
A Unified MapReduce Domain-Specific Language
for Distributed and Shared Memory Architectures

Daniel Adornes, Dalvan Griebler, Cleverson Ledur, Luiz Gustavo Fernandes
Pontifical Catholic University of Rio Grande do Sul (PUCRS),

Faculty of Informatics (FACIN), Computer Science Graduate Program (PPGCC),
Parallel Application Modeling Group (GMAP).

Av. Ipiranga, 6681 - Building 32 - Porto Alegre - Brazil
{daniel.adornes,dalvan.griebler,cleverson.ledur}@acad.pucrs.br, luiz.fernandes@pucrs.br

Abstract—MapReduce is a suitable and efficient parallel pro-
gramming pattern for processing big data analysis. In recent
years, many frameworks/languages have implemented this pat-
tern to achieve high performance in data mining applications,
particularly for distributed memory architectures (e.g., clusters).
Nevertheless, the industry of processors is now able to offer
powerful processing on single machines (e.g., multi-core). Thus,
these applications may address the parallelism in another archi-
tectural level. The target problems of this paper are code reuse
and programming effort reduction since current solutions do not
provide a single interface to deal with these two architectural
levels. Therefore, we propose a unified domain-specific language
in conjunction with transformation rules for code generation
for Hadoop and Phoenix++. We selected these frameworks as
state-of-the-art MapReduce implementations for distributed and
shared memory architectures, respectively. Our solution achieves
a programming effort reduction from 41.84% and up to 95.43%
without significant performance losses (below the threshold of
3%) compared to Hadoop and Phoenix++.

Keywords: MapReduce, Domain-Specific Language, Paral-
lel Programming, Effort Evaluation, Performance Evaluation.

I. Introduction

An exponential volume of data is generated by a variety
of fields worldwide, for example, social networks, govern-
ments, health care, stock market, among others. The so-
called Big Data is addressed by data analysis applications,
which may imply high computational costs. Consequently,
high-performance computing is needed to process all data
in time. Google initially proposed a solution for improving
the performance of these application’s domain, by combining
Map and Reduce operations as a single parallel pattern named
MapReduce [5]. Since then, the MapReduce has originated
many implementations by both industry and academic re-
search. Some of them have achieved great importance, such
as Hadoop1, which is suited for programming in large clusters
architectures, and Phoenix++ [13] for programming in multi-
core architectures.

MapReduce is a high-level pattern concept for expressing
parallelism and taking advantage of different parallel archi-
tectures [5]. However, current state-of-the-art implementations

1http://hadoop.apache.org
DOI reference number: 10.18293/SEKE2015-204

impose additional complexities beyond this pattern, requir-
ing developers to deal with low-level programming aspects,
such as memory management and network communication.
Moreover, there are host language prescriptions imposed by
the programming interface of library-based approaches. These
aspects motivate a particular language syntax for MapReduce
implementation.

This paper proposes a unified domain-specific language
to reduce the programming effort and improve code reuse
between distributed and shared memory architectures. Code
transformation rules are also proposed together with a trans-
formation process aimed at being fully compliant with the key
features of original MapReduce solutions.

The contributions are the following:
• A unified MapReduce domain-specific language for par-

allel and distributed architectures.
• A programming interface approach that significantly re-

duces the development effort.
• An efficient set of code transformation rules for Hadoop

and Phoenix++ without significant performance loss.
The paper is organized as follows. Section II discusses the

most important related work. Section III details the proposed
domain-specific language. Section IV describes the method-
ology approached for the evaluation. Section V performs the
experiments and evaluates the performance and programming
effort results. Finally, Section VI presents the conclusions and
future works.

II. RelatedWork
We aim at providing a unified programming interface to

reduce programming effort and allow code reuse between dis-
tributed and shared memory architectures. A Domain-Specific
Language (DSL) approach allows programmers to focus on
specific domains [6]. In this paper, we propose an external
DSL consisting of an entirely new language. Related work, in
turn, are embedded DSLs, which restricts their programming
interface’s flexibility and abstraction.

