
NeoIDL: A Domain-Specific Language for
Specifying REST Services

Rodrigo Bonifácio∗, Thiago Mael de Castro†, Ricardo Fernandes†, Alisson Palmeira†, and Uirá Kulesza‡
∗ Departamento de Ciência da Computação, Universidade de Brası́lia, Brazil
†Centro de Desenvolvimento de Sistemas, Exército Brasileiro, Brazil

‡Departamento de Informática e Matemática Aplicada
Universidade Federal do Rio Grande do Norte, Brazil

Abstract—Service-oriented computing has emerged as an
effective approach for integrating business (and systems) that
might spread throughout different organizations. A service is a
unit of logic modularization that hides implementation details
using well-defined contracts. However, existing languages for
contract specification in this domain present several limitations.
For instance, both WSDL and Swagger use language-independent
data formats (XML and JSON) that are not suitable for specifying
contracts and often lead to heavyweight specifications. Interface
description languages, such as CORBA IDL and Apache Thrift,
solve this issue by providing specific languages for contract speci-
fications. Nevertheless, these languages do not target to the REST
architectural style and lack support for language extensibility. In
this paper we present the design and implementation of NeoIDL,
an extensible domain specific language and program generator
for writing REST based contracts that are further translated
into service’s implementations. We also describe an evaluation
that suggests the rapid return on investment with respect to the
design and development of NeoIDL1.

I. INTRODUCTION

Service-oriented computing (SOC) [6] is a consolidated
approach that enables the development of low coupling sys-
tems, which are able to communicate to each other even
across different domains. Thanks to the use of open standards
and protocols (such as HTTP and HTTPS) in SOC, service
orchestration enables the automation of business processes
among different corporations. A service is defined as a unit of
logic modularization [6] that hides implementation details and
adheres to a contract, usually described using a specification
language (for example WSDL [3], WADL [8], Swagger [18],
Apache Thrift [17] or CORBA [13]).

There is a recent trend to shift the implementation of ser-
vices using the set of W3C specifications for service-oriented
computing (such as SOAP and WSDL) to a lightweight ap-
proach based on the REpresentational State Transfer (REST).
REST is a stateless, client-server architectural style that is
being used for service-oriented computing [7]. Although REST
still lacks an agreement about a language for specifying
contracts, Erl et al. [5] suggest that a REST contract should
at least comprise a resource identification, a protocol method,
and a media type. Currently, the existing approaches for
specifying contracts in REST present some limitations. For
instance, Swagger specifications [18] are written in JSON (Java
Script Object Notation), a general purpose notation for data
representation that often leads to lengthy contracts. Swagger

1DOI reference number: 10.18293/SEKE2015-218

also does not provide any language construct for services
and data type reuse. Apache Thrift provides a specification
language more clear and concise, though its language is also
limited with respect to both modularity and reuse, since it is not
possible to specialize user defined data types (as it is possible
using CORBA IDLs [13]). Furthermore, the Apache Thrift
language does not present any means to extend the language
used for specifying contracts.

In this paper we describe a new language— NeoIDL–
for specifying REST services with their respective contracts
and an extensible program generator that translates NeoIDL
specifications into source code. Besides describing REST
contracts in terms of resources, methods, and media types,
NeoIDL specifications also include the definition of the data
types used in the visible interface of a service. We considered
the following requirements when designing NeoIDL. First, the
language should be concise and easy to learn and understand.
Second, the language should present a well-defined type sys-
tem and support single inheritance of user defined data types.
In addition, developers using NeoIDL should be able to specify
concepts related to the REST architectural style for service-
oriented computing [7], in order to simplify the translation
of a NeoIDL specification into basic components tailored to
that architectural style. Finally, both NeoIDL and the program
generator should be extensible. For that reason, we designed
NeoIDL to support extensibility through annotations; whereas
the extensibility of the program generator relies on a pluggable
architecture that uses high-order functions and some facilities
present on the Glasgow Haskell Compiler (GHC) [12]. In
summary, the contributions of this paper are twofold.

• We present the design and development of NeoIDL,
a novel specification language for service-oriented
computing that conforms to the aforementioned re-
quirements (Section II).

