
Adoption of Software Product Line to a Voice User

Interface Environment

Diógenes R. F. Oliveira, Byron L. D. Bezerra, Elyda L. S. X. Freitas, Alexandre M. A. Maciel

Polytechnic School of Pernambuco – University of Pernambuco

Recife, Brazil

{drfo, byronleite, amam}@ecomp.poli.br, elyda.freitas@upe.br

Abstract — Software Product Line is a software development

paradigm created to meet different market segments. This

paradigm has shown great acceptance in the corporate

environment (Motorola, Nokia, and Hewlett Packard) to allow

the construction of more efficiently through reusing common

components applications, besides being extensively researched by

academics. The segment of voice interface, in turn, came up with

the demand for systems capable of interacting with users, but in

the application development process for this domain there is a

lack of tools that make the task more productively. The FIVE

(Framework for an Integrated Voice Environment) is a

development environment for Voice Interface products designed

to increase productivity in this segment. This paper aims to apply

a SPL approach to FIVE. For this, a comparative evaluation of

the process of construction of FIVE and SPL platforms was

performed. Then adjustments in order to correct structural

problems and, finally, the framework was validated using a set of

experiments which sought to ensure the confirmation of such

changes have been made.

Keywords: Experience Report,s Software Product Line; Voice

User Interface.

I. INTRODUCTION

In recent years, the area of Voice User Interface (VUI) has
received great attention from academics, for two main reasons:
first, due to improvements in the performance of automatic
speech processing systems, including speech recognition and
speech synthesis; secondly, due to convergence device and
mass production of multimedia content, which requires means
of user interaction faster and efficiency [1].

According to Huang et al. [2], the typical architecture for
the development of VUI has three components: the first
represents the set of engines responsible for the speech
recognition or the speech synthesis; the second consists of a
API (Application Programming Interface) used to facilitate
communication between engines and applications; and the last
one consists of a set of possible applications. This architecture
has guided this area over the years and many resources have
been created with the aim to assist in this process.

Much has been done, both academia and in industry to
provide improvements in speech recognition rates and speech
synthesis naturalness, however, little effort has been made to
bring these advances at the application level. Given this
scenario, was developed the FIVE (Framework for an
Integrated Voice Environment) in order to assist in speech

engines building and in instantiation of them in different
technological environments (Telephone, Mobile, SmartTV) [3].

The FIVE has been used by the company Vocal Lab in a
real development environment. With him, the time-to-market
was considerably reduces and enable the mass development of
products with voice interface. The Voc Refactoring the
Environment al Lab, offers a products family for speech
recognition (VL Recognizer), speech synthesis (VL Synthesizer)
and speaker verification (VL Identificator).

According to Pohl [5] Software Product Line (SPL) is a set
of software systems that have a certain set of features in
common, and meet the needs of a particular market segment or
mission and are developed with the same core assets. Although
it is not explicit in the original work of Maciel [4], FIVE
presents a SPL behavior, however, various features of SPL
presents some problems inherent in this approach, as:

 Lack of variability management, which causes a lack
of control of altered or removed features;

 Severe failure of the features configuration, generating
products with errors and / or locking tool.

 No identification of features, preventing management
for maintenance and evolution.

Given these problems, FIVE does not function properly as
SPL in all family products. This leads to lost productivity,
reducing the potential of time-to-market as suggested by the
tool. In this sense, this paper aims to propose the adoption of
Software Product Line approach in FIVE. For this, this paper is
organized as follows: Section 2 provides a background to the
literature of SPL adoption. Section 3 shows adoption process.
Section 4 shows the experiments performed for the FIVE and
his adaptation to the concepts of SPL and finally section 5
describes conclusions.

II. SOFTWARE PRODUCT LINE ADOPTION

The adoption the SPL concept emerged together with the
practice of software reuse. In 1983, Doe and Bersoff [6]
presented the software industry an initiative to increase
productivity and quality by creating an environment composed
of techniques and tools to assist the process of software
development with reuse. The literature on the adoption of
software product line is enough extensive. Bosch [7] reports the
adoption of alternatives is generally much more diverse than
those presented in the literature and the technical and

DOI reference number: 10.18293/SEKE2015-185

organizational criteria for adoption have more freedom than we
might expect.

This diversity can be seen through an analysis of the major
works published in recent decades. Bosch in [7] created a
maturity model served as a reference in the evolution of
product lines. Clements and Northrop [8] synthesized the
fundamentals of SPL, practices and standards used, which
provided a model with the essential approach to application of
SPL. Linden et al. [9] presents the best practices of the industry
in the adoption of SPL using the foundations created by
Clements and Northrop, which provide practical actions used
SPL processes. Finally, more recently, Apel et al. [10] present
a features-oriented model for SPL with concepts and practical
implementations.

