
Towards a Deployment System for Cloud Applications

Ruici Luo1,3, Wei Ye2,3∗ , and Shikun Zhang2,3

1School of Electronics Engineering and Computer Science, Peking University, China
2National Engineering Research Center for Software Engineering, Peking University, China

3Key Laboratory of High Confidence Software Technologies, Ministry of Education
{luoruici,wye,zhangsk}@pku.edu.cn

Abstract

A sophisticated deployment system plays an important
role in automating and improving the process of software
delivery, especially for cloud applications. Since cloud ap-
plications usually consist of many components run on differ-
ent virtual machines, i.e., EC2 instances, the deployment is
time-consuming and error-prone, which may involves man-
ual operations and complex scripts. We develop a deploy-
ment system aiming to accelerate cloud application deliv-
ery. First of all, we propose a component model and a con-
nector model involving cloud feature. Then we present a
component management system, in which component can
be configured and instantiated rapidly based component in-
heritance and composition. Finally, we develop a novel de-
ployment mechanism that can automate deployment process
across multiple cloud instances. Experiment shows that our
approach can reduce the build time and downtime so that it
can speed up the delivery process of software application.

Keywords: software architecture; application deploy-
ment; cloud computing; continuous delivery

1. Introduction

For enterprise applications, continuous integration is in-
creasingly seen as an effective tool for reducing the cycle
time from product backlog to receiving actual user feed-
back. This can result in real increases in developer and team
productivity when combined with cloud computing. One
key trend that is growing in importance daily is Continu-
ous Delivery[13]. More and more organizations are look-
ing to embrace an agile model in which stringent, auto-

∗Corresponding Author

mated testing allows enhancements or ”micro-releases” to
go live without the traditional waterfall release cycles. We
are seeing a major shift in enterprise software development
to cloud-based, continuous delivery, with fully automated
quality, coverage, functional and performance tests gating
live deployments. Thus, incremental deployment become
more critical since it is very expensive to rebuild and rede-
ploy the whole application. Meanwhile, cloud applications
usually consist of many components run on different virtual
machines making deployment time-consuming and error-
prone, which may involves manual operations and complex
scripts. It has become a common issue to reduce the build
time and downtime so that it can speed up the delivery pro-
cess of cloud application.

In the past two decades, application servers have been
designed to serve multiple applications, which means ap-
plications share identical runtime and deployment scenario.
With the advent of Cloud Computing the IT resources
can be rapidly and elastically delivered via Internet. Ex-
amples of compute Clouds are Amazons Elastic Compute
Cloud (EC2) and Google App Engine (GAE). Meanwhile,
the complexity of applications and servers grows rapidly.
Nowadays, the benefits of making the server immutable[14]
becomes more obvious and clear. If anything of an applica-
tion has been changed, a new immutable server instance will
be made next to the existing one, which will be destroyed
soon. One can request and release resources in a few sec-
onds with low costs, e.g. creating instances in EC2 and run-
ning applications in GAE. In this context, back-end infras-
tructure including middleware container has become one in-
tegral part of one specific application. LXC (Linux Contain-
ers) is an operating system level virtualization method for
running multiple isolated Linux systems (containers) on a
single control host, instead of creating a full-fledged virtual

(DOI reference number: 10.18293/SEKE2015-192)

machine. We see that it has become feasible in cloud envi-
ronment to make application deployment and runtime im-
mutable with virtualization and lightweight container tech-
nology like Linux Container. If each component has its own
infrastructure and isolated runtime, the cost of rebuild and
redeploy a single component will be relatively low. By im-
posing a well-organized connectivity and lightweight com-
munication mechanism between application components,
breaking down partial components will not terminate the
whole application. We could leverage the power of cloud in-
frastructure to support individual evolution, ensuring good
replaceability and upgradeability of components in software
system to achieve the goal of continuous delivery.

Application management is a key issue for successful
continuous delivery. Developer need to take care of evo-
lution of component configuration. Current solution for ap-
plication management dedicated to IaaS(Infrastructure as a
Service) and PaaS(Platform as a Service). Many config-
uration management systems such as Puppet[5], Chef[2],
which provide a DSL to model a virtual machine instance,
including files to present and application stack that should
be running. These configuration management systems man-
age the configuration of applications in a centralized server
and the work of deployment is assigned to operation teams,
not developers. Although virtual machine[9] based on IaaS
platform is a solution to deploy application, we also need
a simple and lightweight way to manage the deployment of
applications.