Hadoop was the first widely used MapReduce implemen-
tation, aimed at processing large data sets in distributed
systems. It provides a Java API for defining Map and Reduce
logic, which are run by distributed computation components
over distributed storage components. The distributed storage

Hone

Appuswamy et al.
Azwraith

Phoenix++

Hadoop

Ab
st

ra
ct

io
n

Performance on shared-memory

Unified
Interface

Phoenix Phoenix 2 Tiled-MapReduce

Fig. 1: The relationship graph between abstraction and perfor-
mance on the programming interface design goals.

components rely on Hadoop Distributed File System (HDFS),
which provides the vision of a single file system for large data
sets stored on all nodes in the cluster.

Ranger et al. [11] proposed the first version of Phoenix as an
optimized implementation of MapReduce for shared-memory
architectures, with a C-based programming interface. Yoo et
al. [16] evolved the Phoenix project with new optimizations
for multi-core architectures with non-uniform memory access.
Chen et al. [12], [4] proposed a new implementation of
Phoenix, based on a tiled (iterative) approach, named Tiled-
MapReduce. Finally, Talbot et al. [13] proposed Phoenix++,
consisting of a completely rewritten version of Phoenix, im-
plemented in C++ and taking advantage of the language’s
capabilities for modularity and code reuse in order to allow a
more adaptive programming interface.

Phoenix++ was mainly motivated by the recurrent need of
customizations reported by many of its users while working
with different applications. Talbot et al. realized that object-
oriented capabilities of C++ could be exploited for creating
specialized containers for storage of intermediate data and
stateful combiners for storing the cumulative value of asso-
ciative reduction operations (e.g., sum, product).

Concerning to high-performance, Phoenix++ outperforms
all its predecessors, previously mentioned. Also, compared to
Hadoop, Phoenix++ achieves a 28.5x speedup while executing
on a single machine (not distributed). It motivated us to use
Hadoop for distributed memory and Phoenix++ for shared-
memory multi-core architectures.

Recently, some researches [15], [2], [10] worked on improv-
ing Hadoop’s performance on the single-node level, mainly
by avoiding some internal mechanisms not needed for non-
distributed environments (e.g., message passing and repli-
cation) and harnessing the computational power of multi-
core. These researches also kept the Hadoop’s programming
interface, thus not adding a new abstraction layer. Their
evaluations, though, show that Phoenix++ still outperforms
in the single-node level.

Some important implementations addressing heterogeneous
architectures, with CPU and GPU, were also analyzed but are

still not covered by our transformation process. From these,
Grex [3] is the state-of-the-art, providing a specific API for
controlling the MapReduce phases and the way data structures
are stored in the different memory levels of GPUs.

Through a relationship graph, Figure 1 demonstrates our
understanding of the related work achievements concerning
abstraction and performance. It is possible to visualize that
most programming interfaces designed for distributed architec-
tures provide higher abstraction compared to those for multi-
core. Such difference is related to programming aspects and
their goals. In shared memory, programmers are required to
deal with low-level mechanisms such as pointers and memory
allocation in order to maximize the usage of very restricted
resources. By other hand, resources are much less restricted
in distributed architectures, allowing Hadoop’s interface to be
favored by using Java as host language.

Moreover, Figure 1 also justifies our choices for generating
MapReduce code. Hadoop and Phoenix++ are the best alter-
natives for our design principles in terms of abstraction and
performance. The following section discusses these and other
design aspects for the proposed solution.

III. The Proposed Domain-Specific Language
A unified MapReduce programming interface is proposed

in conjunction with code transformation rules for Phoenix++

and Hadoop MapReduce.
The proposed interface is inspired on the building block

syntax proposed by Griebler et al. [8], [7], since it demon-
strated significant effort reduction for the Master/Slave parallel
pattern. Our interface however is not built over a third-part
language as C or C++, being based on an own language
instead. The different programming languages (Java and C++)
and the very specific syntaxes for Phoenix++ and Hadoop code
led us to decide for an own language in order to maximize
abstraction. A C++ programming interface provided by the
Hadoop project, called Hadoop Pipes2, was initially considered
but later discarded due to absence of documentation and for
looking as a discontinued project.

The interface’s structure consists of an outer @MapReduce
block and two inner @Map and @Reduce blocks, as detailed
on listing 1 and grammar 1.

1 @MapReduce<NAME, K_IN , V_IN , K_OUT, V_OUT, K_DIST>{
2 @Map (key , v a l u e) {
3 / / Map code l o g i c
4 }
5 @Reduce (key , v a l u e s) {
6 / / Reduce code l o g i c
7 }
8 }

Listing 1: Interface’s structure.