Despite the freedom in SPL adoption, these models have
common areas: Domain Engineering, responsible for
collecting, organizing and storing past experience in systems
development activities; and the Application Engineering
responsible for the process where applications are built by
reusing the artifacts of Domain Engineering and by exploration
the variability [5]. Given this scenario, this work has been
inspired Pohl et al. [5] and Apel et al. [10] to making the
decisions about the necessary actions that would be applied to
FIVE environment.

III. ADOPTION PROCESS

Considering the reading of the Hall of Fame of SPL
adoption we propose a adoption methodology composed of
four steps: Interview with Experts; Evaluation by Inspection;
and Refactoring the Environment.

A. Interview with Experts

The purpose of these interviews was to obtain qualitative
information regarding conceptual and architectural issues of
FIVE as a SPL solution. Three researchers were selected with
practical proven of the SPL approach, and by the vast
theoretical knowledge through the publication of articles,
consultancies and projects.

At this stage it was possible to better understand existing
problems in the framework and know the possible actions that
could be taken to solve the problem of traceability of artifacts
of the tool. Two key points were mentioned by specialists. First
one was the need to identify the features that FIVE pretend to
present within the domain of VUI. The second point raised was
the need to implement a Configuration Knowledge in order to
manage the features and the dependencies control. According
to experts, these actions guarantee the stable operation of FIVE
by defining constraints as the variability of the components of
the platform should compose the derivation of products.

B. Evaluation by Inspection

Pohl [5] propose two steps for SPL adoption: evaluation of
Domain Engineering and Evaluation of Application
Engineering.

1) Evaluation of Domain Engineering

a) Product Management

At this step, we analyzed the original work of Maciel [4]

and reports on the design of FIVE had scoped the area of VUI.

Tool's market strategy would provide developers, a productive

mechanism, with fast learning curve and multi-platform. This

observation was confirmed from the many difficulties on the

part of developers, which apply in systems the interface

models. A more detailed evaluation of the product was carried

out, using three basis listed by Pohl [5] to be observed in the

phase of product management activities. Table 1 shows the

result of the evaluation.

TABLE I. EVALUATION OF PRODUCT MANAGEMENT

Activity Description Application in FIVE

Scope of
product

portfolio

Determines the
range of products to

be offered

Engines for speech recognition,
speaker verification and speech

synthesis.

Scope
domain

Identifies major
functional areas that

are relevant to SPL

Pattern Acquisition, Feature
Extraction, Pattern Classification

and Engine Generation.

Scope core

asset

Define the required

features of
components

Functionalities needed are

techniques for feature extraction and
pattern classification.

b) Requirements Engineering Domain

In FIVE, requirements engineering domain were made

through the use of questionnaires, interviews and surveys with

VUI experts. Thus, the notation used for specifying the

specific language was the domain of VUI. Based on the

identified functional areas, process was a questionnaire made

available in order to meet the difficulties, the needs, the

environment, suggestions, among other aspects of the process

of construction and application of models of voice interface.

Table 2 shows the main requirements raised.

TABLE II. EVALUATION OF ENGINEERING DOMAIN

Scope Domain Requirements

Pattern Acquisition Features integrated audio recording
and edition.

Feature Extraction and

Pattern Classification

Provide mechanisms for analysis and

comparison of techniques.

Engine Generation Platform independence and ease of
integration with applications.

c) Design Domain

The general architecture of FIVE was designed
independently based on three modules: CORE consisting of a
framework of classes where the central implementation of the
framework; API that is a proprietary implementation that
provides a set of resources needed to mediate between the
speech engines and the application layer; and the GUI
(Graphical User Interface) which is a graphical interface that
assists the development of projects.

Although the proposed architecture meets in an adequate
manner the generation of products, a failed architecture was
identified. In Engine Generation step all features are loaded to
the end product, with no differentiation in architecture on
unused features.

d) Realization of the Domain

Previous study evaluated the implementation of FIVE that
the best approach to implementing a mechanism for mass

production voice interface, according to know requirements
would be through the mechanism Framework Gray-box [11].

The class diagram is centered on the Project Class that
relates to the classes: Utterance, Sample, Speaker, Extraction,
Classification and ProjectType. All these classes have their
methods of adding, updating, deleting and research, except
ProjetcType which is just a class of type Enum. The Utterance
class has a special behavior to receive the grapheme-phoneme
of the utterance of helper classes Phrase, Word and Syllable are
responsible for representing the linguistic details of each
phrase. They make common variability in code level serving
different products and product-specific aspects are addressed
from use of the inheritance mechanism.

