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Abstract—One of the major challenges when working with software
metrics datasets is that some metrics may be redundant or irrelevant
to software defect prediction. This may be addressed using feature
(metric) selection, which chooses an appropriate subset of features for
use in downstream computation. There are three major forms of feature
selection: filter-based feature rankers, which uses statistical measures to
assign a score to each feature and present the user with a ranked list;
filter-based subset evaluation, which uses statistical measures on feature
subsets to find the best choice; and wrapper-based subset selection, which
builds classification models using different subsets to find the one which
maximizes performance. Software practitioners are interested in which
feature selection methods are best at providing the most stable feature
subset in the face of changes to the data (here, the addition or removal
of instances). In this study we select feature subsets using fifteen feature
selection methods and then use our newly proposed Average Pairwise
Tanimoto Index (APTI) to evaluate the stability of feature selection
methods. We evaluate the stability of feature selection methods on a
pair of subsamples generated by fixed-overlap partitions algorithm. Four
different levels of overlap are considered in this study. Four software
metric datasets from a real-world software project are used in this study.
Results demonstrate that ReliefF (RF) is the most stable feature selection
method and wrapper based feature subset selection shows least stability.
In addition, as the overlap of partitions increased, the stability of the
feature selection strategies increased.

I. INTRODUCTION

For most software systems, superfluous software metrics (e.g.,
number of loops, number of global variables, and number of exit
nodes) are often collected during the software development cycle.
Some metrics may be redundant or irrelevant to software defect
prediction. Therefore the identification and selection of of a small set
of relevant features from a metric dataset could be used by software
developers to guide their efforts to reduce software development cost
and produce more reliable software systems [1]. The identification
and selection process is called metric (feature) selection. Feature
selection algorithms (which select a subset of features from the
original dataset) are often used to reduce the original feature set down
to a subset containing only the most important features. Numerous
feature selection methods have been proposed in the data mining and
software engineering domains.

While feature selection is a necessary step, very little work has
focused on the robustness (stability) of the feature selection methods
in regards to software metrics data. The purpose of studying the
stability of a feature selection technique is to determine which
technique provides the feature subset that is the most robust to
changes in the data. In this study, we used a fixed-overlap partitions
algorithm which was proposed by our research group to generate
a pair of subsamples which have same number of instances and a
specified degree of overlap (fraction of instances in common). Then
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feature subset chosen from the pair of subsamples using a feature
selection method are compared. The proposed algorithm is different
from the approaches used by most researchers, which either generate
multiple random subsamples of the original dataset and compare the
features chosen from these with one another, or compare the features
from the subsamples directly with the features from the original data.
It can be noted that the first approach can not control the overlap
between subsamples, while the second approach compare features
from different size of datasets.

The primary focus of this paper is to evaluate the stability of fifteen
feature selection methods through a case study of four consecutive
releases of a very large telecommunications software system (denoted
as LLTS). We consider fifteen different feature selection strategies:
three feature rankers each coupled with three feature subset sizes,
the Correlation-based Feature Selection (CFS) filter-based subset
evaluator, and wrapper-based feature selection using one of five
different learners inside the wrapper. We evaluate the stability of
feature selection methods on a pair of subsamples generated by the
fixed-overlap partitions algorithm. Four different levels of overlap
are considered in this study. We find that in general, the most stable
feature selection methods is a ranker-based approach. Among the
rankers, ReliefF (RF) is the most stable one. The trends of rankers
being the most stable feature selection overall, CFS often being a
moderate stable feature selection, and wrappers being extremely poor
choices of feature selection in terms of stability were all present in
the results. In addition, as the overlap of partitions increased, the
stability of the feature selection strategies increased.

The rest of the paper is organized as follows. We review relevant
literature on feature selection and stability in Section II. Section III
provides detailed information about the three classes of feature
selection, fixed-overlap partitions , and metrics used for measuring
stability (including our newly-proposed extension on the Tanimoto
Index) used in our study. Section IV provides a description of the
software measurement datasets used and presents empirical results
of our study. Finally, in Section V, the conclusion is presented and
the suggestions for future work are indicated.

