
Improved Metrics for Non-Classic Test Prioritization Problems

Ziyuan Wang1,2 Lin Chen2

1 School of Computer, Nanjing University of Posts and Telecommunications, Nanjing, 210003
2 State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023

Email: wangziyuan@njupt.edu.cn

Abstract—The average percent of faults detected (APFD)
and its variant versions are widely used to evaluate prioritized
test suite’s efficiency. However, APFD is only available for
classic test case prioritization, where all prioritized test suites
under comparison contain the same number of test cases. If
people overlook this phenomenon, they may obtain incorrect
results in some non-classic scenarios, where prioritized test suites
have different sizes. In addition, it can’t precisely illustrate
the process of fault detection. Besides the APFD, most of its
variants have similar problems. This paper points out these
limitations in detail, by analyzing the physical explanation of
APFD series metrics. To avoid limitations, a series of metrics
including RAPFD, RAPFDC , RAPFDW and RAPFDCW are
proposed for different types of scenarios. All proposed metrics
refer to both the speed of fault detection and the constraint of
testing resource. There is an example in this paper showing that
proposed metrics provide much more precise illustrations of fault
detection process and fault detection efficiency of test suite.

Keywords—software testing, test case prioritization, fault detec-
tion efficiency, metric

I. INTRODUCTION

There is usually a contradiction in test case evolution. For
the purpose of rapid version release, we usually need a speedup
regression testing to save test resource (e.g. consumed time).
However, for the purpose of higher-quality, we want to run
test cases as many as possible. The contradiction between them
tells people it is necessary to apply some test case optimization
techniques to increase the effectiveness and efficiency of
regression testing. As one of test case optimization techniques,
the test case prioritization technique has been widely used to
improve the efficiency of software testing.

The test case prioritization technique aims to schedule test
cases in an order, to form a prioritized test suites. The classic
test case prioritization problem is defined as follows. Giving
an initial test suite Tinit, the test case prioritization technique
aims to find a prioritized test suite σ ∈ PT such that:

(∀σ′)(σ′ ∈ PT)(σ 6= σ′)[f(σ) > f(σ′)] (1)

Where PT is the set of all permutations of Tinit (PT collects
all possible prioritized test suites that contain all test cases in
Tinit). And f is an objective function from PT to real number
as the award value of prioritized test suite [1].

There could be many possible objective functions for test
case prioritization problem. People usually restrict attention to
the speed of detecting faults. Therefore, an objective function
called average percent of faults detected (APFD) is proposed
as a metric to evaluate the speed of detecting faults [1]. It helps

people to compare which prioritized test suite σ ∈ PT detects
faults more rapidly. There are also some variants of APFD,
including the normalized average percent of faults detected
(NAPFD) [2], the cost-cognizant weighted average percent
of faults detected (APFDC) [3], and etc. In this paper, we
use the term APFD series metrics to jointly call them.

APFD series metrics are designed for the classic test
case prioritization problem that defined in Equation 1, which
implies an assumption that all prioritized test suites in PT
must contain all test cases in the initial test suite (for each
σ ∈ PT , |σ| = |Tinit|). However, besides the classic problem,
there may be some other non-classic test case prioritization
problems, where above assumption does not hold:

(1) Time-aware test case prioritization selects and prior-
itizes test cases under the time constraint [6]. Differ-
ent selection algorithms may produce prioritized test
suites with different sizes.

(2) Test goal prioritization schedules test goals and gen-
erates test cases for important test goals earlier [7]. It
may leads to different prioritized test suites because
of the different orders of test goals.

(3) Test case re-generation prioritization strategy incor-
porates test prioritization into test generation (e.g. in
combinatorial testing [5]). Different algorithms may
generate prioritized test suites with different sizes.

(4) Test case reduction [8] and test case prioritization are
often incorporated in test case optimization. Different
test case reduction algorithms may output test suites
with different sizes.

In these novel scenarios, heterogeneous candidate priori-
tized test suites may contain only partial test cases in initial
test suite (e.g. time-aware test case prioritization and test case
reduction), or sometimes be not concerned with any initial test
suite at all (e.g. test case re-generation prioritization and test
goal prioritization). APFD and existing variants can hardly
work to evaluate and compare these candidate prioritized test
suites, since the number of test cases that contained in each
candidate prioritized test suites may be varying.