The @MapReduce block always requires six parameters,
namely NAME, K_IN, V_IN, K_OUT, V_OUT and K_DIST.

The NAME parameter is any user-defined name, which
is used for identifying the MapReduce process and further
transforming the code for Java and C++ classes.

2http://wiki.apache.org/hadoop/C++WordCount

〈Map〉 ::= ‘@Map’ ‘(’ 〈key〉 , 〈value〉 ‘)’ ‘{’ { 〈cmd〉* 〈EmitCall〉 〈cmd〉* }
‘}’

〈Reduce〉 ::= ‘@Reduce’ ‘(’ 〈key〉 , 〈values〉 ‘)’ ‘{’ { 〈cmd〉* 〈EmitCall〉
〈cmd〉* } ‘}’ | ‘@SumReducer’ | ‘@IdentityReducer’

〈MapReduce〉 ::= ‘@MapReduce’ ‘<’ 〈mapreduce-params〉 ‘>’ ‘{’ 〈Map〉
〈Reduce〉 ‘}’

Grammar 1: Structure’s grammar

The K_IN, V_IN, K_OUT and V_OUT parameters are used
to define the <key/value> input and output types, respectively.
In other words, these parameters define which type of raw data
is initially read by the MapReduce process and which type of
reduced data is produced by it at the end.

The K_DIST parameter, in turn, is used for defining the keys
distribution, whether *:*, *:k or 1:1. It is used by Phoenix++

[13] for employing memory-optimized data structure for inter-
mediate <key/value> pairs, taking advantage of applications in
which the number of keys to be emitted is known in advance.

The inner blocks, @Map and @Reduce, must be pro-
grammed by the user in order to define the core logic of the
given MapReduce application. The @Map block receives a
<key/value> input pair from which to compute the <key/value>

intermediate pairs. Finally, the @Reduce block receives all
mapped values for each key, this is a <key/values> pair, and
computes the final reduced <key/value> pair by key. Both
blocks are provided with an emit function (grammar 2), which
for @Map block represents the function to emit intermediate
<key/value> pairs and for @Reduce block represents the
function to emit the final reduced value for a given key.

〈EmitCall〉 ::= ‘emit’ ‘(’ 〈key〉 , 〈value〉 ‘)’

Grammar 2: The emit function’s grammar

One additional characteristic of the @Reduce block is that
it can be replaced by a single @SumReducer directive with
no block code (grammar 1), which indicates that a simple
sum operation must be performed over all values of each
key. Another option is the @IdentityReducer directive, which
indicates that no reduction needs to be performed. Both default
options are also provided by Hadoop and Phoenix++, since
these are common reduce logics for MapReduce applications.
Nevertheless, whenever the provided default reducers do not
fit the need, a customized reducer can be implemented, as
demonstrated in listing 2 for a sample multiplicand reducer.

1 @Reduce (key , v a l u e s) {
2 double p r o d u c t = 1
3 for (int i =0; i < l e n g t h (v a l u e s) ; i ++)
4 p r o d u c t *= v a l u e s [i]
5 emit (key , p r o d u c t)
6 }

Listing 2: Multiplicand reducer with proposed interface.

Finally, listing 3 demonstrates the code of a Histogram
application with the proposed interface. This sample im-
plementation uses the @Type directive to define a variable

type pixel that stores the RGB values for each pixel in the
processed image. Then, the @MapReduce directive defines
the name Histogram and the four variable types for <key,
value> input and output pairs. The *:768 indicates that it is
known in advance that a maximum of 768 distinct keys will
be emitted by the Map phase. This information optimizes the
data structure used by the generated Phoenix++ code to hold
the intermediate <key, value> pairs. Finally, a @Map block
defines that map phase will emit value 1 for each occurrence
of a given color in the RGB of the pixel being processed, and
the @SumReducer defines that reduction will be performed
as a simple sum operation over all emitted values for each
distinct key.

1 @Type p i x e l (r : u s h o r t , g : u s h o r t , b : u s h o r t)
2 @MapReduce<Histogram , long , p i x e l , int , u long long ,
3 " * :768 " >{
4 @Map (key , p) {
5 emit (p . b , 1)
6 emit (p . g +256 , 1)
7 emit (p . r +512 , 1)
8 }
9 @SumReducer

10 }

Listing 3: Histogram with proposed interface.

