component reliabilities [1]. Fault tree
analysis (FTA) is by far the most commonly used technique

for risk and reliability analysis, where the system failure is
described in terms of the failure of its components. Standard
fault trees are combinatorial models and are built using static
gates (e.g., AND-gate, OR-gate, and K/M-gate) and basic
events. As combinatorial models can only capture the
combination of events without considering the order of
occurrence of their failures, they are usually inadequate to
model today’s complex dynamic systems.

DFT augments the standard combinatorial gates of a
regular fault tree, and introduces three novel modeling
capabilities, namely spare component management and
allocation, functional dependency, and failure sequence
dependency. These modeling capabilities are realized using
three main dynamic gates: the spare gate, the functional
dependency gate, and the priority-AND gate. The work done
in this paper uses the dynamic spare gate, in particular the hot
spare gate or HSP gate. Note that a spare gate has one primary
input and one or more alternate inputs (i.e., the spares). The
primary input is initially powered on, and when it fails, it is
replaced by an alternate input. The spare gate fails when the
primary and all the alternate inputs fail.

Since a DFT failure model is typically used to describe
dynamic relationships rather than simple combinatorial ones,
we need to transform it into a state-based formalism, such as
Markov chains, for formal analysis. In the following section,
we show how to convert a DFT model into Markov chains.

B. Modeling and Analysis Using DFT
To model and analyze the reliability of a cloud-based

system with spare parts, we consider two different phases.
Phase 1 represents the pre-rejuvenation phase, where the
reliability analysis is based on the failure rates of the primary
components and their HSPs. CSPs are not considered for
reliability analysis, as they cannot take over the system load
instantly when both the primary and hot spare components
fail. We model the system reliability using DFT, and then the
DFT is converted into a CTMC to derive the system reliability
function.

Figure 2 shows a simple hot spare gate with one primary
component denoted as P and one hot spare part denoted as H.
At the right-hand side of the figure, we show the CTMC
model corresponding to the HSP gate. There are four states 1
to 4 defined in the CTMC model, which are denoted as PH, P,
H*, and FAILURE, respectively. The state PH (State 1) refers
to the one in which both the primary component and the hot
spare part are functioning. When the hot spare part component
or the primary component fails, the model enters its P state
(State 2) or H* state (State 3), respectively.

State 1

HSP
State 2

State 4

State 3

Figure 2. An HSP gate and its corresponding CTMC model

P

Spares

H

Note that we denote State 3 as H* instead of H because in
State 3, the hot spare part has a different failure rate as the one
in State 1. The reason why H and H* have different failure
rates is described as follows. In State 1, the hot spare part does
not take any workload, therefore its failure rate λH is fairly
low; however, in State 3, the hot spare part takes the normal
workload as the primary one before it fails, its failure rate
becomes higher due to the software aging phenomenon.
Suppose the hot spare part has the same configuration as the
primary one, then in State 3, its failure rate shall equal to the
primary component’s failure rate λP.

Let Pi(t) be the probability of the system in state i at time t,
where 1 ≤ i ≤ 4, and Pij(dt) = P[X(t+dt) = j | X(t) = i] be the
incremental transition probability with random variable X(t).
The following matrix [Pij(dt)], where 1 ≤ i, j ≤ 4, is the
incremental one-step transition matrix [1] of the CTMC
defined in Fig. 2.

 (1)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

+−

=

1000
100

010
0)(1

)]([
** dtdt
dtdt

dtdtdt

dtP
HH

PP

PHHP

ij λλ
λλ

λλλλ

The matrix [Pij(dt)], where 1 ≤ i, j ≤ 4, is a stochastic
matrix with each row sums to 1. This matrix provides the
probabilities for each state either remaining (when i = j) or
transit to a different state (when i ≠ j) during the time interval
dt. Given the initial probabilities of the states, the matrix can
be used to describe the state transition process completely.
From the matrix defined in Eq. (1), we can derive the
following relations as in Eqs. (2-4).

)())(1()(11 tPdtdttP Hp λλ +−=+ (2)

)()1()()()(212 tPdttPdtdttP pH λλ −+=+ (3)

)()1()()()(3*13 tPdttPdtdttP HP λλ −+=+ (4)

where the initial probabilities is defined as the probability of
the system being at State 1; thus, we have P1(0) = 1, and P2(0)
= P3(0) = 0. By applying dt limit to 0, we get a set of linear
first-order differential equations as in Eqs. (5-7), which are
state equations for states 1-3.