II. RELATED WORK

Feature selection is a necessary step in data mining. The main goal
of feature selection is to select a subset of features that minimizes
the prediction errors of classifiers. A number of papers have studied
the use of feature selection techniques as a data preprocesing step.
While many works have focused on the performance of models built
using features selected by feature selection techniques, another way
to evaluate a feature selection technique is through stability. Few
studies exist on the stability of feature selection algorithms, but a



small number of studies have considered the stability of wrapper-
based feature selection, which is often calculated in a similar fashion.
Somol and Novovičová [2] conducted a comprehensive study of the
stability of feature selection techniques and investigated the problem
of evaluating the stability of feature selection techniques that produce
subsets of varying size. They compared the stability of three wrapper
techniques (Gaussian classifier, 3-Nearest Neighbor, and Support
Vector Machines). Lustgarten et al. [3] proposed a stability measure
called the Adjusted Stability Measure (ASM, based upon extending
the consistency index to varying feature subset size), as opposed to
Unadjusted Stability Measure (USM, based on the Jaccard index),
that computes robustness of a feature selection technique with respect
to random feature selection. They compared the stability of three
wrapper approaches. Haury et al. [4] evaluated a number of feature
ranking methods and one wrapper-based subset evaluation technique
and considered stability in terms of how many features are in common
between two subsets generated from independent subsamples of
the original data. Dunne et al. [5] considered wrappers using a
3-nearest neighbor learner and three choices of search technique,
evaluating stability by resampling the original dataset and finding
the Hamming distance between the various feature subset masks. The
overall stability is then defined by the average Normalized Hamming
Distance. Kalousis et al. [6] used the Tanimoto coefficient that is a
generalized version of the Jaccard index to measure similarity be-
tween two subsets of features. They concluded that stability provides
an objective criterion to choose among feature selection algorithms.
Selecting the most stable algorithm gives higher confidence in the
quality of selected feature subset.

Few works consider the impact of dataset similarity when perform-
ing perturbation experiments, one paper, Alelyani et al. [7], does. In
this paper, the authors note that without controlling for overlap, it
is difficult to tell whether two feature subsets are different due to
underlying stability issues with the ranker or due to differences in
the datasets they were drawn from. To evaluate this, the researchers
sampled 25% of the instances into one subset, and then created nine
more subsets with exactly c of their instances in common with the
first. The pairwise stability of the features from these subsets were
evaluated as c varied from 0 to 1. They found that some algorithms
were not able to outperform the inherent stability of the underlying
datasets, and so should not be considered “stable” regardless of their
stability performance. Although Alelyani et al. raises an important
question about the role of dataset similarity, it does not necessarily
address this question to the extent it deserves. Notably, during their
experiments with varying the amount of overlap between subsets,
only the overlap between the first subset and the remaining nine is
considered; the overlap among the nine is not, and will depend on
random chance. In addition, by consistently using only 25% of the
instances from their datasets (which have as few as 85 instances to
start with), they discard much of their data. Finally, although their
proposal to compare a ranker’s stability with the minimum stability
provided by the dataset is useful, it doesn’t address the problem of
selecting stable rankers for different subset sizes, degree of class
balance, size of underlying dataset, or difficulty of learning of the
underlying dataset. These questions and more remain open.

Another work, Haury et al. [4], considers the role of overlap when
considering the stability of gene subsets. In addition to other analysis
of their datasets, the researchers consider the fraction of instances in
common when comparing feature lists generated from subsamples
of the original data which either have 80% or 0% overlap. They
also compare feature lists among four distinct (but related) datasets.
They found that the stability measures for the 0% overlap case more

closely resembled the between-datasets case than did the results from
the 80% overlap case. However, unlike the 0% case, where it is noted
that the original data was divided into two mutually-exclusive groups
(which therefore have 0% overlap), for the 80% case the two groups
were generated by adding 80% of the data from the original dataset
into each group, and then splitting the remaining 20% in half and
putting each half into one of the groups. Thus, the 80% refers to
proportion of the original data shared by the two groups, not the
overlap between the two groups. This makes it difficult to generalize
the approach to create datasets with arbitrarily-chosen overlaps.