• We present the implementation details of an extensible
program generator written in Haskell (Section III).
This contribution addresses the issue of building ex-
tensible architectures in a pure, statically typed func-
tional language— a challenging that has not been
completely discussed in the literature.

In Section IV we discuss the extensibility mechanisms
and the return on investment of NeoIDL. Section V relates
our contributions with existing research work available in the
literature. Finally, Section VI presents final remarks and future
directions of NeoIDL.

NeoIDL Core

Plugins

NeoIDL
Parser

NeoIDL
Syntax

Plugin
Loader

Plugin
Def

Swagger Java Python

NeoIDL
Specification

Service
- swagger
- neuron
- entities
- services

Program Generator

Fig. 1. Architecture of NeoIDL program generator

II. NEOIDL DESIGN

In this section we first present an overview of our approach
(Section II-A), which consists of a specification language and
a program generator. Then, in Section II-B, we detail the
principal constructs of NeoIDL and illustrate some examples
of service specifications.

A. Approach Overview

NeoIDL has been developed to enable the specification
of REST services and to allow the code generation of the
implementation of those services for specific platforms. It
aims to simplify the development of services, by generating
code from a service specification. Figure 1 illustrates the main
components of our approach, which consists of: (i) a domain-
specific language (NeoIDL) for specifying REST services with
their respective contracts; and (ii) a program generator that
enables the code generation of REST services in different
platforms. The NeoIDL generator is structured as a set of
core modules, which are responsible for the parsing, syntax
definition, and processing of NeoIDL specification; as well as
modules for the definition and management of NeoIDL plu-
gins. Each NeoIDL plugin defines specific extensions for the
code generator that enables the generation of REST services
for different platforms or programming languages.

The current implementation of NeoIDL has been already
used to enable the generation of services for the NeoCortex
platform, a proprietary framework used by the Brazilian Army.
NeoCortex is a service oriented framework based on REST
that has been developed using NodeJS— a cross-platform
runtime environment for server-side and networking appli-
cations. NeoCortex is a polyglot framework that supports
the deployment of services written in different languages
(such as Python and Java) and addresses high responsiveness
requirements using reactive and asynchronous programming
techniques. Each NeoCortex service must provide a contract
and a front-controller— which delegates a service request to
the corresponding implementation. Even simple NeoCortex
services require different components that implement business
logic and other concerns, such as concurrency and persistence.
In summary, a typical NeoCortex service comprises several
components, such as:

• The synapse component exposes the service API
using a Swagger based JSON specification, which
provides an useful interface for testing a service.

• The neuron component implements the necessary
behavior for initializing and stopping a service, as well
it is responsible for mapping a requested URL pattern
into a specific resource class.

• User defined data types are represented as domain
classes, either in Python or Java. In the cases where
it is necessary to persist a data type on a database, a
database mapping is also necessary within a service.

In the context of NeoCortex, we translate NeoIDL
specifications into Swagger specifications and other software
components for different programming languages— to fulfill
the polyglot requirement of NeoCortex. This requirement
motivated us to implement the program generator of NeoIDL
as a pluggable architecture (see Figure 1)— so that we are
able to evolve the code generation support in a modular way.
For instance, implementing a C++ program generator from
NeoIDL specifications does not require any change in the
existing code of the program generator. It is only necessary
to implement a new NeoIDL plugin.

B. NeoIDL Language

NeoIDL simplifies service specifications by means of (a)
mechanisms for modularizing and inheriting user defined data
types, and (b) a concise syntax that is quite similar to the
interface description languages of Apache Thrift and CORBA.
A NeoIDL specification might be split into modules, where
each module contains several definitions. In essence, a NeoIDL
definition might be either a data type (using the entity
construct) or a service describing operations that might be
reached by a given pair (URI, HTTP method). Figures 2
and 3 present two NeoIDL modules: (i) the data-oriented
MessageData module; and the service-oriented Message
module.2

The MessageData module (Figure 2) declares an enu-
meration (MessageType), which states the two valid types
of messages (a message must be either a message sent or a
message received); and a data type (Message), which details
the expected structure of a message. We use a convention
over configuration approach, assuming that all attributes of a
user defined data type are mandatory, though it is possible to
specify an attribute as being optional using the syntax <Type>
<Ident> = 0;, as exemplified by the subject field of the
Message data type.

