
Integration testing criteria for mobile robotic systems

Maria A. S. Brito∗, Marcos P. Santos∗, Paulo S. L. de Souza∗ and Simone do R. S. de Souza∗
∗Department of Computer Systems

University of São Paulo, São Carlos, SP, Brazil
Email: masbrit,mpereira,pssouza,srocio@icmc.usp.br

Abstract—Testing activity applied to mobile robotic systems
is a challenge because new features, such as non-determinism of
inputs, communication among components and time constraints
must be considered. Simulation has been used to support the
development and validation of these systems. Coverage testing
criteria can contribute to this scenario adding mechanisms for
measuring quality during the development of systems. This paper
presents a test model and a set of coverage criteria to test the
interaction among the components of mobile robotic systems.
The model and criteria focus on robotic systems developed in
ROS, a Robotic Operational System in which communication
is established through publish/subscribe interaction schema. The
testing criteria were evaluated using a robotic application. The
results confirm that the use of coverage testing criteria has
advantages for integration testing of mobile robotic systems.

I. INTRODUCTION

Research on software methods and environments of
robotics development has increased over the past decade. The
development of robotic systems requires a middleware to pro-
vide tools for interfacing with different system modules, hard-
ware abstraction and communication facilities. Many robotic
systems are custom-designed for specific projects and involve
high costs of software and hardware. Some middlewares used
to develop applications for robotics and complex systems
exhibit different behaviors and specificities, as well as unique
qualities that make them better suited to a particular task [9].
Various robot middlewares have been proposed, such as [11]
Player [10], Orocos [5], Orca [4] and ROS [18].

The validation of a mobile robotic application normally
includes simulations and software testing techniques. VSTs
(Virtual Simulation Tools/Technology) have been widely used
in development environments to model, simulate and evaluate
different aspects of a system before they are implemented in
an objective platform [9]. They reduce the development time
because all tasks are grouped into the same environment. The
validation of these systems is a challenging task due to the
amount of human resources, equipment and technical support
required for the production of reliable results and safety
assurance. Some tasks may be highly risky and uncertain,
especially those that involve transferring results from an offline
simulation to the real world [6].

Mobile robots are normally distributed computing sys-
tems because they involve many heterogeneous components,
multiple computers and devices. A common communication
mechanism of such systems is the publish/subscribe interaction
schema, which provides a loosely coupled form of interaction

DOI reference number: 10.18293/SEKE2015-191

in large scale settings and comprises subscribe and publish
nodes. Subscribers express their interest in an event, or a
pattern of events, and are notified of any event generated
by a publisher that has matched their registered interest [8].
Multiple concurrent publishers and subscribers may be con-
nected for a single topic and one node may publish and/or
subscribe to multiple topics. Nodes are processes that perform
computation. These common features of the publish/subscribe
(e.g., event correlation, communication channels, timestamp
aspects) require more specific testing approaches, which can
show defects in such critical applications. Integration testing
activity is an emerging and promising research direction, but
it still lacks testing criteria to reveal faults in this domain.

In this direction Kang et al. [13] proposed a simulation-
based interface testing automation tool (SITAT) for robot
software components which generates and executes test cases
in a simulation environment. A similar approach is presented
in [12], which proposes a required and provided interface
specification-based testing method (RPIST). Both approaches
require the specification of the application interfaces. Lim et
al. [15] defined a hierarchical testing model and its testing
automation framework for robot technology component (RTC).
Integration testing is based on the interoperability of hard-
ware and software components. A built-in unit/integration test
framework called ROStest was defined to support software
testing of the ROS-based systems [2]. ROStest is an integration
test suite compatible with xUnit frameworks. Its main disad-
vantages are the need of writing test code and changes in the
source code require changes in the test code.

In concurrent programming, several processes of an appli-
cation communicate among themselves to solve a problem. A
process is a program in execution formed by an executable
program, its data, a program counter, other registers and
all information required for its execution [22]. This com-
munication feature of the concurrent program resembles the
behavior of a mobile robotic application in which several nodes
interact to solve a computation. Some approaches of testing
integration on concurrent programs explore communication
and synchronization among processes [3], [7], [20], [21]. We
have revisited these approaches to check the similarities in the
testing applied and related to the mobile robotic applications
that use the publish/subscribe interaction and, therefore the
approach proposed here is inspired on the testing criteria for
concurrent programs [19].