1.1. Contributions

This paper makes the following contributions:

• We present an component model from deployment per-
spective for accelerating continuous delivery process.
In our approach, components consist of business func-
tion code, configuration options and runtime software
stack(OS, middleware, dependencies library) defini-
tion which is called image. A image can be instantiated
to a instance.

• We also provide a system to manage the images and in-
stances. An inheritance mechanism ensures that each
component can evolve independently and reused in
many situations. Unlike all previous techniques and
systems of which we are aware, our approach makes
components immutable. If any changes occurs, a new
image of the specific component is generated and in-
stantiated to replace the old instance. Also the evolu-
tion process is recorded, i.e. the history of images is
maintained by our deployment system. It is easy to
rollback to any state of application.

• We present an system that automates the deployment
of distributed application based on this model in the

cloud. The deployment system processes the instanti-
ation and resolve the interconnections of components.

The rest of this paper is organized as follows. Section
2 presents a motivating example that illustrates how our
approach works. Section 3 describes a component-based
model and an application management system for cloud ap-
plication. Section 4 describes an automated deployment
system. Section 5 gives an example in practice to evalu-
ate our approach. Section 6 discusses related works. We
conclude in Section 7.

2. Component Model

To meet the challenges that applications in cloud should
be highly scalable and flexible, we propose a component
model as an abstraction of deployment elements. From the
business function perspective, following the object-oriented
principles of ”Single Responsibility” and ”Concerns Sepa-
ration”, a component should focus on a small, single and
independent business function that it is responsible for. So
parallel development can be organized straightforwardly
and incremental evolution could be performed smoothly.
From the infrastructure perspective, application changes are
not only about application itself. Changes that is about
environment should also be considered as part of evolu-
tion. Dynamic components interchangeability should be
supported. So adding or updating components will not re-
quire redeployment of the entire application.Using the com-
ponent model to abstract the target deploying application,
we are aiming to following features:

• Self-contained infrastructure: Each Component con-
tains the infrastructure required at the runtime. The
infrastructure includes but is not limited to middle-
ware and OS environments. This ensures the isolation
of components and also improves the reliability since
they do not affect each other.

• Individual Evolution: For the reason that each com-
ponent has its own infrastructure and isolated to each
other, they can be developed and maintained indepen-
dently at the time. This can greatly improve the pro-
ductivity of software and reduce the maintenance cost.

• Disposable Components: In cloud environment, virtu-
alized instance can be acquired cheaply and pirated.
The past method that deploying components into mid-
dleware or operating system is out of time.

We propose a component model, which is an extension
of BU(Business Unit) model from BuOA[15]. BU contains
presentation layer, business logic layer and data accessing
layer inside. BU also provides attributes, operations and

Figure 1. Extending infrastructure layer of BU

events as its external interface. Basically, attributes can
be treated as representations of BUs internal state; opera-
tions provide ways to query and change its internal state;
and events will indicate the changing of its internal state.
However, BU only concerns abstraction in application logic
level, lacking mechanism to support cloud features. Thus,
we add infrastructure layer in Business Unit model, which
includes middleware and OS environment. The extended
model is illustrated in Figure 1.

The component model has two levels, business level and
infrastructure level. Business level is not always necessary.
A image with a MySql database can be seen as having only
infrastructure level. Componentonnectivity between images
can be categorized into three categories base on the Two-
Level perspective.

Business dependency This kind of relationship can be
further divided into four categories: observing, injecting,
weaving and binding as well as BuOA. We will not cover
them in detail here.

Infrastructure dependency: This kind of relationship
defines the dependencies of infrastructure, e.g. application
server has dependencies of cache and database server.

Data sharing Another way to connect two components
is to share data between them. An example is that multiple
business components use a same database server.

3. Component Management

To support maintaince and evolution of components, we
present a system to manage components of cloud applica-
tions.

3.1. Image

Image is subject to describe the state of a component, in-
cluding hardware characteristics, software stack(OS, mid-
dleware, etc...) and applicative binaries. Each image has a
unique identifier(usually generated by system via hash algo-
rithms). There are many images generated in the evolution
process of a component. So we aggregate these images to
a repository. In analogy with Git version control system,
a image is a commit and a repository is correspond to the
same name. A repository potentially holds multiple vari-
ants of an image. In the case of our ubuntu image we can
see multiple variants covering Ubuntu 10.04, 12.04, 12.10,
13.04, 13.10 and 14.04. Each variant is identified by a tag
and you can refer to a tagged image like ”ubuntu:14.04”.