2The NeoIDL grammar could be found at http://goo.gl/p8eZky

1 module MessageData {
2 enum MessageType { Received , Sen t } ;
3
4 e n t i t y Message {
5 s t r i n g i d ;
6 s t r i n g from ;
7 s t r i n g t o ;
8 s t r i n g s u b j e c t = 0 ;
9 s t r i n g c o n t e n t ;

10 MessageType t y p e ;
11 } ;
12 }

Fig. 2. Message data type specified in NeoIDL

The Message module of Figure 3 specifies one service
resource (sentbox). As explained, we send requests for the
methods of a given resource using a specific path. In the
example, the sentbox resource’s methods are available from
the relative path /messages/sent. This resource declares
two operations: one POST method that might be used for
sending messages and one GET method that might be used
for listing all messages sent from a given sequential number.

Also according to our convention over configuration ap-
proach, we assume that the arguments of POST and PUT
operations are sent in the request body, whereas arguments of
GET operations are either sent enclosed with the request URL
or enclosed with the URL path (in a similar way as DELETE
operations). We are able to change these conventions by using
specific annotations attached to an operation parameter. In
these examples, conventions are used to reduce the size of
services’ specifications.

1 module Message {
2 import MessageData ;
3
4 r e s o u r c e s e n t b o x {
5 path = ” / messages / s e n t ” ;
6 @post vo id sendMessage (Message message) ;
7 @get [Message] l i s t M e s s a g e s (s t r i n g seq) ;
8 } ;
9 } ;

Fig. 3. Sent message service specification in NeoIDL

To support language extensibility, NeoIDL specifications
can be augmented through annotations. The main reason for
introducing annotations in NeoIDL was the possibility to
extend the semantics of a specification without the need to
change the concrete syntax of NeoIDL. For instance, suppose
that we want to express security policies for a service resource.
A developer could change the concrete syntax of NeoIDL for
this purpose, defining new language constructs for specifying
the authentication method (based on tokens or user passwords),
the cryptographic algorithm used in the resource request and
response, and the role-based permissions to the resource ca-
pabilities. However, changing the concrete syntax to allow the
specification of unanticipated properties of a resource often
breaks the code of the program generator.

Instead, using annotations, developers might extend the
language within NeoIDL specifications. Therefore, apart from

1 module Agente {
2
3 e n t i t y Agent {
4 . . .
5 } ;
6
7 a n n o t a t i o n S e c u r i t y P o l i c y f o r r e s o u r c e {
8 s t r i n g method ;
9 s t r i n g a l g o r i t h m ;

10 s t r i n g r o l e ;
11 } ;
12
13 @ S e c u r i t y P o l i c y (method = ” b a s i c ” ,
14 a l g o r i t h m =”AES” ,
15 r o l e = ” admin ”) ;
16 r e s o u r c e a g e n t {
17 path = ” / a g e n t ” ;
18 @post vo id p e r s i s t A g e n t (Agent a g e n t) ;
19 } ;
20 } ;

Fig. 4. NeoIDL specification using annotations

the NeoIDL definitions discussed before, it is also possible to
define new annotations that might be attached to the funda-
mental constructs of NeoIDL (i.e. module, enum, entity,
and resource). Each annotation consists of a name, a target
element that indicates the NeoIDL constructs the annotation
might be attached to, and a list of properties. When trans-
forming a specification, the list of annotations attached to a
NeoIDL element is available to the plugins, which could con-
sider the additional semantics during the program generation.
Figure 4 presents a NeoIDL example that attaches an user
defined annotation (SecurityPolicy) to specify security
policies on the agent resource. In the example, using the
SecurityPolicy annotation we specify that the operations
of the agent resource (i) must use a basic authentication
mechanism, (ii) the arguments and return values must be
encoded using the AES algorithm, and (iii) only authenticated
users having the admin role are authorized to request the
resources.

We end this section highlighting that the design of NeoIDL
comprises a domain specific language (DSL) for specifying
services APIs in a REST based environment and an extensible
program generator that might evolve to generate code to
different platforms and programming languages. Next sec-
tion presents some details about the NeoIDL implementation,
which uses Haskell as programming language— a well known
language for building (embedded) DSLs [9].