This paper proposes an approach of integration software
testing for robotic systems to improve the quality of these
systems. The robotic systems considered are composed of a
set of distributed nodes that communicates by message passing
using publish/subscribe schema. Therefore, our approach is



concerned with the communication among software compo-
nents implemented in ROS system.

The paper is organized as follows: Section II introduces
concepts of publish/subscribe schema and integration testing;
Section III provides a motivating example for the problem
characterization; Section IV describes our testing approach and
the proposed testing criteria in detail; Section V illustrates the
application of the approach in a case study; Section VI presents
the related work and, finally, Section VII draws conclusions
and recommends future work.

II. BACKGROUND

This section provides some concepts of the publish/sub-
scribe interaction schema and the integration testing addressed.

A. Publish/Subscribe interaction schema

The publisher/subscribe interaction schema studied is im-
plemented in ROS (Robotic Operational System) [18]. ROS is
a meta-operating system that consists of an open-source library
and tools provided by Willow Garage for the development
of robotic applications [18]. It is integrated with tools and
libraries, such as OpenCV, a library of programming functions
for computer vision of real time, Point Cloud Library (or PCL)
for point cloud processing, Gazebo, a multi-robot simulator
for outdoor environments, and Player, a network server for the
robot control that provides a clean and simple interface to the
robots sensors and actuators over the IP network.

A distributed system developed in ROS is formed by many
nodes that either run in a single machine or are distributed over
different machines. The communication among nodes can be
established through two basic mechanisms (Figure 1). The first
uses services (synchronous communication) that enable nodes
to send or receive requests to/from another node. The second
is the publisher/subscribe interaction (asynchronous), in which
a node can publish messages in a topic, as well as subscribe
from a topic to receive messages from other nodes. Our test
model focuses on the publish/subscribe interaction [8].

A node is an executable file that uses ROS to communicate
with other nodes by sending messages. A message is a data
structure that comprises typed fields. A node sends out a
message by publishing it to a given topic. The topic is a name
used for the identification of the content of a message. If a
subscribe node expresses its interest in an event, or a pattern of
events, it is notified of any event generated by a publisher that
has matched its registered interest. An event is asynchronously
propagated to all subscribers that have registered interest in it.

The publish/subscribe interaction provides the loosely cou-
pled interaction required in such large scale settings. This
loosely coupling occurs because of three features: referential
decoupling, flow decoupling and time decoupling [8]. When
two nodes communicate, they need to know only the type of
data they will produce or consume; no extra information is
required. This feature is called referential decoupling. Flow
decoupling occurs when two processes do not block each other
when a message has been sent. Time decoupling enables the
transmission or reception of a message at any time. Section III
provides an example to illustrate a system described in ROS.

http://www.willowgarage.com/

Fig. 1. ROS Communication Model [1].

B. Integration Testing

Different connotations are used for the test phases. We
consider the test of the communication among methods of
different components (one or more classes) that compose a
system an integration testing.

Integration testing should be conducted after the unit test-
ing and the most used test case designs explore the inputs and
outputs of data, despite the techniques that exercise specific
paths of the source code of the program [17]. This design
form is more common because the objective is to exercise
the interactions and not the features of units. The integration
testing focuses on definitions and uses of variables in differ-
ent units responsible for the communication. Three types of
integration errors can be found [14]: 1) Interpretation error,
which occurs when a unit has implemented a functionality
different from the specification. Examples include wrong, extra
or missing functions; 2) Miscoded call error, which occurs
when the developer has inserted a call instruction in the wrong
point of the program. Examples are a call instruction on a path
or a statement which should not have the call; and 3) Interface
error, which occurs whenever the interface standard between
two modules has been violated. Examples include incorrect
parameters, data types, format and input/output modes. This
work explores mainly the miscoded call and interface errors.

III. MOTIVATING EXAMPLE

This section addresses the identification of an error that
may occur in the commnication among components. Figure 2
shows an example of a layout of a robotic application de-
veloped using ROS. This application is a simplified version
of iRobot Roomba, which explores unknown environments
to clean floors. It contains five components, called processes
in this paper, namely Controller, Proximity Sensor, Collision
Avoidance, Motor Driver and Mapping, illustrated in the graph
generated from the ROS. The communication among these
processes is established using the following topics: odometry,
proximity, cmd motors, velocity, location, time To Impact and
mapper activation.