A. Interface components and transformation rules

For developing the @Map and @Reduce logics the pro-
grammer is provided with a set of proposed interface’s com-
ponents, which comprehends variable types, built-in functions
and flow control structures. Each of these components has an
associated transformation rule, through which its equivalent
component in Hadoop and Phoenix++ can be later generated.

Variable types can also be custom types defined by the
programmer with the @Type keyword, which are translated
to C++ structs for Phoenix++ and Java classes implementing
the WritableComparable interface for Hadoop. The resulting
Java classes, particularly, include getters and setters methods,
besides some other methods whose implementation is required
by WritableComparable interface.

Moreover, whenever a custom type is defined for input data
(V_IN) in Hadoop, a complete implementation of a subclass
of FileInputFormat and another subclass of RecordReader is
required. It is particularly needed in order to instruct Hadoop
on how to split and distribute the input data among Map tasks.
Nonetheless, it causes applications developed with Hadoop to
reach a considerable amount of code. The generated subclass
of RecordReader considers each line of an input file to
represent a single instance of the given custom type.

Also, whenever a custom type is used for output values
(V_OUT), Phoenix++ requires the implementation of a custom
associative_combiner, which in turn is most likely to perform
a simple sum for internal attributes of the custom type. By
assuming this, the unified interface still allows @SumReducer
directive even if output values are of a custom type. In this
case, the code transformation is defined for the correspondent
associative_combiner and Reducer class of Phoenix++ and
Hadoop respectively.

Finally, Phoenix++ requires specific types (structs) and a
complex split logic for text processing applications. In the
proposed interface, whenever the type Text is chosen as input
value (V_IN), the transformation rules automatically include
such components in the C++ generated code.

B. Transformation Process

Transformation rules are applied through a transformation
process, whose stages are described as follows:
• First stage - The process starts by generating imports (for

Hadoop Java code) and includes (for Phoenix++ C++

code) always required by any application. It consists of
base libraries of these frameworks.

• Second stage - The process then continues by transform-
ing the @MapReduce block and its @Map and @Reduce
inner blocks. At this same stage, custom types @Type
may have been provided by the programmer being then
also transformed. Ultimately, global variables, external to
the @MapReduce block, may have also been defined by
the programmer and are also transformed in this second
stage.

• Third stage - This stage addresses transformations de-
rived from the input and output keys and values, inter-
preted in the second stage (e.g., text processing compo-
nents previously mentioned).

• Fourth stage - This stage transforms the variable types
defined in the blocks’ signature and also internally to
these blocks.

• Fifth stage - Ultimately, the fifth stage transforms the
functions defined externally to the MapReduce blocks or
internally to custom types.

The proposed process is based on Aho et al. [1], thus
consisting of language recognition, analysis and code gen-
eration. Language recognition phase comprehends the inter-
pretation through lexical, syntactic and semantic analysis.
Lexical analysis validates the compliance with the proposed
components then producing tokens. The syntactic analysis
uses the identified tokens to check the grammar language and
report syntax errors. The semantic analysis in turn checks
how components are disposed throughout the whole code.
An overview of the transformation flow is shown in figure
2. Effective transformations and code generation are proposed
as future work (section VI).

Fig. 2: Domain-Specific Language Flow.

Along the language recognition phase, an AST (Abstract
Syntax Tree) is created. An AST is a tree representation
of the abstract syntactic structure of source code written
in a programming language. Each node of the tree denotes
a construction present in the source code. AST creation is

bottom-up because the nodes addition starts from the smaller
tokens and patterns. Finally, AST stores the identified tokens
for later use in the code generation phase, which then traverses
the tokens in the AST in order to generate new code in the
target language.

IV. Methodology

We evaluated our DSL using two approaches. First we
evaluated its interface using SLOCCount3 to measure pro-
gramming effort. The second approach consisted of perfor-
mance results. Five different applications with specific pecu-
liarities, namely Word Count, Word Length, Histogram, K-
means and Linear Regression, were implemented with the
proposed interface and generated through the transformation
rules for Phoenix++ and Hadoop. This applications were also
implemented purely in Phoenix++ and Hadoop.