III. NEOIDL IMPLEMENTATION

As shown in Figure 1, the implementation of NeoIDL
consists of a core (split into several Haskell modules) and
several plugins, one for each target language (such as Swagger,
Python, or Java). The core module includes a tiny applica-
tion that loads plugins definition and processes the program
arguments, which specify the input NeoIDL file, the output
directory, and the languages that should be generated code
from the input file. Moreover, the core module contains a
parser3 and a type checker for NeoIDL specifications.

3We have developed the parser for NeoIDL using BNFConverter [16]

In the remaining of this section we present details
about the implementation of two NeoIDL Haskell modules:
PluginDef and PluginLoader. The first states the orga-
nization of a NeoIDL plugin and the second is responsible for
loading all available plugins. The details here are particularly
useful for those who want to develop extensible architectures
using Haskell.

A. PluginDef component

NeoIDL plugins must comply with a few design rules
that PluginDef states. PluginDef is a Haskell mod-
ule that basically declares two data types (Plugin and
GeneratedFile) and a type signature (Transform =
Module -> [GeneratedFile]) defining a family of
functions that map a NeoIDL module into a list of files whose
contents are the results of the transformation process.

According to these design rules, each NeoIDL plugin must
declare an instance of the Plugin data type and implement
functions according to the Transform type signature. More-
over, the Plugin instance must be named as plugin, so
that the PluginLoader component will be able to obtain
the necessary data for executing a given plugin. Indeed, the
execution of a plugin consists of applying the respective
transformation function for a NeoIDL module, produc-
ing as result a list of files that consists of a name and a Doc
as file content.4

As an alternative, we could have implemented a Haskell
type class [10] exposing operations for obtaining the necessary
data for a given plugin. Although this approach might seem
more natural for specifying design rules for a pluggable archi-
tecture in Haskell, in the end it would lead to a cumbersome
approach to our problem. The main reason for discarding this
alternative approach was the need to (a) implement a data type,
(b) make this data type an instance of the mentioned type class,
and (c) create an instance of that data type. All those steps
would be necessary for each plugin. Using our approach, the
obligation of a plugin developer is just to provide an instance of
the Plugin datatype, taking into account the name convention
we mentioned above. The language attribute of the Plugin
datatype is used for UI purpose only, so that the users will be
able to obtain the list of available plugins and select which
plugins will be used during a program generation.

B. PluginLoader component

Based on the design rules discussed in the previous section,
the PluginLoader component is able to dynamically load
the available NeoIDL plugins. This is a Haskell module (see
Figure 5) that exposes the loadPlugins function, which
returns a list with all available plugins. This list is obtained
by compiling the Haskell plugin modules during the program
execution and dynamically evaluating an expression that yields
a list of Plugin datatype instances.

We assume that all Haskell modules within the top level
Plugins directory must have a plugin definition, accord-
ing to the design rules of Section III-A In Figure 5, the
loadPlugins function lists all files within the Plugins
directory, filters the Haskell files (files with the ‘‘.hs’’

4The Doc data type comes from the John Hughes Pretty Printer library.

module PluginLoader (loadPlugins) where

type HSFile = String

dir :: String
dir = "Plugins"

loadPlugins :: IO [Plugin]
loadPlugins =

let
pattern = isSuffixOf "hs"
path file = dir < / > file

in (list dir)>>= (compile ◦map path ◦ filter pattern)

dfm = defaultFatalMessager
flushOut = defaultFlushOut

compile :: [HSFile]→ IO [Plugin]
compile modules =

defaultErrorHandler dfm flushOut $ do
result ← runGhc (Just libdir) $ do

let hsModules = map haskellModule modules
-- five lines of (boilerplate) code are necessary to
-- dynamically compile Haskell code using GHC

let exp = buildExpresson hsModules
plugins ← compileExpr (exp ++ "::[Plugin]")
return unsafeCoerce plugins :: [Plugin]

return result

buildExpression :: [HSModule]→ String
buildExpression hsms = "["++ plugins ++ "]"
where

plugins = concatMap (λx → x ++ ".plugin") hsms
concat = join ","

Fig. 5. PluginLoader component

extension), creates a qualified name to these files, and applies
the compile function to the resulting list of qualified names.
In the next step, the compile function uses the GHC API [12]
for compiling the Haskell modules with plugin definitions and
to evaluate an expression that produces a list with the available
plugins.