The main contribution of the present work is that we consider
stability of three forms of feature selection techniques by comparing
the selected features generated from two subsamples which have same
number of instances and a specified level of overlap, rather than
directly comparing separate subsamples of the original dataset with
original datasets. In addition the Average Pairwise Tanimoto Index
(APTI), which does not require feature subsets have the same size,
is used to evaluate the stability of a feature selection technique.

III. METHODOLOGY

We consider fifteen different feature selection strategies: three
feature rankers each coupled with three feature subset sizes, the
Correlation-based Feature Selection (CFS) filter-based subset eval-
uator, and wrapper-based feature selection using one of five different
learners inside the wrapper. The feature selection techniques are
presented in Section III-A, while the Fixed-Overlap Partitions are
discussed in Section III-B, and the stability measure is presented in
Section III-C.

A. Feature Selection

Many techniques exist for choosing the optimal feature subset,
but these can generally be placed into two categories: ranking-based
methods and subset-based methods. Within the subset group, either
filters or wrappers can be used to perform the actual evaluation.
Filters are algorithms in which a feature subset is selected without
involving any learning algorithm. Wrappers are algorithms that use
feedback from a learning algorithm to determine which feature(s)
to include in building a classification model. Feature rankers tend
to be more efficient than subset-based methods, because a ranker
need only provide a single score for each feature, and then subsets
can be built based on ranked feature lists. For subset-based methods,
different subsets must be considered, with the number of calculations
reaching to 2n (n is the number of features) if exhaustive search is
used. Subset-based methods will take more computational resources
than feature rankers.

1) Feature Ranking: For feature ranking, we choose three repre-
sentative techniques: Relief (RF), Area Under the Receiver Operating
Characteristic (ROC) Curve, and Signal-To-Noise (S2N). These were
chosen for two reasons. First of all, they represent three major
groupings of feature ranking technique: RF is a commonly-used
algorithm for ranking features, while ROC is an example of threshold-
based feature selection (TBFS) [8], and S2N is an example of first-
order statistics-based feature selection (FOS) [9].

Relief is an instance-based feature ranking technique [10]. ReliefF
is an extension of the Relief algorithm that can handle noise and
multi-class datasets. When the ‘weightByDistance’ (weight nearest
neighbors by their distance) parameter is set as default (false), the
algorithm is referred to as RF.

Threshold-based Feature Selection Techniques (TBFS) were pro-
posed and implemented by our research group [8]. In TBFS, each



attribute is evaluated against the class, independent of all other fea-
tures in the dataset. After normalizing each attribute to have a range
between 0 and 1, simple classifiers are built for each threshold value
∈ [0, 1] according to two different classification rules (e.g., whether
instances with values above the threshold are considered positive
or negative class examples). The normalized values are treated as
posterior probabilities and the performance of these probabilities is
evaluated using a chosen metric, in much the same way that the
posterior probabilities from a standard classifier would be evaluated.
However, as the feature values are used directly, no actual classifier
is built. In the present work, we used the Area Under the ROC
Curve metric (ROC), which plots the True Positive Rate vs. the False
Positive Rate over all possible threshold values and then uses the area
under this curve as the performance of the posterior probabilities.
When used as a ranker, this area is the quality of the feature.