And besides the limitation about test suites’ sizes, there is
another limitation of existing APFD series metrics. That is
they cannot precisely illustrate the process of fault detection
in real world.

Therefore, we need some improved metrics for non-classic
test case prioritization. In this paper, we propose an improved
metric Relative-APFD (RAPFD for short), which relates
to a given testing resource constraint (determine how many test
cases could be run), to replace APFD and NAPFD. And

DOI reference number: 10.18293/SEKE2015-230

furthermore, we discuss the test costs and fault severities, and
propose the metric Relative-APFDCW (RAPFDCW for
short) to replace APFDC . Examples show us that proposed
metrics could provide much more precise illustrations of fault
detection process and fault detection efficiency of test suite.

II. EXISTING APFD SERIES METRICS

Using notations that introduced in the ref. [6], we briefly
introduce existing APFD series metrics in this section.

1) APFD: Let σ be a prioritized test suite under evalua-
tion, Φ the set of fault contained in the software, and TF (φ, σ)
the index of the first test case in σ that exposes fault φ ∈ Φ.
The APFD of σ is [1]:

APFD(σ) = 1−
∑
φ∈Φ TF (φ, σ)

|σ||Φ|
+

1

2|σ|
(2)

2) NAPFD: Sometimes, there may be non-detected fault
that can’t be detected by any test cases in σ. For each non-
detected fault φ ∈ Φ, Walcott et al. set TF (φ, σ) = |σ| + 1
as a penalty that may make APFD value to become negative
[6]. To avoid the problem of negative award value, Cohen et
al. set TF (φ, σ) = 0 and define an improved NAPFD [2]:

NAPFD(σ) = p−
∑
φ∈Φ TF (φ, σ)

|σ||Φ|
+

p

2|σ|
(3)

Where p is the rate of faults detected by σ:

p =
|{φ ∈ Φ|TF (φ, σ) 6= 0}|

|Φ|

3) APFDC: Another improvement for APFD is to take
the test costs and the fault severities into consideration. Let Ci
be the cost of the i-th test case in σ (i = 1, 2, ..., |σ|), Sφ the
severity of the fault φ ∈ Φ. For the scenario where there is
not any non-detected faults, the APFDC is [3]:

APFDC(σ) =

∑
φ∈Φ(Sφ × (

∑|σ|
i=TF (φ,σ) Ci −

1
2CTF (φ,σ)))∑|σ|

i=1 Ci ×
∑
φ∈Φ Sφ

(4)

There is special case of APFDC , called APFDTA, for the
scenario where fault severities are uniform [4].

4) NAPFDC: Similar to the APFD, the original version
of APFDC can not handle non-detected faults, since there is
not any definition of TF (φ, σ) for non-detected faults.

Here we propose the normalized cost-cognizant weighted
average percent of faults detected (NAPFDC), by defining
TF (φ, σ) = 0 for each non-detected fault φ ∈ Φ and setting
C0 = 0 for the dummy test case with index 0:

NAPFDC(σ) = pc −
∑
φ∈Φ(Sφ ×

∑TF (φ,σ)
i=1 Ci)∑|σ|

i=1 Ci ×
∑
φ∈Φ Sφ

+∑
TF (φ,σ)6=0(Sφ × CTF (φ,σ))

2×
∑|σ|
i=1 Ci ×

∑
φ∈Φ Sφ

(5)

Where pc is the rate of total severities of faults detected by σ:

pc =

∑
TF (φ,σ)6=0 Sφ∑

φ∈Φ Sφ

It is evident that NAPFDC will be equivalent to APFDC

in the scenarios where there is not any non-detected fault. And
NAPFDC will be equivalent to NAPFD in the scenarios
where both test costs and fault severities are uniform.