2) Evaluation of Application Engineering
The environment for generation of products FIVE is a

platform that has the format wizard that has sequential tabs, the
classic process of recognizing patterns defined by Duda et al.
were inspired. [12]. The user-friendly interface, how they are
arranged the information, the ease of applying the techniques of
feature extraction and classification, and the definition of
parameters, all these criteria together, decrease the learning
curve in the generation of models for VUI applications.

For this evaluation were built several engines and it was
observed that even with the use of the framework mechanism
for implementing the variability of the components, it hurts not
enough for a proper functioning of FIVE as a SPL. Thus,
taking into account the background regarding the adoption of
SPL and interviews with experts, if make know that other
activities should be performed: the construction of the Feature
Model and a Knowledge Configuration.

In the Feature Model to identify the features available, its
constraints and dependencies occurs, and from it is possible to
know the potential variability of the platform. Configuration
Knowledge has the role of expressing the relationships and
dependencies between the variables of the product line and
features, and their interactions. Thus, observed the need of
carrying a refactoring of FIVE environment given that, in its
initial implementation, the proposed fast generate products was
achieved, but there is a lack of the integrity of the products and
the operation of the line from of features selected.

C. Refactoring the Environment

The process of FIVE refactoring the environment in two
steps: first the Feature Model was developed and then
implemented a mechanism of Configuration Knowledge.

1) Development of the Feature Model

The development of the Feature Model was accomplished
with the aid of pure::variants tool [13]. The choice of this tool
was made because it is widely used in both academia and
industry. From the evaluation of all features FIVE and its
dependencies were identified. Some numerical features were
created in order to empirically parameter settings are adopted
in the area of voice interface.

The Feature Model, which is attributed as the main element
of the project itself FIVE contains five features as direct
daughters, three of which were considered more complex due
to the number of variations, specifically Rating Standards and

Feature Extraction, where various techniques are implemented
and the internal variations caused mainly by setting parameters.
Features like numbers are justified because of being parameters
adopted in the literature for specific techniques.

2) Implementation of Configuration Knowledge

The development of the Knowledge Configuration
happened according to the proposal of Domain-Specific
Modeling of Cyril [14]. According to him the use of domain
specific abstractions tends to facilitate the understanding of the
variability, this mechanism has been used implicitly in FIVE,
even to the point of an individual with experience in VUI
applications do not need to run the platform.

According to the results of the evaluation of five to failure
dependence between the features is the main problem in the
platform. For example, given an "A" feature selected at a time,
necessarily requires a "B" functionality later for maintenance
operation. Thus, the implementation of a knowledge
configuration meets solve this dependency failure.

The development of the Knowledge Configuration was
done through crosstree constraints following three phases:
change in GUI, register control and inclusion of features
extracted from the field and ranked. In the original version of
FIVE, the graphical interface allowed the indiscriminate
selection of techniques for extracting's characteristic, regardless
of the technique of pattern classification. To resolve this
problem with a new interface control features available for
selection was developed.

The control record of the features was necessary because
the original version of FIVE, Each new selection of features for
feature extraction, the data were overwritten, not allowing to
have a history of previous features. To mitigate this problem
adaptation was performed for selected features were stored in
the corresponding techniques of extraction of features selected
subdirectories.

The inclusion of the field extracted and classified was
necessary as the original version of FIVE only the last feature
extraction of selected features could be used for classification.
To mitigate this problem it was tailored to data structure for
addition of a new Boolean attribute (extracted). This solution
allowed the use of any features extraction that are available.

IV. EXPERIMENTATION WITH DEVELOPERS

In this study, an observational assessment of the use of
FIVE original and the new version after refactoring, followed
by the application of a questionnaire was carried out. The
purpose of this evaluation was to assess the implementation of
FIVE experiencing the potential variability of products,
specifically variants of techniques used in generating speech
engines, both feature extraction as the classification of patterns.

The experiment with the collaboration of five developers
who had no prior knowledge about the FIVE, however, all
were familiar with the process of pattern recognition. The
developers used the FIVE in the environment composed by
Windows 8 operating system with as NetBeans with Java 7
Update 45 operating system, with all the default settings. FIVE
were present in all the features of the production line required
to build a product.

Observational assessment began with the realization with
an orientation about the concept of SPL and it is the FIVE
within the context of VUI, to equalize the knowledge of users.
Then were distributed both versions of FIVE and requested the
construction of a speech recognition engine for isolated words.
Then a database of audio and text with five control commands
(Open, Close, Follow, Stop, No) was available. The developers
were free to choose the features for feature extraction and
pattern classification. At the end, everyone was able to
successfully generate the engines in both versions.

During the FIVE observational assessment metrics were
used: time (in minutes), number of turns to earlier stages, the
tool crashes, errors and doubts. Tables 3 and 4 present the
results observed in two scenarios: evaluation with the original
version, and evaluation with new version, respectively.