First-order statistics-based feature selection (FOS) [9] is a family
of related techniques which all center around the use of first-order
statistics such as mean and standard deviation. Signal-to-noise (S2N)
ratio is a technique in this family which is a measure used in electrical
engineering to quantify how much a signal has been corrupted by
noise. It is defined as the ratio of signal’s power to the noise’s power
corrupting the signal. The S2N ratio can also be used as feature
ranking method [11]. For a binary class problem (such as fp, nfp),
the equation for signal to noise is:

S2N = (µP − µN )/(σP + σN ) (1)

where µP and µN are the mean values of that particular attribute
in all of the instances which belong to a specific class, either P or
N (the positive and negative classes). σP and σN are the standard
deviations of that particular attribute as it relates to the two classes,
respectively. If one attribute’s expression in one class is quite different
from its expression in the other, and there is little variation within
the two classes, then the attribute is predictive. The larger the S2N
ratio, the more relevant a feature is to the dataset [12].

For all three rankers, we considered three different feature subset
sizes: 3, 4, and 5. These were chosen based on previous research [13]
and to give a wider spectrum of the most common choices used for
feature ranking on software metrics datasets.

2) Filter-Based Subset Evaluation: In this study, we evaluate
one filter-based feature subset selection algorithms: Correlation-based
(CFS) [14] feature subset selection. CFS employs the Pearson corre-
lation coefficient [14], which can be calculated using the following
formula:

MS =
krcf√

k + k(k − 1)rff
(2)

In this formula, MS is the merit of the current subset of features, k is
the number of features, rcf is the mean of the correlations between
each feature and the class, and rff is the mean of the pairwise
correlations between every two features. The numerator increases
when the set of features is particularly good at classifying the data,
while the denominator increases when the set has a significant amount
of self-correlation, which implies redundancy.

3) Wrapper-based Feature Subset Evaluation: Wrapper-based fea-
ture subset selection is building a model using a potential feature
subset and using the performance of this model as a score for
the merit of that subset [15]. The wrapper-based feature selection
methods employ some predetermined learning algorithms (classifiers
or learners) to evaluate the goodness of the subset of features being
selected. The performance of this approach relies on three factors: (1)
the strategy to search the feature space for possible optimal feature

subsets; (2) the criterion to evaluate the classification model built
with the selected subset of features; (3) and the learner.

Suppose a large set of n features is given, we need to find a small
subset of features for future model building. Inspecting all candidate
subsets (2n) is impractical. There are some strategies that can solve
the problem. One way is to use a search algorithm to generate the
possible feature subsets. Based on preliminary experimentation, we
chose the Greedy Stepwise approach, which uses forward selection to
build the full feature subset starting from the empty set. At each point
in the process, the algorithm creates a new family of potential feature
subsets by adding every feature (one at a time) to the current best-
known set. The merit of all these sets are evaluated, and whichever
performs best is the new known-best set. The wrapper and CFS
procedures terminate when none of the new sets outperform the
previous known-best set.

During the search process, classification models are built using
a potential feature subset and using the performance of this model
as a score for the merit of that subset [15]. For our experiments
the wrapper process uses five-fold cross-validation: the training set is
divided into five equal folds (partitions), a classifier is trained on four
folds, then tested on the last (fifth) fold. This process is repeated five
times, and the results are averaged to give the merit of the potential
feature subset. In this study, the classification models are evaluated
using the Area Under ROC (Receiver Operating Characteristic) Curve
(AUC) performance metric.

In this work, five diverse learners are used within the wrapper-
based feature subset selector, consisting of naı̈ve Bayes, multilayer
perceptron, k-nearest neighbors, support vector machine, and logistic
regression. The five learners were selected because of their common
use in the software engineering and other application domains, and
also because they do not have a built-in feature selection capability.
Unless stated otherwise, we use default parameter settings for the
different learners as specified in WEKA [16]. Parameter settings
are changed only when a significant improvement in performance
is obtained.

1) Naı̈ve Bayes (NB) utilizes Bayes’s rule of conditional prob-
ability and is termed ‘naive’ because it assumes conditional
independence of the features.

2) Multilayer Perceptron (MLP) is a neural network of simple
neurons called perceptrons. Some related parameters of MLP
were set as follows: the ‘hiddenLayers’ parameter was set to
3 to define a network with one hidden layer containing three
nodes and the ‘validationSetSize’ was set to 10 (with 10%
of the data being held aside for validating when to stop the
backpropagation procedure).