Listings 1 and 2 show two excerpts of the codes related
to the Collision Avoidance [16] and Controller processes. The
Controller process receives information from time to impact
Callback topic (line 11) published by the Collision Avoidance
process and processes it. In the next step, it publishes data
in the cmd motors topic (line 29), which will be subscribed
by the Motor Driver process. The Controller process also
publishes the robot speed in the velocity topic (line 28), which

http://www.irobot.com/Company



will be subscribed by the Collision Avoidance process (line
8). Each code has two callback functions that contain a code
related to the incoming messages. ROS will call the callback
function once for each arriving message. For example, if the
Controller process has published data in the velocity topic, the
callback function, called velocityCallback, is activated (line 8).
The Collision Avoidance process will be notified that a process
has published data of its interest, because it has subscribed
in the velocity topic. The time to impactCallback function is
invoked when data have been published in the time To Impact
topic (line 30).

1 //Collision Avoidance Process
2 State State; // {working, slowed, stopped,

crashed}
3 int proximity;
4

5 proximityCallback(int proximityP) {
6 proximity = proximityP;
7

8 velocityCallback(int speed) {
9 if (speed == 0)

10 time_to_impact = 9999;
11 else
12 time_to_impact = proximity /

speed;
13 if (time_to_impact < 2) {
14 if (state != working)
15 state = stopped;
16 else {
17 state = crashed;
18 assert(false); //

Failure
19 }
20 }
21 else
22 if (time_to_impact < 3) {
23 state = slowed;
24 reduceMapping();
25 }
26 else {
27 state = working;
28 activeMapping();
29 }
30 publish(time_to_impact);
31 }

Listing 1. Excerpt of the Collision Avoidance [16] process.

1 //Controller Process
2 State state; //{working, slowed, stopped,

crashed}
3 int time_to_impact;
4 int speed; //{0, 1, 2}
5 int c_motors; //{stop, reduce, working}
6

7 odometryCallback(int odometryX) {
8 odometry = odometryX;
9 }

10

11 time_to_impactCallback(int timeToImpactT) {
12 time_to_impact = timeToImpactT;
13 if (time_to_impact < 2) {
14 c_motors = stop;
15 speed = 0; //break
16 state = crashed;
17 activeMapping();
18 } else if (time_to_impact <= 3) {

19 c_motors = reduce;
20 speed = 1;
21 reduceMapping();
22 state = slowed;
23 } else {
24 c_motors = working;
25 speed = 2;
26 state = working;
27 }
28 publish(speed);
29 publish(c_motors);}

Listing 2. Excerpt of the Controller Process

Communication problems may occur when the interaction
among processes is intense. An example of a defect that can
be identified is the different frequency of publication from two
processes communicating. Line 30 specifies the publication
of the data in the timeToImpact topic. If, for any reason, the
data have been published faster than the Collision Avoidance
process can access, some data can be lost. If that happened,
after their processing the Collision Avoidance process would
produce incorrect outputs and the system would exhibit a non-
expected behavior.

IV. INTEGRATION TESTING APPROACH

Our integration testing approach aims at revealing defects
related to the communication among processes of a robotic
application. The defined testing criteria exercise the input and
output data of the processes, frequency of publishing of the
messages and failures of an application. The testing approach
uses the source code of a program as input to derive the
elements required for each criterion based on a graph. The next
step is to create the inputs for the application or the sets of
test cases able to cover the required elements. The application
is executed and the coverage is analysed for each criterion.
New test data can be generated to improve the coverage of
the elements required until the maximum coverage has been
obtained.

A test model was defined to capture the communication
interfaces and data flow among processes. This model is based
on the work of Souza et al. [19], [21], who defined the
structural testing criteria for MPI (Message Passing Interface)
exploring interactions among processes of a concurrent appli-
cation. Our test model extends this work analyzing specific
details of publish/subscribe communication as the loosely
coupled among processes, and non-determinism during the
processing of the callbacks (from threads and queues).

The proposed test model represent the application using a
composition of two types of graphs, the graph generated by
the ROS and Control Flow Graphs (CFGs). A fixed number
of processes np is created at the beginning of the application.
In our model, p is a process that performs computations and
communicates with another process using streaming topics,
RPC services, and the parameter server of the ROS. Set of
processes P and inter-processes edges T are represented in the
Publish/Subscribe-based Def-Use graph (PSDU). Each process
p of the PSDU graph has its own internal structure which is
represented by a CFG.

A CFG is a directed graph that represents the structure of
a program as nodes and edges. Nodes in the CFG represent



Fig. 2. ROS Graph of the iRobot System.

blocks of sequential statements such as if any one statement
of the block is executed, then all statements in the block are
executed. The edges represent the communication among the
nodes of a CFG.