Our dynamic approach for loading plugins relies on the
GHC API, using a specific idiom to compile Haskell modules
and execute expressions. Figure 5 shows that idiom in the
definition of the compile function, although we omit some
boilerplate code that is necessary to compile Haskell modules
using the GHC API. The last four lines of compile are
specific to the program generator of NeoIDL. First, we build
a string representation of a Haskell list comprising all
instances of the Plugin datatype, obtained from the different
NeoIDL plugins. Then, we evaluate this string representation
of a plugin list using the meta-programming ability of the
compileExpr function, which is available in the GHC
API. Thus, compileExpr dynamically evaluates a string
representation of an expression, which leads to a value that
could be used by other functions of a program. The call to
compileExpr also checks the design rule that requires (a)
a plugin definition within all NeoIDL plugins; and (b) that
definition must be an instance of the Plugin data type. In the
cases where a plugin (exposed as a Haskell module on the top-
level Plugins directory) does not comply with this design rule,
a runtime error occurs. Accordingly, we use the default error
handler of GHC API to report problems when loading a plugin.
This is a new approach of using the GHC API to dynamically
check Haskell modules in pluggable architectures.

IV. EVALUATION

In this section we describe an evaluation of the NeoIDL
approach through the development and generation of services
in the context of a Brazilian Army project. In summary, this
evaluation aims at (a) understanding the NeoIDL benefits under
the ROI perspective and (b) reasoning about the modular
mechanisms of NeoIDL design.

A. The use of NeoIDL in a real context

We have developed nine services that implement operations
related to the domain of Command and Control (C2) [1].
These services comprehend almost 50 resources and 3000
lines of Python code. Therefore, all these services have been
implemented in Python, though other projects have been
implemented in Java as well.

Approximately, the number of lines of Python code related
to our service repository increases according to the function
sloc = 330 × numberOfServices— since, in average, each
service requires about 330 lines of Python code (with a
standard deviation of 119). It is important to note that services
are often implemented as a thin layer on top of existing
components that implement reusable tasks or business logic.
Accordingly, to understand the impact of NeoIDL accurately,
here we do not consider lines of code related to (a) existing
tasks and business logic implementations and (b) libraries that
might be reused through different services.

Based on the development of these services, we estimate
that it is possible to generate about 30% to 50% of a service
code using NeoIDL. Indeed, in the cases that a service is data-
oriented, involving basic operations for creating, updating,
querying and deleting data, we achieve a higher degree of code
generation. Differently, in the cases that a service encapsulates
low level behavior (such as the implementation of a chat-based
message protocol), we achieve a low degree of code generation
using NeoIDL, mainly because the current version of NeoIDL
does not provide any behavioral construct.

B. Return on Investment of NeoIDL

It is important to reason about the instant in which the
design and development of a DSL pays off, since the related
effort could not justify the benefits. Accordingly, here we
discuss about this issue relating effort to source lines of code
(SLOC) [15].

NeoIDL comprises almost 2500 lines of code, considering
the AST code generated by BNFConverter. Note that nearly
67% of the Haskell code results from the BNFConverter
parser generator. Therefore, excluding the generated code from
our analysis, as well as unit testing code and make files,
NeoIDL consists of 740 lines of Haskell code and 50 lines
of code that (a) specifies the concrete syntax of NeoIDL and
(b) serves as input to the BNFConverter. According to the
COCOMO model [2], it is possible to compute effort from
SLOC using equations (1) and (2). This leads to an effort
estimation of 3.17 months, which is quite close to the real
effort to implement NeoIDL, even considering that a significant
effort on the design of NeoIDL was related to the successive
refinements on the concrete syntax of the language.