When developers decide to publish components for test
or release, the management system just generate a new im-
age with a unique identifier via the configuration about OS,
middleware and applicative binaries and it is pushed to the
central registry. The deployment system and other develop-
ers can pull this image and get an instance of it after push-
ing.

3.2. Instance

An instance is an instantiation of a image by assigning
concrete values to configuration, and it is deployed to the
IaaS platform as the runtime of a component. An instance
consists of software stacks and applicative binaries. An
instance has a global unique identifier as well as images.
The identifier could distinguish two instances instantiated
by one image.

3.3. Image Inheritance

To extend and reuse images for productivity, the image
could be inherited. For example, each portion of a web
application(web server, application server, cache, database,
etc...) is running in a Ubuntu linux operating system. So we
can make an ”abstract”(which could also be instantiated)
image for inheritance.

To extend base image, developers can add or override
dependencies and configurations to generate new images
which means that the configuration and the dependencies
are all inherited from a base image. On the other hand,
images with different versions of a same name should be
co-located in one repository.

3.4. Image Composition

Another way to extend and reuse existing images is com-
position. For example, if we need a image that consists of

Java runtime environment and mysql database and there ex-
ist independent images of JRE and mysql. We can compose
them and get a new image that has the java and mysql fea-
tures.

However, it is not appropriate to merge images in some
cases. If an image is based on ”ubuntu” and another image
is based on ”windows”, they can not be merged apparently.
So before merge, we would check if the images has the same
ancestor in the image tree, and then check if there are any
conflicts between them. After composition the images tree
becomes a Directed Acyclic Graph(DAG).

4. Application Deployment

4.1. Overview

To deploy the application to IaaS platform, we present a
deployment system which takes a deploy plan as following
configuration written by YAML:

web :
image : onboard−c o r e : 1 . 2
p o r t s :
− 8080

volumes :
− . : / code

l i n k s :
− r e d i s

r e d i s :
image : r e d i s : l a t e s t
command : r e d i s −s e r v e r −−appendon ly yes

This defines two components:

• web, which is built from an image called onboard-core
with a version number 1.2. It also says to expose 8080
port, connect up the redis component and mount vol-
umes for data sharing.

• redis which uses the redis image with latest version
directly.

Each element on the top of the YAML file describes a
component. It specifies the name and version of image and
the dependencies to other component.

4.2. Disposable Distribution

As we mentioned above, to avoid the issue that infras-
tructure has been patched again and again, we make the in-
frastructure as part of application distribution. This means
that any changes to the infrastructure is equivalent to the
application. In our new situation, we absolutely know a
system has been created via automation and never changed
since the moment of creation. A distribution of application

is never modified after deployed, and merely thrown away
after being replaced with a new distribution.

Another consideration is that the data related to an ap-
plication is not immutable and cannot be thrown away. A
practical way is shipping the data storage off of the BU dis-
tribution. Technically, sending log files to a central sys-
tem log server, using shared file system like NFS, choosing
mountable cloud service as storage devices are all feasible
practice to guarantee data integrity.

4.3. Individual Evolution and Development

Incremental deployment is critical in the software evolu-
tion since it is very expensive to rebuild and redeploy the
whole application. As we separate application into compo-
nents each of which has its own infrastructure and isolated
runtime, the cost of rebuild and redeploy a single compo-
nent is relatively low. Due to the lightweight communica-
tion mechanism between components, breaking down par-
tial BUs will not terminate the application. The individual
evolution can also ensure good replaceability and upgrade-
ability of components in software system.

To keep things simple, we consider two inter-related
components in an application. One component requires ser-
vices provide by another component and they are developed
in parallel. As the developer(s) of each component, they do
changes everyday with building and releasing SNAPSHOT
version of distribution. So the developer(s) of the compo-
nent that requires services of another does not need to get
the source code and build another component, he/she/they
only have to pull the SNAPSHOT of distribution and run
it locally. This greatly reduce the time cost of dependen-
cies building, testing and configuration. In summary, the
collaboration mechanism between components varies from
source code level to component with infrastructure level and
will give a huge boost to improve the quality, reliability and
productivity of software application.