TABLE III. EVALUATION WITH THE ORIGINAL VERSION

Developer Time Turn

Back

Crashes Errors Doubts

A 34 7 6 3 9

B 44 6 8 3 9

C 38 8 6 1 10

D 42 9 7 2 11

E 43 10 6 3 9

TABLE IV. EVALUATION WITH NEW VERSION

Developer Time Turn

Back

Crashes Errors Doubts

A 26 7 0 0 6

B 35 7 0 0 8

C 31 5 0 1 6

D 32 7 1 0 7

E 28 9 0 0 6

It is observed that the average for the construction of speech

in scenario 2 engine time was 25% faster than in scenario 1,
Although, the generation of speech remained in a short period
of time engines. The number of turns was similar in both
scenarios. The crashes were practically used, since their
occurrence occurred due to the absence of Configuration
Knowledge, specifically in the areas of feature extraction and
pattern classification. The crash that occurred with the user D
in scenario 2 was due to internal problems with the operating
system. Errors in scenario 2 were reduced because the account
Configuration Knowledge and doubts about the features
decreased smoothly in scenario 2 since at that time there was
already a greater familiarity with the tool.

V. CONCLUSIONS

A major strength of this study was the exploration of the

SPL approach in the field of VUI, since this area is little

explored by Software Engineering. Another important

contribution was the refactoring of FIVE to make it really a

SPL. With this the FIVE passes to carry around a set of values,

among them, the possibility of development of research

techniques of extraction and classification, because reading

from the perspective of oriented features.

The correction of faults in the functioning of FIVE process,

through the Knowledge Configuration and Feature Model

solved the problems found in the previous version by defining

the constraints of the features. The identification of features

and construction of the model feature that provides

visualization and potential of the platform.

In the experiments the features were willing to users only in

accordance with the availability of the same features as the

previously chosen, proving the importance of Configuration

Knowledge for the correct operation of the platform and

product generation correctly. After the restructuring, the FIVE

happened to have a clear definition as to its engineering

software, making their understanding for researchers and

developers easier.

VI. REFERENCES

[1] Kurniawati, E.; Celetto, L.; Capovilla, N.; George, S., "Personalized
voice command systems in multimodal user interface," Emerging Signal
Processing Applications (ESPA), 2012 IEEE International Conference
on , vol., no., pp.45,47, 12-14 Jan. 2012

[2] Huang, X., Acero, A., Hon, H.W., Spoken Language Processing – A
Guide to Theory, Algorithm, and System Development, Prentice Hall,
2001.

[3] Maciel, A.; Carvalho, E.; FIVE – Framework for an Integrated Voice
Environment, IWSSIP, 2010.

[4] Maciel, A., Investigação de um ambiente para o desenvolvimento
integrado de interface de voz. Tese de doutorado, CIn/UFPE, 2012.

[5] Pohl, K.; Böckle, G.; Van Der Linden, F.: Software Product Line
Engineering – Foundations, Principles, and Techniques. Springer,
Heidelberg 2005.

[6] Doe, D. D. and Bersoff, E. H. (1986). The Software Productivity
Consortium (SPC): An industry initiative to improve the productivity
and quality of mission-critical software. Journal of Systems and
Software, 6(4), 367–378.

[7] Bosch, Jan. Maturity and Evolution in Software Product Lines:
Approaches, Artefacts and Organization. Software Product Lines, 257-
271,2002,Springer Berlin Heidelberg

[8] Northrop, L. M. e Clements, P.C. A Framework for Software Product
Line Practice. Version 5.0. Pittsburg. Software Engineering Institute,
2007. Disponível em: <
http://www.sei.cmu.edu/productlines/framework.html >. Acesso em:
02/12/ 2013 às 10:24.

[9] Linden, Van der; Frank J., Schmid, Klaus; Rommes, Eelco. Software
Product Lines in Action: The Best Industrial Practice in Product Line
Engineering, Springer-Verlag Berlin Heidelberg, pp. 26, 2007.

[10] Apel, S., Batory, D., Kstner, C., and Saake, C. Feature-Oriented
Software Product Lines: Concepts and Implementation. Springer
Publishing Company, Incorporated. 2013.

[11] Fayad, M. E.; Schimidt, D. C.; Johnson, R. E. Building Application
Frameworks: Object-Oriented Foundations of Frameworks Design. New
Jersey: Wiley, 1999.

[12] Duda, R.O., Hart, P.E., Stork, D.G., Pattern Classification, Wiley-
Interscience. 2000.

[13] pure::variants, available em: <http://www.pure-systems.com/> Acessado
em Março de 2014.

[14] Cirilo E., Nunes, I.; Kulesza, U.; Lucena, C.; Automating the product
derivation process of multi-agent systems product lines. No SBES '09,
página 12, Brasil, 2009. IEEE.