personMonths = 2.4×KSLOC1.05 (1)
= 2.4× 0.791.05

= 1.87

months = 2.5× personMonths0.38 (2)
= 2.5× 1.870.38

= 3.17

For generating the Python services to the C2 do-
main, the following NeoIDL modules are necessary: bnf,
loader, pluginDef, main, swaggerPlugin, and
pythonPlugin. These modules totalize 640 of Haskell and
BNF code. Considering the discussion present in the previous
section, we estimate the break-even of NeoIDL according to
equations (3), (4), and (5). The third equation computes the
lines of code necessary for n services without using NeoIDL;
whereas the fourth and fifth equations compute the lines of
code for n services, considering that NeoIDL generates 30%
and 50% of the code, respectively. Therefore, the break-even
of NeoIDL must be achieved after developing a number of
services between 4 and 7. As a consequence, we believe that
the design and development of NeoIDL improve software
quality and productivity— by reducing the need to write
boilerplate code, at no significant additional costs.

sloc = 330× numberOfServices (3)
sloc = 0.7× 330× numberOfServices+ 640 (4)
sloc = 0.5× 330× numberOfServices+ 640 (5)

C. Modularity analysis

NeoIDL includes facilities to develop plugins and to evolve
NeoIDL specifications through annotations. As explained in
Section III we expose plugins according to some design rules,
which allow us to develop and test plugins with a slight
dependency on the existing code of the program generator. This
encourages contributions to NeoIDL, by enabling developers
to design and implement new plugins. In addition, it is possible
to unit test a NeoIDL plugin in an isolated manner. Here we
relate modularity to extensibility (it is easy to contribute to
NeoIDL without a deep knowledge of the core components
of NeoIDL) and testability (it is possible to test each NeoIDL
plugin in isolation).

Actually, to develop a plugin, it is only necessary to
understand the design rules discussed in Section III and an
external library (the John Hughes and Simon Peyton Jones
Pretty Printer library). For instance, Figure 6 shows the full
implementation of a NeoIDL plugin, which reports basic
metrics of size from a NeoIDL specification. To keep things
simple, that plugin generates a file (named metrics.data)
whose content consists of the name of a NeoIDL module
followed by three lines stating the number of enums, entities,
and resources within that module.

module Plugins.Metrics (plugin) where

import NeoIDL.Lang .AbsNeoIDL
import PluginDef

import Text .PrettyPrint .HughesPJ

plugin :: Plugin
plugin = Plugin {

language = "Metrics",
transformation = generateMetrics
}
print :: String → [a]→ Doc
print str lst = text str < + > (text ◦ show ◦ length) lst

generateMetrics :: Transformation
generateMetrics = λ(Module (Ident s) ens ess rss)→
let

outputFile = GeneratedFile name content
name = "metrics.data"
content = vcat [text "Module"< + > text s
, print "-enums:" ens
, print "-entities:" ess
, print "-resources:" rss]

in [outputFile]

Fig. 6. A simple plugin for exporting metrics of a NeoIDL specification

V. RELATED WORK

Many approaches for distributed systems consider the use
of an IDL, as discussed in Section I. However, similarly to
CORBA [13], WSDL [3], Apache Thrift [17], and Swag-
ger [18], the current version of NeoIDL does not support any
construct for specifying formal constraints. Nevertheless, we
envision that introducing the semantics of behavioral spec-
ification languages (such as Java Modeling Language [11])
into NeoIDL would (a) increase the effectiveness of program
generation and (b) enable test case generation from NeoIDL
specifications. It is also important to note that two shortcom-
ings of WSDL and Swagger (lack of modularity mechanisms
and low expressiveness) motivated the design of NeoIDL,
which considered the syntax of other languages (CORBA,
Apache Thrift) as inspiration.

Czarnecki and Eisenecker present many approaches for
Generative Programming [4], including Aspect-Oriented Pro-
gramming, C++ Template Metaprogramming, and Domain
Specific Languages. NeoIDL comprises a domain specific
language for services’ description and a pluggable architec-
ture with an extension point that allows code generation for
different target languages. Although several works describe the
use of Haskell to implement (embedded) domain specific lan-
guages [9], the use of Haskell to build pluggable architectures
has not been extensively discussed in the literature. Similar
to the hs-plugins framework [14], NeoIDL architecture
uses the infrastructure of the Glasgow Haskell Compiler to
dynamically load and compile Haskell modules that implement
NeoIDL plugins.