The main peculiarity we looked for while choosing the
sample applications was the key distribution. Word Count
demonstrates the *:* distribution, whereas Word Length, His-
togram, K-means and Linear Regression demonstrate the *:k
distribution. Additionally, other peculiarities are also covered
by the selected sample applications, such as custom types and
custom combiners.

The Matrix Multiplication and PCA (Principal Component
Analysis applications) would fit the 1:1 distribution, however
would also require more programming controls for Phoenix++

generated code beyond the abstraction aimed by the proposed
interface and with no equivalent functionality in Hadoop.

A. Effort Evaluation

For programming effort measurement it was used the SLOC-
Count suite, also used by Griebler et al. [7] for the evaluation
of DSL-POPP and by a set of other researches (e.g., [9], [14]).
SLOCCount3 is a software measurement tool, which counts the
physical source lines of code (SLOC), ignoring empty lines
and comments. It also estimates development time, cost and
effort based on the original Basic COCOMO4 model.

The suite supports a wide range of both old and modern pro-
gramming languages (e.g., C++ and Java), which are naturally
inferred by SLOCCount and thus used for measurement. For
our unified interface, we selected C++ because it has similar
syntax.

B. Performance Evaluation

For evaluating performance, the workload for Word Count
and Word Length was a 2Gb text file, for Histogram, a 1.41
Gb image with 468,750,000 pixels and for Linear Regression
the workload was a 500Mb file. For Kmeans, no input file
is required, since number of points, means, clusters and di-
mensions are parametrized through command line or assumed
to the default values of 100,000, 100, 3 and 1,000, respec-
tively, which were considered for our tests. All workloads are
available at the Phoenix++ project’s on-line repository5.

3http://www.dwheeler.com/sloccount/sloccount.html
4http://www.dwheeler.com/sloccount/sloccount.html#cocomo
5https://github.com/kozyraki/phoenix

For performance evaluation of generated Phoenix++, we
used a multi-core system with a 2.3 GHz Intel Core i7
processor, four cores with Hyper-Threading and 16Gb of
DRAM, whereas for performance evaluation of generated
Hadoop, we used 8 nodes of a cluster, where each node is
equipped with a 2.4 GHz Intel Xeon Six-Core E5645 processor
and 24Gb of DRAM. The cluster sums 192 cores, where the
nodes are interconnected by 2 Gigabit-Ethernet networks and
2 InfiniBand networks.

In order to obtain the arithmetic means, 30 execution times
were collected for each sample application such as described
in Tables II and I, and Figures 4 and 3. For running Hadoop
applications, we used a synthetic script 6 and copied to HDFS
all data so that all cluster nodes had access.

V. Results

As described in section IV, we evaluated the proposed DSL
using two approaches for measuring programming effort and
performance. Tables I and II show the mean execution time
for each sample application for the code transformed from our
proposed unified interface and for the code developed directly
from Phoenix++ and Hadoop, respectively. Figures 3 and 4
graphically demonstrate these same measurements.

TABLE I: Original and generated Phoenix++.

WC WL Histogram Kmeans LR
Original 5.38 4.02 2.83 5.98 0.62
Generated 5.37 3.99 2.87 6.09 0.63
Difference -0.27% -0.9% 1.4% 1.7% 0.3%

TABLE II: Original and generated Hadoop.

WC WL Histogram Kmeans LR
Original 36.24 26.36 21.87 51.36 5.97
Generated 37.22 26.48 22.42 50.59 6.01
Difference 2.63% 0.45% 2.45% -1.52% 0.76%

0

2

4

6

Histogram Kmeans Linear Regression Word Count Word Length
Application

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Version
Generated
Original

Fig. 3: Original and generated Phoenix++.

0

10

20

30

40

50

Histogram Kmeans Linear Regression Word Count Word Length
Application

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Version
Generated
Original

Fig. 4: Original and generated Hadoop.

6https://github.com/mvneves/hadoop-deploy

Through tables I and II and figures 3 and 4 it is possible to
visualize the negligible difference (less than 3%) between the
execution time of the generated and original versions for the
two frameworks. Performance losses are considerably avoided
as a direct result of the effective coverage of performance
components by the transformation rules.

Tables III and IV and figures 5 and 6 show the SLOC and
cost measurements. It is possible to observe that the difference
between the measurements of SLOC and Cost is negligible,
which confirms the approach used by COCOMO model.