A definition (def ) is a location in the program where a
value for a variable is stored into memory. A use occurs in a
location where a value of variable is accessed. In this model
a use can occur of three forms: 1) computation use (c-use),
when the variable is used in a computation; 2) predicative use
(p-use), which occurs when the variable is used in a decision;
and 3) communication use (m-use), which occurs in a inter-
processes edge. A def-clear path for a variable x through the
CFG is a sequence of nodes, n1, n2, .. ,nn that do not contain
a definition of x. The nodes into of CFG in this model also
represent definitions and uses of variables.

Figure 2 shows an ROS graph for the example presented
in the Section III. Each node represents a process and each
edge represents a message between two processes. Figure 3
illustrates an PSDU graph, which is a part of the code of the
Listings 1 and 2 with three processes exchanging messages:
p1, p2 e p3. Each CFG represents a callback method and inter-
processes communication edges link each graph. For example,
in nodes n2, n4 and n5 of the process p1 data are defined
and node n6 they are published. When this occurs the publish
method puts data in an output queue of the ROS and return.
From this point the middleware allocates threads that delivery
this message to the subscribes. For this example, the methods
m1 of process p2 and the m1 of process p3 subscribe messages
from m1 of the process p1. The method m1 of process p1
subscribes messages from m1 of p3.

Based on this model, the criteria for the publish/subscribe
applications are:

• all-nodes-communication criterion: each process of
the PSDU graph will be exercised at least once. The
input and output interfaces of each process should be
exercised by the test case set.

• all-nodes-publish criterion: all processes of the PSDU
graph that have published messages will be exercised
at least once. The interfaces provided will be exercised
at least once by the test case set.

• all-nodes-subscribe criterion: all processes of the
PSDU graph that have subscribed messages will be
exercised at least once. The interfaces for the topics

that have received data will be exercised at least once
by the test case set.

• all-pairs-publish/subscribe criterion: each pair of the
PSDU graph that consists of a process that publishs
data in a topic and another process that has subscribed
messages from the same topic must be exercised at
least once by the test case set.

• all-multiples-publish/subscribe criterion: more than
two processes of the PSDU graph must be exercised at
least once by the test case set. This criterion exercises
the composition of processes. Initially, three processes
are tested; next, the number of processes is increased
until the maximum number of processes of the graph
has been reached.

• all-m-uses criterion: each m-use association of the
PSDU graph will be exercised from the last definition
of the variable in a node ni until the first use of
the variable in the subscribe process psj , i.e., for
each node ni and each x ∈ def(ni), the test set
must exercises a path that covers an inter-processes
association w.r.t. x and ni ∈ ppk.

• all-sequences criterion: different input sequences are
exercised for each subscribe process of the PSDU
graph from different origins (topics). The criterion
exercises the order in which asynchronous events are
received.

V. EXAMPLE OF AN APPLICATION

This example is a simplified application of iRobot Roomba
presented in Section III. For the application of the testing
criteria, the first step is the generation of the elements required
for each criterion (Table I) based on the PSDU graph. Table I
shows some required elements. The second step is the gener-
ation of the test cases for covering the required elements. A
test input for this application is data from the Proximity Sensor
process and the expected output is a command from the Motor
Driver process for the actuators of the robot (wheels). One test
set is able to cover the required elements was generated based
on the testing criteria.

Defects were inserted into the programs for the evalua-
tion of the testing criteria in revealing faults. These defects
focus mainly on the communication among the application
processes. Three types of defects were inserted: 1) changes in



TABLE I. SOME REQUIRED ELEMENTS FOR THE EXAMPLE IROBOT.

Criteria Required Elements

All-nodes-communication (n1,1
6 ), (n2,1

11 ), (n3,1
8 ), (n1,1

1 ), (n2,1
1 ), (n3,1

1 ), ...
All-nodes-publish (n1,1

6 ), (n2,1
11 ), (n3,1

8 ), ...
All-nodes-subscribe (n1,1

1 ), (n2,1
1 ), (n3,1

1 ), ...
All-pairs-publish/subscribe ((n1,1

6 ), (n2,1
1 )), ((n2,1

11 ), (n1,1
1 )), ((n1,1

6 ), (n3,1
1 )), ((n3,1

8 ), (n1,2
1 ), ...)

All-multiples-
publish/subscribe

((n2,1
11 ), (n1,1

1 ), (n1,1
6 ), (n3,1

1 )), ((n1,1
6 ), (n2,1

1 ), (n2,1
11 ), (n4,1

1 )), ...