)()()()(lim)(1
11

01 tPλλ
dt

tPdttPt'P HPdt
+−=

−+
=

→
 (5)

)()()()(lim)(21
22

02 tPλtPλ
dt

tPdttPt'P PHdt
−=

−+
=

→
 (6)

)()()()(lim)(31
33

03 tPλtPλ
dt

tPdttPt'P H*Pdt
−=

−+
=

→
 (7)

The state equations defined in Eqs. (5-7) can be solved
using Laplace transformation, which allows transforming a
linear first order differential equation into a linear algebraic
equation that is easy to solve.

Let the Laplace transformation of Pi(t) be Fi(s), where 1 ≤
i ≤ 3, we can solve the original linear first order differential
equations in Eqs. (5-7) as follows.

t
s

HP

HP
etPsF)(

1)(
1

1)()(λλ
λλ

+−
++ =⇒=

tt
ss

HPP

PHP

H eetPsF)(
2))((2)()(λλλ

λλλ
λ +−−

+++ −=⇒=

)()()()()(
3))((3

*

*

tt
ss

HPH

H

P

HHP

P eetPsF λλλ
λ
λ

λλλ
λ +−−

+++ −=⇒=

The reliability function R(t) is the summation of P1(t), P2(t)
and P3(t), which can be calculated as in Eq. (8), assuming λH*
= λP, i.e., H has the same configuration as the primary one.

tt HP

H

PP

H

P eetPtPtPtR)(
321)()1()()()()(λλ

λ
λλ

λ
λ +−− −+=++= (8)

Note that P4(t) is the probability of system’s being in the
FAILURE state at time t. Therefore, the system unreliability
function U(t) = P4(t) = 1 - R(t).

Phase 2 is the software rejuvenation phase. When the
predefined reliability threshold is reached, the software
rejuvenation process is initiated, and the system enters the
software rejuvenation phase. As we have mentioned, there are
two rejuvenation scenarios, namely the system-specific
rejuvenation and the component-specific rejuvenation. To
illustrate the basic idea of calculating reliability in this phase,
we use the first scenario. In this scenario, we start two CSPs
P’ and H’ to replace P and H, respectively. During the
rejuvenation period, the four software components P, H, P’
and H’ coexist. As shown in Fig. 3, we decompose the
dynamic fault tree model into two sub-trees, S1 and S2, which
are connected by an AND-gate. Subtree S1 consists of the
components P and H that are to be rejuvenated, while subtree
S2 consists of the newly deployed components P’ and H’,
which are used to replace P and H. Both of the subtrees are
defined as HSP gates, each of which can be computed using
the same analysis technique as described in Phase 1. Since
both of the two HSP gates are functioning at the same time,
any of them fails during the rejuvenation phase will not lead to
the failure of the whole system, and the system fails only when
both of the two HSP gates fail. Therefore, the two HSP gates
shall be connected by an AND-gate.

Figure 3. A DFT model with 2 HSP gates (Phase 2)

Once we have solutions to S1 and S2, the static component,
i.e., the AND-gate can be easily solved using the sum-of-
disjoint-products (SDP) method [1]. Specifically, to calculate
the reliability of the whole system in this phase, we first
calculate the unreliability functions US1(t) and US2(t) for S1
and S2, respectively. Then we calculate the reliability of the
AND-gate as in Eq. (9).

)(*)(1)(1)(21 tUtUtUtR SSAND −=−= (9)

In the following section, we describe a case study
considering both of the two scenarios during the rejuvenation
process. Scenario 1 involves rejuvenation of the whole system
by replicating all major software components when system
reliability reaches the threshold; while in Scenario 2, we
rejuvenate the most critical component with the lowest
reliability when the system reliability reaches its threshold.

IV. CASE STUDY

A typical cloud-based system is illustrated in Fig. 4, which
consists of an application server PA and a database server PB,
all deployed on VMs. To enhance the system reliability, two
hot spare components HA and HB are set up for PA and PB,
respectively, which are ready to take over the workload once
the primary ones fail. Note that all servers are deployed on
VMs in different zones for fault-tolerance purpose. As a
clarification for the reliability analysis in this case study, we
view a VM with its OS, the server and the deployed services
as a single software component. In addition, we only consider
the reliability of the servers within the box with dashed lines,
and assume the proxy server’s reliability is ideal. Furthermore,
we assume that the proxy server and the application server can
monitor and detect failures of the application server and the
database server, respectively.

To ensure a high reliability of the system, we set a
reliability threshold of 0.99. For this case study, we assume
the typical failure rates for the servers, where λPA = 0.004, λHA
= 0.0025, λPB = 0.005, λHB = 0.003. Note that the failure rates
of the hot spare parts are lower than their corresponding
primary ones because the spare parts do not take any workload
when the primary ones are functioning. However, when the
primary servers fail, the failure rates of the hot spare parts will
be increased, i.e., λHA* = λPA = 0.004, λHB* = λPB = 0.005. This
case study involves 8 software components split into two
groups. The first group consists of the four servers shown in
Fig. 4. The second group consists of four CSP components
that are used to replace the servers in the first group during the
rejuvenation process. We name the severs in the second group
as PA’, HA’, PB’, and HB’. As the CSP components are
undeployed VM images, their failure rates are 0. Once
deployed, they will have the same failure rates as their
corresponding software components.