III. PHYSICAL EXPLANATIONS OF EXISTING METRICS

For a test suite with |σ| test cases, we can use |σ| + 1
discrete points to illustrate the relationship between the percent
of faults detected (y-axis) and the percent of test cases run (x-
axis). If we connect all these points by a curve, APFD and
NAPFD show the area under the curve. E.g., we select 5 test
cases from Table 1 to form a prioritized test suite σ1 : T3 −
T5−T2−T4−T1. It detects 3 faults using 1 test case, 5 faults
using 2 test cases, 7 faults using 4 test cases, and all 8 faults
using all 5 test cases. So APFD(σ1) = NAPFD(σ1) = 0.6
by drawing the curve that connects 6 discrete points (0, 0),
(1

5 ,
3
8), (2

5 ,
5
8), (3

5 ,
5
8), (4

5 ,
7
8), and (1, 1) (see Fig. 1).

Table 1. Faults Detected by Test Cases

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8

T1 x x
T2 x
T3 x x x
T4 x x
T5 x x x
T6 x x x

1
/
4

1
/
2

3
/
4

1

1
/
5
 2
/
5
 3
/
5

p

e

r
c

e

n

t
a

g

e

o

f

f
a

u

l
t

s

d

e

t
e

c

t
e

d

p
e
r
c
e
n
t
a
g
e

o
f

t
e
s
t

c
a
s
e
s

r
u
n

O
r
d
e
r
:
T
3

-
T
5

-
T
2

-
 T
4

-
T
1

4
/
5
 1

1
/
4

1
/
2

3
/
4

1

1
/
3
 2
/
3
 1

p

e

r
c

e

n

t
a

g

e

o

f

f
a

u

l
t

s

d

e

t
e

c

t
e

d

p
e
r
c
e
n
t
a
g
e

o
f

t
e
s
t

c
a
s
e
s

r
u
n

1
/
5
 2
/
5
 3
/
5
 4
/
5

O
r
d
e
r
2
:
T
3

-
T
5

-
T
6

O
r
d
e
r
1
:
T
3

-
T
5

-
T
2

-
T
4

-
T
1

Fig. 1. APFD(σ1) Fig. 2. Compare σ1 and σ2

The APFDC and NAPFDC have the similar physical
explanations, if we replace the number of detected faults with
the total severities of detected faults, and replace the number
of test cases run with the costs that consumed by test cases.

Besides the above physical explanations, APFD series
metrics can help people to control the risk of exceptional
termination in testing process under the constraint of testing re-
source. As well known, during the software evolution, resource
(including time) that distributed to software testing are often
limited since the delay of develop, the deadline of release, and
etc. So there is usually not enough time to run all test cases.

Theorem 1. Let Ci be the consumed time of the i-th test
case Ti ∈ σ (i = 1, 2, ..., |σ|), and Sφ the severity of fault
φ ∈ Φ. Suppose the variable t ∈ [0,

∑|σ|
i=1 Ci] be the time

of the moment testing process terminates exceptionally. The
NAPFDC(σ) is the mathematical expectation (or expected
value) of the percent of total severities of faults detected before
the termination, if following two assumptions hold:

1) t ∼ U[0,
∑|σ|
i=1 Ci]: That is t follows the continuous

uniform distribution with parameters (0,
∑|σ|
i=1 Ci).

2) During the running of the i-th test case Ti ∈ σ,
the total severities of its newly detected faults grow
linearly with its consumed time.

Proof is omitted since the length constraint.

According to this theorem, testers can use NAPFDC to
select the prioritized test suite that make more contributions
under the constraint of testing resource. As we claimed pre-
viously, APFDC , NAPFD and APFD are all the special
cases of NAPFDC , so they have the similar properties in
scenarios where (1) pc = 1, (2) costs / severities are uniform,
(3) p = 1 and costs / severities are uniform, respectively.

IV. LIMITATIONS OF EXISTING METRICS

There are some limitations of APFD series metrics though
they have practical explanations.

A. Test Suites’ Sizes or Total Costs

APFD series metrics are designed for the classic test case
prioritization problem that defined in Equation 1, where all
prioritized test suites under evaluation contain the same num-
ber of test cases. However, there may be some other types of
scenarios in software evolution and testing evolution, including
time-aware test case prioritization, test goal prioritization, test
case re-generation prioritization, test case reduction, and etc,
where people need to compare prioritized test suites in which
the numbers of contained test cases are different. So there is a
question: can APFD series metrics work in these scenarios?