3) K-Nearest Neighbors (KNN) [17], also called instance-based
learning, uses distance-based comparisons. KNN was built with
changes to two parameters. The ‘distanceWeighting’ parameter
was set to ‘Weight by 1/distance’ and the ‘kNN’ parameter was
set to 5.

4) Support Vector Machine (SVM), also called SMO in WEKA
[16], had two changes to the default parameters: the ‘complex-
ity constant c’ was set to 5.0 and ‘build Logistic Models’ was
set to true. By default, a linear kernel was used.

5) Logistic Regression (LR) [18] is a statistical regression model
for categorical prediction by fitting data to a logistic curve.

B. Fixed-overlap Partitions

Many approaches have been used to test the stability of feature
selection techniques. Some take random subsamples from the original
dataset and compare the features chosen on these subsamples with



each other; others compare the features chosen on the subsamples
with those chosen from the original dataset. The first of these
approaches has a known flaw: it does not control for the degree of
overlap between the subsamples being compared (instead leaving this
to random chance). This makes it difficult to determine whether the
stability between feature subsets is due to similarity of the underlying
datasets or is a property of the feature selection technique used.
The second approach is somewhat limited in scope: although it is
useful for observing stability in the case of adding or removing
instances from a dataset, its use of two datasets of different sizes can
impact how well the results generalize to other perturbation scenarios.
Neither is able to evaluate how similar the feature subsets will be
for two datasets which are equal in size and have a known degree
of overlap. To address this, our research group proposed the Fixed-
Overlap Partitions Algorithm [19] (Algorithm 1), which will create
two new subsets that have the desired properties while also being
as large as possible for the given degree of overlap. Note in this
algorithm that c, the desired degree of overlap, can vary from 0 to
1, including the endpoints. A choice of c = 0 will find two entirely
disjoint subsets, which will each contain half of the instances from
the original dataset. On the other hand, c = 1 will create two copies
of the original dataset which share all instances. This is generally not
an interesting case to study, but is permitted by the algorithm.

Algorithm 1: Fixed-Overlap Partitions
input : Original dataset S with N instances

: c, the fraction of instances the two subsampled datasets
should have in common (0 ≤ c ≤ 1)

output: Datasets S1 and S2 which have c of their instances in
common while being identical in size and as large as
possible for the given c

Let d = 1/(2− c) (e.g., c = (2d− 1)/d)
S1 and S2 start out empty
Randomly select dN instances from S and add them to S1

Randomly select cdN instances from S1 and add them to S2

Take all instances in S which are not in S1 and add them to S2

There are three properties which must be guaranteed when select-
ing these subsets: 1) that they contain the same number of instances,
2) that they have the specified degree of overlap, and 3) that they are
as large as possible while the first two properties hold true (since there
is no reason to discard instances if they could be used to improve
feature selection or classification). Based on Algorithm 1, we can see
that S1 contains dN instances. To find the number of instances in S2,
we note that two steps add instances to that dataset: one adds cdN
instances and the other adds the instances not included in S1 (e.g.,
(1− d)N instances). Working from here and using the definition of
d in the algorithm, we have:

|S2| = cdN + (1− d)N

=

(
2d− 1

d

)
dN + (1− d)N

= (2d− 1)N + (1− d)N

= 2dN −N +N − dN

= dN

Thus, we have |S1| = |S2| = dN , satisfying the first property. As
for the second property, recall that S1 and S2 share precisely cdN
instances; thus, they have cdN/dN = c of their instances in common,
as desired. For the third property, observe that adding any instances

to either S1 or S2 would necessarily increase the fraction of overlap
(since these would have to be instances already found in the other
subsampled dataset). Thus, S1 and S2 are the largest datasets which
are identical in size and have an overlap of precisely c. In this study,
the degree of overlap is chosen from the set {0.25, 0.5, 0.7, 0.85}.
A choice of c = 0.85 will generate two subsets with 0.87 (d =
1/(2− c))×N instances.