VI. FINAL REMARKS AND FUTURE WORK

This paper introduced NeoIDL, a domain specific lan-
guage for service specifications. We discussed the design and
implementation of NeoIDL, which comprises a specification
language and a pluggable architecture for generating code for

different languages. We further discussed the main contribu-
tions of NeoIDL with respect to existing interface description
languages (such as CORBA IDL and WSDL)— NeoIDL
provides means for language extensibility and specification
modularity. As a future work, we aim at writing NeoIDL
plugins to generate code to other web frameworks, such as
Play and Yesod Frameworks. We also intend to investigate the
use of behavioral specification constructs in NeoIDL, so that
we could generate test cases from NeoIDL specifications.

ACKNOWLEDGMENT

This work was partially supported by a research collab-
oration project between the Brazilian Army and the Uni-
versity of Brası́lia (project name: GEPRO EXERCITO TDC
EVOLUCAO CORTEX 2012).

REFERENCES

[1] Alberts, D.S., Hayes, R.E.: Understanding Command and Control. DoD
Command and Control Research Program, 1st edn. (2006)

[2] Boehm, B.W., Clark, Horowitz, Brown, Reifer, Chulani, Madachy, R.,
Steece, B.: Software Cost Estimation with Cocomo II. Prentice Hall
PTR, 1st edn. (2000)

[3] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web
services description language (wsdl) 1.1. W3C recommendation, W3C
(Feb 2001), http://www.w3.org/TR/wsdl

[4] Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods,
Tools, and Applications. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA (2000)

[5] Erl, T., Balasubramanian, R., Carlyle, B., Pautasso, C.: SOA with REST:
Principles, Patterns & Constraints for Building Enterprise Solutions with
REST. Prentice Hall (2012)

[6] Erl, T.: Service-Oriented Architecture: Concepts, Technology, and De-
sign. Prentice Hall PTR, Upper Saddle River, NJ, USA (2005)

[7] Fielding, R.T., Taylor, R.N.: Principled design of the modern web
architecture. ACM Trans. Internet Technol. 2(2), 115–150 (May 2002)

[8] Hadley, M.: Web application description language (wadl). W3C recom-
mendation, W3C (Aug 2009), http://www.w3.org/Submission/wadl/

[9] Hudak, P.: Building domain-specific embedded languages. ACM Com-
puting Surveys (CSUR) 28(4es), 196 (1996)

[10] Jones, M.P.: Functional programming with overloading and higher-order
polymorphism. In: Jeuring, J., Meijer, E. (eds.) Advanced Functional
Programming, Lecture Notes in Computer Science, vol. 925, pp. 97–
136. Springer (1995)

[11] Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of jml: A
behavioral interface specification language for java. Softw. Eng. Notes
31(3), 1–38 (May 2006)

[12] Marlow, S., Peyton-Jones, S.: The Glasgow Haskell Compiler. In:
Brown, A., Wilson, G. (eds.) The Architecture of Open Source Ap-
plications, vol. 2. lulu.com (2012)

[13] (OMG), O.M.G.: Interface definition language 3.5. Tech. rep., Object
Management Group (2014), http://www.omg.org/spec/IDL35/3.5/PDF/

[14] Pang, A., Stewart, D., Seefried, S., Chakravarty, M.M.T.: Plugging
haskell in. In: Proceedings of the 2004 ACM SIGPLAN Workshop on
Haskell. pp. 10–21. Haskell ’04, ACM, New York, NY, USA (2004)

[15] Park, R.: Software size measurement: A framework for counting source
statements. Tech. Rep. CMU/SEI-92-TR-020 (1992)

[16] Ranta, A.: Implementing Programming Languages. An Introduction to
Compilers and Interpreters. Texts in computing, College Publications
(2012)

[17] Slee, M., Agarwal, A., Kwiatkowski, M.: Thrift: Scalable cross-
language services implementation. Tech. rep., Facebook (2012),
http://thrift.apache.org/static/files/thrift-20070401.pdf

[18] Team, S.: Swagger restful api documentation specification 1.2.
Tech. rep., Wordnik (2014), https://github.com/wordnik/swagger-
spec/blob/master/versions/1.2.md