Figure 4. A cloud-based system with servers deployed on VMs

Figure 5 shows the DFT model of the cloud-based system
in Phase 1. As the system fails when either the application
servers fail or the database servers fail, the two HSP gates are
connected by an OR-gate, which can solved as in Eq. (10).

))(*))(1()((1)(1)(211 tUtUtUtUtR SSSOR −+−=−= (10)

where UOR(t), US1(t) and US2(t) are the unreliability functions
of the OR-gate, the subtrees S1 and S2, respectively.
According to Eq. (8), US1(t) and US2(t) can be calculated as in
Eq. (11) and Eq. (12), respectively.

Figure 5. DFT model of the cloud-based system (Phase 1)

tt
SS

HAPA

HA

PAPA

HA

PA eetRtU)(
11)()1(1)(1)(λλ

λ
λλ

λ
λ +−− ++−=−= (11)

tt
SS

HBPB

HB

PBPB

HB

PB eetRtU)(
22)()1(1)(1)(λλ

λ
λλ

λ
λ +−− ++−=−= (12)

In Phase 2, we consider both of the scenarios mentioned in
the end of Section III.B, so their impacts on system reliability
as well as their consequent rejuvenation schedules can be
compared. Figure 6 shows the DFT model of the cloud-based
system in Phase 2 based on Scenario 1. For the same reason as
in Phase 1, the system reliability can be calculated as in Eq.
(13). According to Eq. (9), US3(t) and US4(t) can be calculated
as in Eq. (14) and Eq. (15), respectively.

))(*))(1()((1)(1)(433 tUtUtUtUtR SSSOR −+−=−= (13)

)(*)()('113 tUtUtU SSS = (14)

)(*)()('224 tUtUtU SSS = (15)

Note that in Eqs. (14-15), US1(t), US1’(t), US2(t) and US2’(t)
can be calculated in a similar way as in Eqs. (11-12).

Figure 6. DFT model of the cloud-based system in Phase 2 (Scenario 1)

The reliability analysis results for Scenario 1 are listed in
Table 1. The table shows that the reliability threshold (0.99) is
reached every 18 days according to the reliability analysis
results. Hence, both application and database servers are
rejuvenated at the end of Phase 1. Phase 2 has a 30-minute
time duration; therefore, we calculate the system reliability at
5, 10, 20 and 30 minutes in Phase 2 to illustrate how system
reliability may change during the rejuvenation process. From
the table, we can see that the system reliability is kept very
high during the transition. After 30 minutes, the newly
deployed servers completely take over the system, and the
servers to be rejuvenated are shut down. When this happens,
the system returns to its initial state, and starts a new life cycle

with a very high initial reliability. Therefore, Table 1 suggests
that the system should be rejuvenated every 18 days in order
to keep the system reliability above the threshold.

Table 1. System reliability with software rejuvenation (Scenario 1)

Phase Time
(Days)

App Servers
Reliability

DB Servers
Reliability System Reliability

1

0 1 1 1
1 0.99998705 0.9999801 0.9999671502577
5 0.9996806 0.9995107 0.9991914562824

10 0.998745 0.998085 0.9968324033250
18 0.996044 0.994004 0.9900717201760

2

18.0035 0.999999999999 0.999999999999 0.9999999999979
18.0069 0.999999999997 0.999999999994 0.9999999999917
18.0139 0.999999999990 0.999999999977 0.9999999999669
18.0208 0.999999999978 0.999999999940 0.9999999999177

1

19 0.99998705 0.9999801 0.9999671502577
23 0.9996806 0.9995107 0.9991914562824
28 0.998745 0.998085 0.9968324033250
36 0.996044 0.994004 0.9900717201760

 36.0035 0.999999999999 0.999999999999 0.9999999999979

2
36.0069 0.999999999997 0.999999999994 0.9999999999917
36.0139 0.999999999990 0.999999999977 0.9999999999669
36.0208 0.999999999978 0.999999999940 0.9999999999177

...

By further looking into Table 1, we can see that when the
system reliability reaches 0.99 after 18 days, the reliability of
the database server subsystem is lower than that of the
application server subsystem. This suggests that we may
rejuvenate the most critical components (i.e., the component
with the lowest reliability) first. Now suppose we choose to
rejuvenate the database servers first. Then we wait until the
system reliability reaches the threshold again, and rejuvenate
the application servers next, as they now become the most
critical components. This is exactly what happens for the
rejuvenation scheduling in Scenario 2, where the application
servers and the database servers are rejuvenated alternatively.
The system reliability in Scenario 2 can be calculated in a
similar way as in Scenario 1.