C. Stability Measurement

In order to measure stability, first we have to decide the measure-
ment metric. In this study we choose the Average Pairwise Tanimoto
Index (APTI), derived from work originating in Kalousis et al. [6],
since it does not require feature subsets have the same size. Let Si

and Sj be two different subsets of features. The original Tanimoto
Index defines the stability between the two feature subsets as follows:

T (Si, Sj) =
|Si ∩ Sj |
|Si ∪ Sj |

= 1− |Si|+ |Sj | − 2|Si ∩ Sj |
|Si|+ |Sj | − |Si ∩ Sj |

(3)

where |Si|+|Sj |−2|Si∩Sj |
|Si|+|Sj |−|Si∩Sj |

is the Tanimoto distance between the two
feature subsets. In this work, we propose Average Pairwise Tanimoto
Index (APTI) that can be used to determine the stability of a set of
feature subset pairs which are generated by same feature selection
method on a pair of subsamples:

APTI(S1, S2) =
1

W

W∑
i=1

T (S1
i1, S

2
i2) (4)

Here, we assume that S1 and S2 are paired feature subsets
generated by same feature selection method on a pair of subsamples.
For each pair of subsamples Si1 and Si2, there are two corresponding
feature subsets, S1

i1 and S2
i2. The stability index (APTI) defined in

Equation 4 varies in the interval of [0,1]. As APTI is an average of
Tanimoto Index values, its maximum of 1 represents the case where
all pairwise comparisons are identical subsets, and the minimum of
0 means that no pairs ever have any features in commons. In our
experiments, W is set to 30. That means for each dataset, 30 pairs
subsamples are generated with certain level of overlap.

IV. EXPERIMENTS

A. Experimental Datasets

Experiments conducted in this study used software metrics and
defect data collected from a real-world software project, and included
data from four consecutive releases of a very large telecommunica-
tions software system (denoted as LLTS). The LLTS software system
was comprised of several million lines of code. The data collection
effort used the Enhanced Measurement for Early Risk Assessment of
Latent Defect (EMERALD) system [20]. The software measurement
dataset of LLTS contains data from four consecutive releases, which
are labeled as SP1, SP2, SP3, and SP4. Each dataset includes 42
software metrics, including 24 product metrics, 14 process metrics,
and four execution metrics. The dependent variable is the class of the
program module: fault-prone (fp) or not fault-prone (nfp). A program
module with one or more faults is considered fp, and nfp otherwise.
Table I summarizes the numbers of the fp and nfp modules and their
percentages in each dataset. A unique characteristic of these datasets
is that they all are highly imbalanced datasets, where the proportion
of fp modules is much lower than the nfp modules.



TABLE I
SOFTWARE DATASETS CHARACTERISTICS

Data #Metrics #Modules %fp %nfp
SP1 42 3649 6.28% 93.72%

LLTS SP2 42 3981 4.75% 95.25%
SP3 42 3541 1.33% 98.67%
SP4 42 3978 2.31% 97.69%

TABLE II
STABILITY OF FEATURE SELECTION FOR SP1

Feature Selection Overlap
0.25 0.5 0.7 0.85

RF, 3 0.8333 0.9000 0.8833 0.9333
RF, 4 0.8267 0.8400 0.8533 0.9067
RF, 5 0.6667 0.7111 0.7222 0.8111
ROC, 3 0.6400 0.7900 0.9167 0.9167
ROC, 4 0.5200 0.6000 0.6622 0.7778
ROC, 5 0.4266 0.4901 0.5909 0.7000
S2N, 3 0.4967 0.6000 0.5667 0.6500
S2N, 4 0.4159 0.5111 0.5644 0.6400
S2N, 5 0.4762 0.5540 0.6937 0.7667
CFS 0.4216 0.5223 0.5633 0.5972
Wrapper-NB 0.3973 0.5365 0.5696 0.6761
Wrapper-MLP 0.2645 0.3064 0.3419 0.3297
Wrapper-5NN 0.1679 0.1745 0.1988 0.2304
Wrapper-SVM 0.1000 0.0931 0.1056 0.1413
Wrapper-LR 0.3329 0.3504 0.4049 0.4707