All-m-uses (n1,1
2 , n1,1

6 , n3,1
1 , c motors), (n3,1

1 , n3,1
8 , n1,2

1 , odometry), ...
All-sequences (p1, t1, t2), (p1, t2, t1), (p4, t2, t1), ...

Fig. 3. Example using PSDU.

the frequency of publication of the processes, which occurs
when a process sends data faster than the capacity of the
receptor to take them, or otherwise; 2) non-publication of
expected data by the processes, when an expected datum is
not sent from a process; and 3) changes in the queue size
of a topic that received data from different process, occurs
when the queue size is smaller than necessary regarding the
frequency of publication in a topic from different processes.
Data overwritten in the queues of the topics might result in
problems for the robot.

Three programs were generated from each defect, there-
fore, 9 programs were employed for the evaluation of the
testing criteria. Table III shows the results of the execution
of test cases in the programs. The first column refers to the
identifiers of the programs with defects; the second column
shows the results of the application for the test set. Y indicates
an expected output, therefore, the test case did not reveal the
defect and N indicates an unexpected output, meaning the test
case could reveal the defect in the program.

The testing criteria were manually applied and no drivers
or stubs were used. According to Table III, only a defect
was not revealed by the test cases (Program 2c), because the
inserted defect did not change the expected output. All other
defects were revealed by test cases. The test cases achieved

100% coverage for the elements required. The advantage of the
testing criteria proposed is they support the tester in the control
of the integration testing activity. The tester choise the better
strategy based on this purpose, such as to test only publish
process can be used the all-nodes-publish criterion or if he
need test integration of various processes he can use the All-
multiples-publish/subscribe criterion. The focus of the criteria
is not on the generation of the test cases, but on the support
of the systematization of the activity, when the testing criteria
can help in the selection of the parts of the code or specific
combinations of processes to be tested during the integration
testing.

TABLE II. TEST CASES.

Input Expected outputs
-1 stop
1 stop
2 reduce
3 working

100 working

The results from manual application of the criteria shown
the testing activity of various processes of a mobile robotic
system can be supported by the use of integration testing
criteria. The program was executed more than once to cover
all required elements of all-sequences criterion for example.
A testing tool which instruments the code, generates and
integrates the CFGs for all methods can help in this task.
Other specific features of publish/subscribe schema need more
atention as race conditions, deadlocks and concurrent threads
in the processing of callbacks will be explored in next studies
with support of a testing tool.

VI. CONCLUSIONS AND FUTURE WORK

This manuscript has addressed aspects of testing mobile
robotic systems and emphasized the publish/subscribe interac-
tion schema. Specific characteristics of the publish/subscribe
systems, such as non-determinism, restrictions of time and
synchronization of the process have not been totally covered
by the existing testing approaches.

TABLE III. RESULTS OF THE EXECUTIONS ON THE PROGRAMS WITH
DEFECTS

Identifier Test set
p = -1 p = 1 p = 2 p = 3 p = 100

1a Y Y N N N
1b Y Y Y Y N
1c Y Y Y N N
2a Y Y N N N
2b Y Y N N N
2c Y Y Y Y Y
3a Y Y N N N
3b Y Y N N N
3c Y Y N N N



We have proposed a family of integration testing criteria
to publish/subscribe systems. Seven testing criteria were de-
fined for a systematic exploration of communication among
components in a mobile robot. The application is represented
by an PSDU graph generated from the ROS meta-operating
system and CFGs for the identification of the elements required
for these criteria. The defects identified would not usually
be revealed with the use of simulations only or unit testing
because the focus of our model is on exploring the internal
characteristics of each process and its influences in the pub-
lish/subscribe schema. An example shown the ability of our
approach to support the integration testing activity.

We intend to use more complex systems as case studies
to test concurrenct aspects when more intense computation is
involved. In addition comparing our testing criteria with other
testing approaches (simulation using VSTs, for instance). We
are currently developing an coverage analysis tool to support
the integration testing criteria.

ACKNOWLEDGMENT

The authors acknowledge the Brazilian funding agencies
FAPESP, under processes 2013/03459-4 and 2013/01818-7
and CAPES, under process DS-8435201/M, for the financial
support provided for this research.

REFERENCES

[1] Ros/concepts. http://wiki.ros.org/ROS/Concepts. [Acessed 18/10/2014].
[2] A. G. Araújo. ROSint - integration of a mobile robot in ROS

architecture. Master’s thesis, University of Coimbra, Coimbra, Portugal,
2012.