5. Implementation and Evaluation

5.1. Component Implementation

We have implemented a prototype to verify our method
and evaluate its performance. We use Docker[3] to imple-
ment the infrastructure level of components. The imple-
mentation is based on Spring Boot[6]. Spring Boot provides
the ability to create stand-alone Spring based enterprise ap-
plication that embeds an application as the middleware and
can be run by itself. The prototype was tested on CentOS
6.4 and can also be applied or extended to the OS that sup-
ports Docker.

Application Logic Level of an image is the same
as the architecture proposed in BuOA. In the example

the component projectMg contains three bundles project-
Mgt.persistence, projectMgt.service, projectMgt.web, cor-
responding data accessing layer, business logic layer and
presentation layer respectively. They communicate with
each other based on contracted service interfaces, shielding
implementation details completely. For example, data ac-
cessing bundles can choose different Object-Relation map-
ping frameworks to do the persistence work as long as it
keeps the data accessing interface unchanged.

Infrastructure Level of an image is implemented as a
Docker container which contains a Spring Boot based ap-
plication. The Docker container is a virtualized and iso-
lated operating system, and the Spring Boot based applica-
tion is embedded application server like Tomcat or Jetty. It
is a stand-alone application which means no external server
is required. To describe the Docker container, we add a
Dockerfile to each BU. The Docker container is created via
Dockerfile with application build. The following text file is
an example description of infrastructure level of a image:

I n h e r i t from a b u i l t c o n t a i n e r
wi th Java e n v i r o n m e n t .
From koml jen / jdk6−o r a c l e
Get t h e l a t e s t v e r s i o n o f Maven
Run apt−g e t u p d a t e
Run ap t−g e t i n s t a l l −y maven
Run mvn c l e a n i n s t a l l
S t a r t u p t h e a p p l i c a t i o n
Cmd j a v a − j a r t a r g e t / sample −1 . 0 . 0 . j a r

5.2. Evaluation

Onboard[4] is an actual application which continuous
runs for about 2 year. To begin with, we develop with the
BuOA approach. All BUs are put into a virgo instance. At
that time, each BU only contains application code and is
not isolated to each other. Any little change of a BU will
cause the application to restart. More seriously, bugs in a
BU cause the JVM process down and the application halts.
The 10 components run in their own Docker container and
are isolated to each other. There is one JVM process run-
ning as the runtime of each component. For the evolution
perspective, each BU has its own individual evolutionary
process.

The evaluation is based on the build time and downtime
of each release. In the old architecture, the calculation is
very easy because each build is related to the entire appli-
cation and the downtime is the restart seconds of the appli-
cation server. We have an continuous integration server to
do daily release of application. We collect the logs from
servers and make a table to show the data below (The data
is up to June 2014).

Figure 2. Downtime costs with the evolution
of Onboard

Month LOC Change Times

July 2013 231137 4
Aug 2013 231251 5
Sep 2013 228879 3
Oct 2013 211297 4
Nov 2013 212132 6
Dec 2013 234853 4

The refactor separator
Jan 2014 232268 16
Feb 2014 239247 19
Mar 2014 241317 20

Before June 2013, the application scale was relatively
small, hence, newer data are shown in table above to keep
our test in a consistent way. As we can see, the change
times increased very fast when do the isolation of BUs. The
reason is that each BU has its own evolution and the times is
added by each of them. Developing with the new approach,
the iteration has a much higher frequency.

The most important factor that affect the build time and
downtime is the increment. With our new approach, incre-
ment of each release is quite small because upgrade a small
part of BUs will not affect the status of other BUs. The
test results are shown in Figure 2 and Figure 3. The data in
these figures confirms that our new approach can reduce the
build time and downtime so that it can speed up the delivery
process of software application.

6. Related Works

The problem of deployment of application has attracted
significant attention in the area of System Administration.
Many tools exist: Puppet[5], Chef[2], CFEngine[1]. The
goal of these systems is to simplify the management task
of large scale machines. However, they only consider the
configuration of systems or environments and not take the
configuration and interconnections of components in appli-
cation.

Figure 3. Build time costs with the evolution
of Onboard

Aeolus[7] component model is specifically designed to
capture realistic scenarios arising when configuring and de-
ploying distributed applications in cloud environments. It is
able to describe several component characteristics such as
dependencies, conflicts, non-functional requirements. The
Blender[10] toolchain extends [8] that automates the assem-
bly and deployment of complex component-based software
systems. By relying on a configuration optimizer and a de-
ployment planner, the final deployment satisfies not only
user requirements but also to be optimal with respect to the
number of used virtual machines.