B. Experimental Design

Experiments are conducted with fifteen different feature selection
strategies on four software engineering metric datasets from a real-
world software project. These feature selection strategies include
three feature rankers each coupled with three feature subset sizes,
the Correlation-based Feature Selection (CFS) filter-based subset
evaluator, and wrapper-based feature subset selection using one of five
different learners inside the wrapper. The goal of the experiments is to
study how these feature selection methods can affect the stability of
feature selection process. Thirty pairs of subsamples were generated
from each original dataset with four different levels of overlap, and
each feature selection method was applied to each pair of subsample.
Once these feature subsets were created, the stability of the pairs
of feature subset generated by same feature selection method were
compared using our newly proposed Average Pairwise Tanimoto
Index (APTI) described in Section III-C. In total, we calculate 240

TABLE III
STABILITY OF FEATURE SELECTION FOR SP2

Feature Selection Overlap
0.25 0.5 0.7 0.85

RF, 3 0.6167 0.6167 0.7000 0.6500
RF, 4 0.6756 0.7156 0.6978 0.6978
RF, 5 0.7571 0.8254 0.9254 0.9778
ROC, 3 0.6800 0.8233 0.9167 0.9833
ROC, 4 0.6400 0.6933 0.7867 0.8800
ROC, 5 0.6143 0.6476 0.7206 0.7698
S2N, 3 0.4067 0.4233 0.5867 0.7067
S2N, 4 0.4438 0.5117 0.6889 0.7333
S2N, 5 0.4898 0.6333 0.7444 0.8175
CFS 0.45 0.49 0.54 0.64
Wrapper-NB 0.4259 0.5069 0.5417 0.6462
Wrapper-MLP 0.2015 0.2120 0.2783 0.2246
Wrapper-5NN 0.1461 0.1949 0.2898 0.2900
Wrapper-SVM 0.0728 0.0787 0.0717 0.0739
Wrapper-LR 0.2871 0.2780 0.4063 0.4401

TABLE IV
STABILITY OF FEATURE SELECTION FOR SP3

Feature Selection Overlap
0.25 0.5 0.7 0.85

RF, 3 0.5667 0.6000 0.7000 0.7833
RF, 4 0.4889 0.6044 0.7511 0.7867
RF, 5 0.4675 0.5619 0.7381 0.8778
ROC, 3 0.2633 0.3633 0.4167 0.4000
ROC, 4 0.2590 0.3263 0.4006 0.4356
ROC, 5 0.2381 0.3636 0.4706 0.4964
S2N, 3 0.4833 0.6000 0.7800 0.8567
S2N, 4 0.4654 0.5473 0.7244 0.8133
S2N, 5 0.4516 0.5340 0.6353 0.6635
CFS 0.1685 0.2352 0.3022 0.3890
Wrapper-NB 0.2094 0.3133 0.3417 0.4135
Wrapper-MLP 0.1412 0.2274 0.2511 0.2667
Wrapper-5NN 0.1305 0.1368 0.2289 0.2706
Wrapper-SVM 0.0862 0.1589 0.1223 0.1262
Wrapper-LR 0.1767 0.2126 0.2759 0.2663