There is a condition in Theorem 1 that t ∼ U(0,
∑|σ|
i=1 Ci).

Considering two prioritized test suites σ1 and σ2 where∑|σ1|
i=1 Ci 6=

∑|σ2|
i=1 Ci, there are tσ1

∼ U(0,
∑|σ1|
i=1 Ci) and

tσ2
∼ U(0,

∑|σ2|
i=1 Ci) respectively. Though both tσ1

and tσ2

follow continuous uniform distribution, their parameters are
different: the former follows the distribution with parameters
(0,
∑|σ1|
i=1 Ci) while the latter follows the distributions with

parameters (0,
∑|σ2|
i=1 Ci). It is unfair, and even meaningless, to

compare mathematical expectation by using NAPFDC , when
probability density functions are different. Therefore, APFD
series metric are not suitable to be used to compare prioritized
test suites with different sizes (for APFD and NAPFD) or
different total costs (for APFDC and NAPFDC).

Here we can take the test cases and faults in Table 1 as
examples to show some incorrect results when use APFD and
NAPFD. The incorrect results could be extended to illustrate
the limitations of APFDC and NAPFDC , since APFD and
NAPFD are special cases of them respectively.

1) For situation that all faults are detected by prioritized
test suites, construct two prioritized test suite σ1 :
T3 − T5 − T2 − T4 − T1 and σ2 : T3 − T5 − T6.
Note that both σ1 and σ2 detect all faults. Then we
compere their APFD values (also see Fig. 2):

APFD(σ1) = APFDC(σ1) = 3
5

APFD(σ2) = APFDC(σ2) = 1
2

But, it is incorrect to say σ1 is more efficient than σ2.
After run 1 (or 2) test case(s), both σ1 and σ2 detect
3 (or 5) faults; after run 3 test cases, σ2 detects all 8
faults while σ1 detects only 5; and finally σ1 need 2
more test cases to detect all 8 faults. It is clear that
σ2 detects faults more rapidly than σ1.

2) For situation that there are non-detected faults, con-
struct two prioritized test suite σ3 : T3−T2−T5 and
σ4 : T3−T5. Note that both σ3 and σ4 detect 5 faults.
Then we get:

NAPFD(σ3) = 17
48

NAPFD(σ4) = 11
32

But, it is incorrect to say σ3 is more efficient than
σ4. After run 1 test case, both σ3 and σ4 detect 3
faults; after run 2 test cases, σ4 detects 5 faults while
σ3 detects 3 faults; and finally σ3 need one more test
case to detect 5 faults. It is clear that σ4 detects faults
more rapidly than σ3.

This phenomenon is often overlooked. There may be some
incorrect and confused experimental results in the applications
of APFD series metrics in some previous papers. E.g. in ref.
[6] and [2], authors used APFD and NAPFD respectively
to compare prioritized test suites, in which the numbers of
contained test cases are different, without any pretreatment.

B. Process of Fault Detection

APFD series metrics can’t precisely illustrate the process
of fault detection in real world.

Note that the second condition of Theorem 1 is that the
total severities of detected faults grow linearly with consumed
time. In detail, during the running of one given test case, the
number of newly detected faults (for APFD and NAPFD)
or the total severities of newly detected faults (for APFDC

and NAPFDC) grow linearly. Taking the prioritized test suite
σ1 : T3 − T5 − T2 − T4 − T1 as an example, in the scenario
where both test costs and fault severities are ignored, there is
a continue function, which from the number of test cases run
to the percent of faults detected, reflecting the process that σ1

detects faults (see the curve in Fig. 1).

But factually, if a test case is still running, it cannot detect
any faults, since it is impossible to check whether this test
case is passed or failed before the end of running. It means
that the function, which from the number of test cases run (or
consumed time) to the percent of faults detected (or percent
of total severities of detected faults), should be a step function
in order to reflect the process of detecting faults. Also taking
σ1 : T3−T5−T2−T4−T1 as an example, the corresponding
step function is shown in Fig. 3. And the difference between
continue function and step function is shown in Fig. 4.

So in computing mathematical expectation that explained
in Theorem 1 for a prioritized test suite, there will be a margin
of error. The margin of error may be very severe especially
when the number of test cases is small. And if there are
numerous test cases in prioritized test suite, we may accept
such a approximation since the windage is minor.