A significant SLOC reduction can be observed for Word
Count and Word Length applications compared to Phoenix++

code, which take advantage of the specific components for
text processing applications. For such applications, Phoenix++

requires a wide set of mechanisms whose need is then
identified in advance by the proposed transformation rules,
being it transparent while developing with the proposed unified
interface.

TABLE III: SLOC count reduction

Application Phoenix++ Hadoop Unified
Interface

Reduction
compared

to
Phoenix++

Reduction
compared

to Hadoop

WordCount 89 27 8 91.01% 70.37%

WordLength 95 33 14 85.26% 57.58%

Histogram 22 170 9 59.09% 94.71%
K-means 98 244 57 41.84% 76.64%

Linear
Regression 31 171 18 41.94% 89.47%

67 129 21.2 63.83% 77.75%

TABLE IV: Cost estimate reduction

Application Phoenix++ Hadoop Unified
Interface

Reduction
compared

to
Phoenix++

Reduction
compared

to Hadoop

WordCount $2,131.00 $609.00 $170.00 92.02% 72.09%

WordLength $2,282.00 $752.00 $306.00 86.59% 59.31%

Histogram $491 $4,204.00 $192.00 60.90% 95.43%
K-means $2,357.00 $6,143.00 $1,334.00 43.40% 78.28%

Linear
Regression $704.00 $4,229.00 $398.00 43.47% 90.59%

$ 1,593.00 $ 3,187.20 $ 480.00 65.28% 79.14%

41.84%
41.94%
57.58%
59.09%
70.37%
76.64%
85.26%
89.47%
91.01%
94.71%

Histogram K−means Lin. Regression Word Count Word Length
Application

R
ed

uc
ed

 S
LO

C

Framework
Hadoop
Phoenix++

Fig. 5: SLOC count reduction

Compared to Hadoop, the Histogram, K-means and Lin-
ear Regression applications achieved greater SLOC reduction
mainly for the amount of code required to treat custom types
(subclasses of WritableComparable) in Hadoop.

43.40%
43.47%
59.31%
60.90%
72.09%
78.28%
86.59%
90.59%
92.02%
95.43%

Histogram K−means Lin. Regression Word Count Word Length
Application

R
ed

uc
ed

 C
os

t

Framework
Hadoop
Phoenix++

Fig. 6: Cost estimate reduction

K-means also takes advantage over Phoenix++ by com-
pletely avoiding code for custom combiner, however many
functions are required by the sample implementation, which
causes little SLOC reduction with the unified interface.

VI. Conclusions

From selecting Phoenix++ and Hadoop as the state-of-the-
art solutions for shared-memory and distributed architectures,
respectively, this work proposes a solution for abstracting
MapReduce programming without losing the performance
optimizations of these selected implementations. Such objec-
tive is achieved through a unified MapReduce programming
interface, proposed in conjunction with a comprehensive set
of transformation rules for Phoenix++ and Hadoop.

Except for a specific data locality configuration for NUMA
systems provided by Phoenix++, the transformation rules are
effective in covering from custom types to custom functions,
custom combiners, default reducers, different key distributions
and text processing components, covering thus all compo-
nents needed from the selected sample applications. Moreover,
performance losses are successfully avoided (difference of
less than 3%) and SLOC and cost reduction indicates that
programmers’ productivity can be considerably increased.

Some advantages and main contributions are the reuse of
code between different architectures and the possibility of
expanding the coverage of the transformation rules to other
MapReduce solutions and architectural levels.

A limitation is that programmers are still required to im-
plement the code to call the MapReduce process, thus being
required to know C++ and/or Java. However, some on-line ser-
vices, such as Amazon’s Elastic MapReduce7 (EMR), require
only the Hadoop MapReduce implementation, abstracting the
invocation code from developers. Nonetheless, we conclude
that the SLOC and cost reduction achieved by the proposed
interface compensate such limitation.

As future work we plan to expand the transformation rules
in order to cover MapReduce solutions such as Grex [3] for
heterogeneous parallel architectures. Finally, we also visualize
an expansion of the DSL’s programming interface, particularly
by adding more built-in functions and variable types.