TABLE V
STABILITY OF FEATURE SELECTION FOR SP4

Feature Selection Overlap
0.25 0.5 0.7 0.85

RF, 3 0.7167 0.7667 0.8000 0.8000
RF, 4 0.7911 0.8933 0.9333 1.0000
RF, 5 0.7349 0.8667 0.8556 0.8667
ROC, 3 0.0767 0.1433 0.2533 0.3800
ROC, 4 0.1254 0.2108 0.3321 0.4470
ROC, 5 0.1696 0.2696 0.4106 0.5362
S2N, 3 0.5600 0.7033 0.8067 0.8833
S2N, 4 0.5689 0.6711 0.7422 0.7378
S2N, 5 0.5639 0.6492 0.7429 0.8063
CFS 0.2634 0.3485 0.4231 0.5061
Wrapper-NB 0.2839 0.3426 0.5246 0.4964
Wrapper-MLP 0.1323 0.1673 0.1879 0.3063
Wrapper-5NN 0.1596 0.1510 0.2082 0.1978
Wrapper-SVM 0.0379 0.0636 0.0784 0.0317
Wrapper-LR 0.2004 0.2539 0.3282 0.3628

APTI values (4 datasets × 15 feature selection × 4 overlap levels).

C. Results and Analysis

Table II through Table V list the stability results for each dataset.
These tables show the stability of subsets generated by each feature
selection method (row) on subsamples with different level of overlap
(column). For example, the first value in Table II, 0.8333, represents
the stability of two feature subsets selected by Relief (RF) with fea-
ture subset size three and the overlap level of the pair of subsamples
is 0.25. For each overlap level, the most and least value (stability)
are printed in bold and italics, respectively. Figure 1 shows stability
on average across all four datasets. From these tables and figure, we
can observe the following facts:

• Overall, we can order the three classes of feature selection
strategies from the most stability to least stability, ranker, filter-
based subset evaluators, and wrapper-based subset evaluators. In
terms of ranker, RF shows extremely high stability. The highest
stability is found for RF with subset size four and overlap level
0.85 on dataset SP4. Followed by RF, ROC shows more stability
than S2N for SP1 and SP2 datasets, while S2N shows more
stability than ROC for SP3 and SP4 datasets. There are no
patterns to show the relationship between feature subset size
and stability of selected feature subsets.

• Comparing to other classes of feature strategies, the similarities
of wrappers are low. Among the five wrappers, NB wrapper
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Fig. 1. Similarities of Feature Selection Methods

shows the most stability regardless of overlap level. The next
similar wrapper is LR wrapper. SVM wrapper shows least
stability, no feature subset pairs generated by SVM wrapper
have a stability greater than 0.1 for SP2 and SP4 datasets and the
stability value does not exceed 0.16 for SP1 and SP3 datasets.
It is clear from these results that the choice of learner will have
a very important effect on the chosen features.

• While intuitive, the results show that as the overlap of parti-
tions increased, the stability of the feature selection strategies
increased. This indicates that with enough change any selected
subset become unstable.

V. CONCLUSION

Software metrics collected during project development play a
critical role in software quality assurance. A typical project often
collects large number of metrics. Metric (feature) selection plays an
important role in data preprocessing step. By removing irrelevant and
redundant features from a training dataset, software quality estimation
based on some classification models may improve. One consequence
of removing redundancy can be reducing stability: that is, the subset
of chosen features may change significantly in the face of relatively
small changes to the input dataset. In this paper, we propose a new
metric for measure the stability on subset selected by feature selection
techniques.

In this study, we present a stability analysis of of 15 feature
selection methods (three feature ranking with three different subset
sizes, one filter-based subset evaluator, and five wrappers) on a real-
world software project. A newly-proposed variation of the Tanimoto
Index (the Average Pairwise Tanimoto Index (APTI)) was used to
evaluate the stability between subsets selected by feature selection
methods. Experimental results demonstrate that the choice of feature
selection methods has a major effect on the feature subsets. We find
that there is the most stability (though not congruence) between the
subsets chosen using rankers especially the RF ranker. The subsets
selected by wrappers are even more dissimilar from one another. In
addition, as the overlap of partitions increased, the stability of the
feature selection strategies increased.

Future work may compare stability of a wide range of feature
ranking techniques with more feature subset sizes, filter-based subset
evaluators, and wrappers with different choices of learners and
performance metrics. Experiments may be conducted on additional
software metrics datasets from the software engineering domain.
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