1
/
4

1
/
2

3
/
4

1

1
/
5
 2
/
5
 3
/
5

p

e
r

c

e
n

t
a

g

e

o

f

f
a

u

l
t

s

d

e

t
e

c

t
e

d

p
e
r
c
e
n
t
a
g
e

o
f

t
e
s
t

c
a
s
e
s

r
u
n

O
r
d
e
r
:
T
3

-
T
5

-
T
2

-
T
4

-
 T
1

4
/
5
 1

1
/
4

1
/
2

3
/
4

1

1
/
5
 2
/
5
 3
/
5

p

e

r
c

e

n

t
a

g

e

o

f

f
a

u

l
t

s

d

e

t
e

c

t
e

d

p
e
r
c
e
n
t
a
g
e

o
f

t
e
s
t

c
a
s
e
s

r
u
n

O
r
d
e
r
:
T
3

-
T
5

-
T
2

-
 T
4

-
T
1

4
/
5
 1

Fig. 3. Step Function of σ1 Fig. 4. Difference between
Continue and Step Function

V. IMPROVED METRICS

To avoid above limitations, we propose a series of improved
metrics especially for non-classic test prioritization problems.

A. Relative-APFD

For two or more prioritized test suites that contain different
number of test cases, if we want to evaluate and compare how
rapidly they detect faults in the scenario where both test costs
and fault severities are ignored, a fair testing resource should
be provided firstly. Here the testing resource, which could be
described as a positive integer m, is considered as a constraint:

1) m < |σ| : at most m test cases in σ will run.
2) m ≥ |σ| : all the |σ| test cases in σ will run.

By using the testing resource constraint, we propose an
improved metric called relative average percent of faults
detected (Relative-APFD or RAPFD for short). The value
of RAPFD dose not only depend on the test suites under eval-
uation, but also relate to the given testing resource constraint.
And further, this metric could handle non-detected faults.

Formally, let σ be a prioritized test suite under evaluation,
Φ the set of fault contained in the software, and TF (φ, σ) the
position of the first test case in σ that exposes fault φ ∈ Φ
(TF (φ, σ) = 0 for non-detected fault). For a given testing
resource constraint m, the RAPFD of σ is defined as:

RAPFD(σ,m) = pm −
∑
φ∈ΦRTF (φ, σ,m)

m× |Φ|
(6)

Where

RTF (φ, σ,m) =

{
TF (φ, σ) : m ≥ TF (φ, σ)

0 : m < TF (φ, σ)

And pm is the ratio of the number of faults detected by first
m test cases in σ to the number of faults in Φ:

pm =
|{φ ∈ Φ|RTF (φ, σ,m) 6= 0}|

|Φ|

Taking the prioritized test suite σ1 : T3 − T5 − T2 − T4 −
T1 as an example, for a given testing resource constraint m,
RAPFD(σ1,m) shows the area surrounded by the x-axis, y-
axis, the line with x = m, and the curve that reflects the step
function of fault detection process of σ1. (See Fig. 5).

1
/
4

1
/
2

3
/
4

1

m
=
1
 m
=
2
 m
=
3

p

e
r

c

e
n

t
a

g

e

o

f

f
a

u

l
t

s

d

e

t
e

c

t
e

d

n
u
m
b
e
r

o
f

t
e
s
t

c
a
s
e
s

r
u
n

O
r
d
e
r
:
T
3

-
T
5

-
T
2

-
T
4

-
 T
1

m
=
4
 m
=
5

1
/
4

1
/
2

3
/
4

1

m
=
1
 m
=
2
 m
=
3

p

e
r

c

e
n

t
a

g

e

o

f

f
a

u

l
t

s

d

e

t
e

c

t
e

d

n
u
m
b
e
r

o
f

t
e
s
t

c
a
s
e
s

r
u
n

O
r
d
e
r
:
T
3

-
T
5

-
T
6

m
=
4
 m
=
5

Fig. 5. RAPFD(σ1,m) Fig. 6. RAPFD(σ2,m)

B. Relative-APFDCW

Considering the scenarios that test costs and fault severities
are varying, the given uniform testing resource constraint
should be scaled by a positive real number mc, which in-
dicates that the consumed testing resource should be less or
equal to mc. Then we can propose the metric called relative
cost-cognizant weighted average percent of faults detected
(Relative-APFDCW or RAPFDCW for short).