VII. Acknowledgments

This work was supported by FAPERGS (Fundação de
Amparo à Pesquisa do Estado do Rio Grande do Sul), CAPES

7http://aws.amazon.com/elasticmapreduce

(Coordenação de Aperfeiçoamento Pessoal de Nível Superior),
FACIN (Faculdade de Informática) and PPGCC (Programa de
Pós-Graduação em Ciência da Computação).

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986.

[2] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and A. Row-
stron. Scale-up vs Scale-out for Hadoop: Time to Rethink? In
Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC
’13, pages 20:1–20:13, Santa Clara, CA, October 2013. ACM.

[3] C. Basaran and K.-D. Kang. Grex: An efficient MapReduce Framework
for Graphics Processing Units. J. Parallel Distrib. Comput., 73(4):522–
533, May 2013.

[4] R. Chen and H. Chen. Tiled-MapReduce: Efficient and Flexible
MapReduce Processing on Multicore with Tiling. ACM Trans. Archit.
Code Optim., 10(1):3:1–3:30, April 2013.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In OSDI, pages 137–150, Berkeley, CA, USA, December
2004. USENIX Association.

[6] M. Fowler. Domain-Specific Languages. Addison-Wesley, Boston, USA,
2010.

[7] D. Griebler, D. Adornes, and L. G. Fernandes. Performance and Us-
ability Evaluation of a Pattern-Oriented Parallel Programming Interface
for Multi-Core Architectures. In The 26th International Conference
on Software Engineering & Knowledge Engineering, pages 25–30,
Vancouver, Canada, July 2014. Knowledge Systems Institute Graduate
School.

[8] D. Griebler and L. G. Fernandes. Towards a Domain-Specific Language
for Patterns-Oriented Parallel Programming. In Programming Languages
- 17th Brazilian Symposium - SBLP, volume 8129 of Lecture Notes
in Computer Science, pages 105–119, Brasilia, Brazil, October 2013.
Springer Berlin Heidelberg.

[9] M. Hertz, Y. Feng, and E. D. Berger. Garbage Collection Without
Paging. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’05, pages
143–153, New York, NY, USA, 2005. ACM.

[10] K. A. Kumar, J. Gluck, A. Deshpande, and J. Lin. Optimization
Techniques for "Scaling Down" Hadoop on Multi-Core, Shared-Memory
Systems. In Proceedings of the 17th International Conference on
Extending Database Technology, EDBT ’14, pages 13–24, Athens,
Greece, 2014. Open Proceedings.

[11] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.
Evaluating MapReduce for Multi-core and Multiprocessor Systems.
In Proceedings of the 2007 IEEE 13th International Symposium on
High Performance Computer Architecture, HPCA ’07, pages 13–24,
Washington, DC, USA, 2007. IEEE Computer Society.

[12] H. C. Rong Chen and B. Zang. Tiled-MapReduce: Optimizing Resource
Usages of Data-Parallel Applications on Multicore with Tiling. In Proc.
of the 19th Int’l Conference on Parallel Architectures and Compilation
Techniques, page 523–534, Vienna, Austria, September 2010.

[13] J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++: Modular MapRe-
duce for Shared-Memory Systems. In Proceedings of the second
international workshop on MapReduce and its applications, MapReduce
’11, pages 9–16, San Jose, California, USA, May 2011. ACM.

[14] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones.
Refinement Types for Haskell. In Proceedings of the 19th ACM
SIGPLAN International Conference on Functional Programming, ICFP
’14, pages 269–282, New York, NY, USA, August 2014. ACM.

[15] Z. Xiao, H. Chen, and B. Zang. A Hierarchical Approach to Maximizing
MapReduce Efficiency. In Proceedings of the 2011 International Confer-
ence on Parallel Architectures and Compilation Techniques, PACT ’11,
pages 167–168, Washington, DC, USA, October 2011. IEEE Computer
Society.

[16] R. M. Yoo, A. Romano, and C. Kozyrakis. Phoenix Rebirth: Scalable
MapReduce on a Large-Scale Shared-Memory System. In Proceedings
of the 2009 IEEE International Symposium on Workload Characteri-
zation (IISWC), IISWC ’09, pages 198–207, Washington, DC, USA,
October 2009. IEEE Computer Society.

	Introduction
	Related Work
	The Proposed Domain-Specific Language
	Interface components and transformation rules
	Transformation Process

	Methodology
	Effort Evaluation
	Performance Evaluation

	Results
	Conclusions
	Acknowledgments
	References