[3] Y. Ben-Asher, Y. Eytani, E. Farchi, and S. Ur. Producing scheduling
that causes concurrent programs to fail. In Workshop on Parallel and
Distributed Systems: Testing and Debugging, pages 37–39, 2006.

[4] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback.
Orca: A component model and repository. In Software Engineering for
Experimental Robotics, volume 30, pages 231–251. 2007.

[5] H. Bruyninckx. Open robot control software: the OROCOS project. In
Int. Conference on Robotics and Automation, volume 3, pages 2523–
2528, 2001.

[6] Q. Chen, L. Wang, Z. Yang, and S. Stoller. HAVE: Detecting atomicity
violations via integrated dynamic and static analysis. In Fundamental
Approaches to Software Engineering, volume 5503, pages 425–439.
2009.

[7] Z. Chen, X. Li, J. Y. Chen, H. Zhong, and F. Qin. SyncChecker: Detect-
ing synchronization errors between MPI applications and libraries. In
Parallel Distributed Processing Symposium (IPDPS), pages 342–353,
May 2012.

[8] P. Eugster, P. A. Felber, R. Guerraoui, and A. Kermarrec. The many
faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131, June
2003.

[9] L. C. Fernandes, J. R. Souza, G. Pessim, P. Y. Shinzato, D. O. Sales,
V. Grassi Jr., K. R. L. J. Branco, F. S. Osorio, and D. F. Wolf. Ca-
RINA intelligent robotic car: Architectural design and implementations.
Journal of Systems Architecture, 2013.

[10] B. P. Gerkey, R. T. Vaughan, K. Stoy, A. Howard, G. Sukhatme, and
M. J. Mataric. Most valuable player: a robot device server for distributed
control. In Int. Conference on Intelligent Robots and Systems, volume 3,
pages 1226–1231 vol.3, 2001.

[11] M. Y. Jung, A. Deguet, and P. Kazanzides. A component-based
architecture for flexible integration of robotic systems. In Int. Conf.
on Intelligent Robots and Systems, pages 6107–6112, Oct 2010.

[12] J. S. Kang and H. S. Park. RPIST: Required and provided interface
specification-based test case generation and execution methodology for
robot software component. In Int. Conference on Ubiquitous Robots
and Ambient Intelligence, pages 647–651, 2011.

[13] S. S. Kang, S. W. Maeng, S. W. Kim, and H. S. Park. SITAT:
Simulation-based interface testing automation tool for robot software
component. In Int. Conference on Control Automation and Systems,
pages 1781–1784, Oct 2010.

[14] H. K. N. Leung and L. White. A study of integration testing and
software regression at the integration level. In Conference on Software
Maintenance, pages 290–301, 1990.

[15] J. H. Lim, S. H. Song, T. Y. Kuc, H. S. Park, and H. S. Kim. A
hierarchical test model and automated test framework for RTC. In Int.
Conf. on Future Generation Information Technology, pages 198–207,
2009.

[16] C. Lucas, S. Elbaum, and D. S. Rosenblum. Detecting problematic
message sequences and frequencies in distributed systems. In Int. Conf.
on Object Oriented Programming Systems Languages and Applications,
pages 915–926, New York, NY, USA, 2012.

[17] R. S. Pressman. Software Engineering: Practitioner’s Approach.
McGraw-Hill, 6 edition, 2005.

[18] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. ROS: an open-source robot operating system.
In ICRA Workshop on Open Source Software, 2009.

[19] P. S. L. Souza, S. R. S. Souza, and E. Zaluska. Structural testing
for message-passing concurrent programs: an extended test model.
Concurrency and Computation: Practice and Experience, 26(1):21–50,
2014.

[20] S. R. S. Souza, P. S. L. Souza, M. C. C. Machado, M. S. Camillo,
A. S. Simão, and E. Zaluska. Using coverage and reachability testing to
improve concurrent program testing quality. In Int. Conf. on Software
Engineering and Knowledge Engineering, pages 207–212, Eden Roc
Renaissance Miami Beach, USA, Jul 2011.

[21] S. R. S. Souza, S. R. Vergilio, P. S. L. Souza, A. S. Simão, and
A. C. Hausen. Structural testing criteria for message-passing parallel
programs. Concurrency and Computation: Practice and Experience,
20(16):1893–1916, 2008.

[22] A. S. Tanenbaum. Modern operating systems. Second edition, 2001.