Formally, let σ be a prioritized test suite under evaluation,
Φ the set of fault contained in the software, and TF (φ, σ) the
position of the first test case in σ that exposes fault φ ∈ Φ
(TF (φ, σ) = 0 for non-detected fault). And let Ci be the cost
of the i-th test case (i = 1, 2, ..., |σ|), Sφ the severity of the
fault φ ∈ Φ. For a given testing resource constraint mc, the
RAPFDC of σ is defined as:

RAPFDCW (σ,mc) = pmcw−
∑
φ∈Φ(Sφ ×

∑RTFC(φ,σ,mc)
i=1 Ci)

mc ×
∑
φ∈Φ Sφ

(7)

Where

RTFC(φ, σ,mc) =

{
TF (φ, σ) : mc ≥

∑TF (φ,σ)
i=1 Ci

0 : mc <
∑TF (φ,σ)
i=1 Ci

And pmc is the ratio of the total severities of faults detected by
σ within the testing resource constraint, to the total severities
of all faults in Φ:

pmcw =

∑
RTFC(φ,σ,mc)6=0 Sφ∑

φ∈Φ Sφ

It is clear that RAPFDCW is equivalent to RAPFD
when both test costs and fault severities are uniform.

And further, for the scenario where only test costs / only
fault severities are taken into consideration, we can utilize

RAPFDC(σ,mc) = pmc −
∑
φ∈Φ

∑RTFC(φ,σ,mc)
i=1 Ci

mc × |Φ|
(8)

And

RAPFDW (σ,m) = pmw −
∑
φ∈Φ(Sφ ×RTF (φ, σ,m))

m×
∑
φ∈Φ Sφ

(9)

respectively. Where

pmc =
|{φ ∈ Φ|RTFC(φ, σ,mc) 6= 0}|

|Φ|

pmw =

∑
RTF (φ,σ,m)6=0 Sφ∑

φ∈Φ Sφ

They are both special cases of RAPFDCW

C. Physical Explanation

We take the RAPFDCW as example to analyze the phys-
ical meaning of improved metrics. RAPFD, RAPFDC and
RAPFDW will be omitted, since they could be considered as
a special case of RAPFDCW .

Theorem 2. Let Ci be the consumed time of the i-th
test case Ti ∈ σ (i = 1, 2, ..., |σ|), Sφ the severity of
fault φ ∈ Φ. Suppose the variable t ∈ [0,mc] be the time
of the moment testing process terminates exceptionally. The
RAPFDCW (σ,mc) is equal to the mathematical expectation
(or expected value) of the percent of total severities of faults
detected before the termination, if following two assumptions
hold:

1) t ∼ U[0,mc]. It means that t follows the continuous
uniform distribution with parameters (0,mc).

2) During the running of the i-th test case Ti ∈ σ, the
total severities of its newly detected faults keep still,
until the execution of Ti is finished.

Proof is omitted since the length constraint.

The theorem means that proposed RAPFD, RAPFDC ,
RAPFDW , and RAPFDCW could help people to control
the risk of testing process too.

VI. EXAMPLES

We still take the test cases and faults that shown in Table 1
as examples to illustrate the advantage of proposed RAPFD.
Considering σ1 : T3 − T5 − T2 − T4 − T1 and σ2 : T3 −
T5 − T6. For testing resource constraint m =1, 2, 3, 4, and
5 respectively, we compute RAPFD for σ1 and σ2 (also see
the area under the step functions in Fig. 5 and Fig. 6):

1) RAPFD(σ1, 1) = RAPFD(σ2, 1) = 0
2) RAPFD(σ1, 2) = RAPFD(σ2, 2) = 3

16
3) RAPFD(σ1, 3) = RAPFD(σ2, 3) = 1

3
4) RAPFD(σ1, 4) = 13

32 < RAPFD(σ2, 4) = 1
2

5) RAPFD(σ1, 5) = 1
2 < RAPFD(σ2, 5) = 3

5

The overall results show us that: if testing resource con-
straint is greater than 3 (more than test cases could run), σ2

detects faults more rapidly than σ1; if testing resource con-
straint is less than 3 (less than 3 test cases could run), σ1 and
σ2 have the same efficiency. And if testing resource constraint
is 3 (just 3 test cases could run), though RAPFD(σ1, 3) =
RAPFD(σ2, 3), σ2 is more efficient than σ1 since the former
detects more faults using first 3 test cases.