We now illustrate the rejuvenation scheduling for both
Scenario 1 and Scenario 2 as in Fig. 7. In the figure, the start
of rejuvenation is indicated by a sudden increment of the
system reliability.

Figure 7. Rejuvenation scheduling (Scenario 1 vs. Scenario 2)

By comparing the two rejuvenation schedules, we can see
that during 119 days, Scenario 1 has 6 rejuvenation process
which requires rejuvenating both of the application and
database servers. On the other hand, Scenario 2 has 9
rejuvenation process which only requires rejuvenating either
the application servers or the database servers. It is easy to see
that Scenario 2 requires less management of the servers in

order to keep the system reliability above the 0.99 threshold
all the time. Suppose the rejuvenation of the application
servers has the same cost as that of the database servers, by
using the rejuvenation scheduling defined in Scenario 2, the
cost can be reduced by (6*2 - 9)/(6*2) = 25% comparing to the
rejuvenation scheduling defined in Scenario 1.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a reliability-based approach to
estimating a rejuvenation scheduling for cloud-based systems.
The system requires using hot spare parts during normal
running time, and cold spare parts during the rejuvenation
process in order to keep the system reliability above a
predefined threshold. By modeling the reliability of a cloud-
based system using DFT, we are able to derive the reliability
function for each software component as well as the whole
system. We define two phases for the software rejuvenation,
and discuss about two scenarios of the rejuvenation process in
Phase 2. The analysis results of our case study show that
Scenario 2 is more cost-effective than Scenario 1.

For future work, we will extend our current work for
components with non-constant failure rates. We will adopt a
measurement-based approach to collecting empirical data in
order to determine the probability density function of the
system reliability affected by software aging. Software tools
will also be developed for modeling and analyzing the
reliability of cloud-based systems, as well as deriving effective
rejuvenation schedules. Finally, modeling and analyzing
cloud-based systems with active standby spare components
that can share workload with the primary ones, is envisioned
as a future, and more ambitious research direction.

REFERENCES
[1] H. Pham, System Software Reliability, Springer Series in Reliability

Engineering, Springer-Verlag London, 2006.
[2] A. Somani and N. Vaidya, “Understanding Fault Tolerance and

Reliability,” IEEE Computer, Vol. 30, No. 4, April 1997, pp. 45-50.
[3] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software

Rejuvenation: Analysis, Module and Applications,” Proceedings of the
Twenty-Fifth International Symposium on Fault-Tolerant Computing,
1995, pp. 381-390.

[4] M. Grotte, R. Matias and K. S. Trivedi, “The Fundamentals of Software
Aging,” Proceedings of Workshop on Software Aging and Rejuvenation,
ISSRE, Nov. 11-14, 2008, pp. 1-6.

[5] V. Castelli, R.E. Harper, and P. Heidelberger, et al., “Proactive
Management of Software Aging,” IBM Journal of Research and
Development, Vol. 45, No. 2, March 2001, pp. 311-332.

[6] L. Jiang and G. Xu, “Modeling and Analysis of Software Aging and
Software Failure,” Journal of Systems and Software, Vol. 80, No. 4,
April 2007, pp. 590-595.

[7] A. Bobbio, M. Sereno and C. Anglano, “Fine Grained Software
Degradation Models for Optimal Rejuvenation Policies,” Performance
Evaluation, Vol. 46, 2001, pp. 45-62.

[8] K. Vaidyanathan, D. Selvamuthu and K. S. Trivedi, “Analysis of
Inspection-Based Preventive Maintenance in Operational Software
Systems,” Proceedings of the 21st IEEE Symposium on Reliable
Distributed Systems (SRDS 2002), Suita, Japan, 2002, pp. 286-295.

[9] F. Machida, A. Andrzejak, R. Matias, E. Vicente, “On the Effectiveness
of Mann-Kendall Test for Detection of Software Aging,” Proceedings of
the IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), Pasadena, CA, November 4-7, 2013, pp. 269-274.

[10] M. Grottke, L. Li, K. and Vaidyanathan, et al., “Analysis of Software
Aging in a Web Server,” IEEE Transactions on Reliability, Vol. 55, No.
3, 2006, pp. 411-420.

	I. Introduction
	II. Rejuvenation of Cloud-Based Components
	III. Modeling and Analysis Using DFT
	A. Dynamic Fault Tree
	B. Modeling and Analysis Using DFT

	IV. Case Study
	V. Conclusions and Future Work
	References