Engage[11] is a deployment management system.
Throughout the paper the term resource is used as a syn-
onym of component. Resource consists of type and driver.
The former statically verifies deployment properties and
generates the deployment plan, while the latter installs and
manages the resource’s lifecycle. Engage introduces three
types of dependencies: Inside for nesting(e.g. application
code runs into an application server); Env for local de-
pendencies(Java programs need JRE); Peer for resources
deployed anywhere else. The present paper has a similar
idea to Engage: It separates the specification and runtime
of components and automated generates the right order of
deployment.

SmartFog[12] is a Java framework to manage deploy-
ment for distributed applications. It shares some concepts
with the Engage that each component has a declarative de-
scription and a driver called lifecycle manager.

7. Conclusion

To address the critical challenge of deploying distributed
application in the cloud, we present an component-based
model that aims to automated configure and deploy over
lightweight container. Base on the proposed model, we
introduce an application management system as well as
an inheritance-based mechanism that ensures each resource
can be evolved independently and reused in different sce-
narios. We also present a deployment system that could

process the dependencies and interconnected relationship of
components automatically. To evaluate our approach, we
implement a distributed application on an industrial IaaS
platform. As a result, we can decompose a cloud application
vertically into independent and cohesive modules which has
dynamic interchangeability and evolvability.

Acknowledgments: This work was supported by the Na-
tional Natural Science Foundation of China under Grant
No.61202070.

References

[1] Cfengine. http://cfengine.com/. Accessed: 2015-05-10.
[2] Chef. https://www.chef.io/. Accessed: 2015-05-10.
[3] Docker. https://docker.com/. Accessed: 2015-05-10.
[4] Onboard. https://onboard.cn/. Accessed: 2015-05-10.
[5] Puppet. https://puppetlabs.com/. Accessed: 2015-05-10.
[6] Spring boot. http://projects.spring.io/spring-boot/. Ac-

cessed: 2015-05-10.
[7] M. Catan, R. D. Cosmo, A. Eiche, T. A. Lascu, M. Lien-

hardt, J. Mauro, R. Treinen, S. Zacchiroli, G. Zavattaro,
and J. Zwolakowski. Aeolus: Mastering the Complexity of
Cloud Application Deployment. In K.-K. Lau, W. Lamers-
dorf, and E. Pimentel, editors, ESOCC - European Confer-
ence on Service-Oriented and Cloud Computing - 2013, vol-
ume 8135, pages 1–3, Malaga, Spain, 2013. Springer.

[8] R. Di Cosmo, M. Lienhardt, R. Treinen, S. Zacchiroli,
J. Zwolakowski, A. Eiche, and A. Agahi. Automated synthe-
sis and deployment of cloud applications. In Proceedings of
the 29th ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, pages 211–222, New York,
NY, USA, 2014. ACM.

[9] X. Etchevers, T. Coupaye, F. Boyer, and N. de Palma. Self-
configuration of distributed applications in the cloud. In
Cloud Computing (CLOUD), 2011 IEEE International Con-
ference on, pages 668–675, July 2011.

[10] X. Etchevers, G. Salaün, F. Boyer, T. Coupaye, and
N. De Palma. Reliable self-deployment of cloud applica-
tions. In SAC 2014 - 29th ACM Symposium on Applied Com-
puting, Gyeongju, South Korea, Mar. 2014.

[11] J. Fischer, R. Majumdar, and S. Esmaeilsabzali. Engage: A
deployment management system. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’12, pages 263–274, New
York, NY, USA, 2012. ACM.

[12] P. Goldsack, J. Guijarro, S. Loughran, A. Coles, A. Farrell,
A. Lain, P. Murray, and P. Toft. The smartfrog configuration
management framework. ACM SIGOPS Operating Systems
Review, 43(1):16–25, 2009.

[13] J. Humble and D. Farley. Continuous delivery: reliable soft-
ware releases through build, test, and deployment automa-
tion. Pearson Education, 2010.

[14] K. Morris. Immutable server, June 2013.
[15] W. Ye, R. Luo, S. Zhang, X. Liu, and W. Hu. Buoa: An

achitecture style for modular web applications. In Software
Engineering Conference (APSEC), 2012 19th Asia-Pacific,
volume 1, pages 802–807. IEEE, 2012.