And for other two prioritized test suites σ3 : T3 − T2 − T5

and σ4 : T3 − T5, their RAPFD values for testing resource
constraint m =1, 2, 3 are:

1) RAPFD(σ3, 1) = RAPFD(σ4, 1) = 0
2) RAPFD(σ3, 2) = RAPFD(σ4, 2) = 3

10
3) RAPFD(σ3, 3) = 6

15 < RAPFD(σ4, 3) = 8
15

The overall results show us that: if testing resource con-
straint is greater than 2, σ4 detects faults more rapidly than σ3;
if testing resource constraint is less than 2, σ3 and σ4 have the
same efficiency. And if testing resource constraint is 2, though
RAPFD(σ3, 2) = RAPFD(σ4, 2), σ4 is more efficient than
σ3 since the former detects more faults using first 2 test cases.

RAPFDC , RAPFDW , and RAPFDCW have the sim-
ilar advantage, which is omitted here.

VII. CONCLUSION

We make a brief revisit of widely used existing APFD
series metrics, discuss the their physical explanations, and
point out some limitations that may lead incorrect results
especially in non-classic test case prioritization problems. To
avoid limitations, a series of improved metrics are proposed
in this paper. They could illustrate the process of faults de-
tection in software testing more precisely and practically, and
provide physical meaningful results to evaluate and compare
the efficiency of prioritized test suites.

Besides the theoretical analysis and simple examples, more
applications and case studies should be investigated in future
works to examine the proposed metrics.

ACKNOWLEDGMENT

Supported by the National Natural Science Foundation
of China (61300054), Natural Science Foundation of Jiangsu
Province (BK20130879), Natural Science Foundation for Col-
leges & Universities of Jiangsu Province (13KJB520018).

REFERENCES

[1] G. Rothermel, R. H. Untch, C. Y. Chu, M. J. Harrold. Prioritizing
Test Cases for Regression Testing. IEEE Transactions on Software
Engineering, 2001, 27(10): 929-948.

[2] X. Qu, M. B. Cohen, K. M. Woolf. Combinatorial Interaction Regres-
sion Testing: A Study of Test Case Generation and Prioritization. In
Proceedings of IEEE International Conference on Software Maintenance
(ICSM2007): 255-264.

[3] S. Elbaum, A. G. Malishevsky, G. Rothermel. Incorporating Varying Test
Costs and Fault Severities into Test Case Prioritization. In Proceedings
of the International Conference on Software Engineering (ICSE2001):
329-338.

[4] Dongjiang You, Zhenyu Chen, Baowen Xu, Bin Luo, Chen Zhang.
An Empirical Study on the Effectiveness of Time-Aware Test Case
Prioritization Techniques. In Proceedings of the 26th ACM Symposium
on Applied Computing (SAC2011): 1451-1456.

[5] R. C. Bryce, C. J. Colbourn. Prioritized Interaction Testing for Pair-
wise Coverage with Seeding and Constraints. Information and Software
Technology, 2006, 48(10): 960-970.

[6] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, R. S. Roos. Time-aware
test suite prioritization. In Proceedings of International Symposium on
Software Testing and Analysis (ISSTA2006), July 17-20, 2006 : 1-11.

[7] S. WeiBleder. Towards Impact Analysis of Test Goal Prioritization on
the Efficient Execution of Automatically Generated Test Suites Based
on State Machines. In Proceedings of the 11th International Conference
On Quality Software (QSIC2011), Madrid, Spain, July 13-14, 2011 :150-
155.

[8] M. J. Harrold, R. Gupta, and M. L. Soffa. A Methodology for Controlling
the Size of A Test Suite. ACM Transactions on Software Engineering
and Methodology, 1993, 2(3): 270-285.

