
Detecting Reporting Anomalies in Streaming Sensing Systems
Shiree Hughes1, Yuheng Du2, and Jason O. Hallstrom1

1I-SENSE, Florida Atlantic University, {shughes2015, jhallstrom}@fau.edu
2School of Computing, Clemson University, yuhengd@clemson.edu

Abstract

Sensor networks must be monitored to identify and cor-
rect problems as they occur. We present a comparison of two
approaches to monitoring deployed sensors. The first re-
lies on configuration parameters to define expected report-
ing behavior. The second automatically identifies normal
reporting patterns based on a combination of configuration
parameters and an analysis of reporting times. Using these
patterns, the system notifies personnel of possible malfunc-
tions. We present empirical evaluations in the context of the
Intelligent River R© system [11].

1. Introduction
Wireless sensor networks are often used to collect data

over large geographic areas. Environmental factors, rang-
ing from changes in cellular or satellite signal strength to
equipment damage can disrupt data collection. It is impor-
tant to identify when sensors are malfunctioning to avoid
prolonged data loss. Equally important is the ability to ig-
nore routine or minor fluctuations in reporting behaviors to
avoid spurious maintenance notifications.

We present two approaches to monitoring the behavior
of deployed sensors. The static approach is based on user
configuration data that captures the expected reporting pe-
riod of each sensor. The adaptive approach relies on an on-
line time-series analysis of reporting times. The ability to
automatically identify reporting patterns enables the deter-
mination of whether a sensor is more likely to be damaged,
versus exhibiting normal variation in reporting behavior.

We evaluate the performance of both approaches using
historical data from 122 devices reporting at various rates
over a six-month period within the Intelligent River R© net-
work. Many of these devices are enclosed in bouys de-
signed to keep them afloat and protect them from the water.
We explore the effects of various parameters on the sensi-
tivity of the monitoring system.

2. Related Work
Many authors have considered methods to identify sen-

sor malfunction and proposed various solutions [5, 6, 7, 13,
17], most concerned with the validation of received data.

DOI reference number: 10.18293/SEKE2015-181

Ramanathan et al. [10] present Sympathy, a tool to detect
and debug sensor failures. Similar to our static approach,
Sympathy assumes an expected time period in which a sen-
sor should report, and then flags the sensor if it does not
report within the expected time. Sympathy requires each
sensor to transmit a set of metrics, including information on
network connectivity, packet reception rate, and packet cor-
ruption rate. When a failure is detected, the metrics are an-
alyzed to determine cause and location. Sympathy does not
adapt to periodic network delays and will repeatedly send
notifications during periods of abnormal network behavior.

Shebaro et al. [12] focus on determining the cause of
packet loss. Their method employs comparisons of RSSI
and LQI values. While link quality can be a good indica-
tor of malfunction, information detailing when sensors are
expected to report is also needed to diagnose sensor failure.

Duche and Sarwade [2] use round-trip delay (RTD) to
detect malfunction in multi-hop scenarios. When a sensor
fails to transmit, the RTD of the sensor approaches infinity.
By defining an initial threshold for comparison, a malfunc-
tioning sensor can be identified if its RTD is greater than
the threshold. Each sensor has several paths it may trans-
mit over, and each path may have a different RTD. Their
approach assumes a circular topology.

Guo et al. [4] concentrate on the detection of faulty data.
Their approach considers both sensor data and location and
assumes that all sensors observe and report data on the same
event. Sensors are designated as faulty if they do not ad-
here to distance monotonicity. The goal is to create a list of
sensors reporting faulty data ranked by probability, not to
notify personnel of sensors’ failure to report.

Warriach et al. [14] propose a hybrid fault detection ap-
proach that combines rule-based, linear least-squares esti-
mation and hidden Markov methods to identify data faults.
The approach does not detect the absence of data.

Bartzoudis and McDonald-Maier [1] describe a method
to validate sensor readings. Their approach compares prior
readings to current readings to identify improbable discrep-
ancies, such as drastic temperature changes in a short time
period. Reported values are also verified to be within the
operating limits specified by the manufacturer. The purpose
is to identify data faults, not to identify reporting failures.

Zang et al. [16] use a combination of principal compo-
nent analysis and wavelet analysis to detect sensor failure

1

in small and medium-scale networks. Detection of a mal-
functioning sensor is dependent upon data collected from
neighboring sensors. Our goal is to identify malfunctioning
sensors independent of other sensors within a network.

Friend et al. [3] are concerned with commercial credit-
card fraud. We take inspiration from methods of fraud de-
tection in this context to identify malfunctioning sensors.
Like people, each sensor has an identifiable reporting pat-
tern which can be used to detect changes in behavior. Com-
mercial fraud detection is achieved by comparing current
observations with expected values derived from previous
observations. Friend et al. find that a customer’s transac-
tions can be represented by a standard bell curve. The av-
erage value of a customer’s transactions defines the peak of
the curve. Each standard deviation away from the average
contains transactions that are more likely to be fraudulent.
The authors find that only 1% of transactions are more than
3 times the standard deviation. We use this principle and
apply it to sensor reporting periods in the adaptive approach
to determine sensor malfunction.

3. The Static Approach
We now detail our implementation of the static approach.

3.1. Configuration
Configuration data is specified using JSON data stored

in MongoDB. Sensors are separated into groups based
on deployment area, and each group is represented as a
JSON object, such as the example shown in Listing 1.
Six properties are defined for each group: groupID
is a unique group identifier. members specifies a list
of sensors included in the group, each identified by ID.
expectedInterval specifies the maximum number of
seconds that may pass between reports from sensors within
the group. notificationTime specifies the number
of seconds to wait between personnel notifications while
a sensor is malfunctioning. maxNotifications spec-
ifies the maximum number of notifications that should be
sent to network personnel while a sensor is malfunction-
ing. The configuration data also stores notification group
objects, which define personnel contact information. A
sample notification group object is shown in Listing 2. The
notificationGroupID in Listing 1 specifies the iden-
tifier corresponding to the notification group defined in List-
ing 2, declaring the list of personnel to be contacted if a
malfunction is identified within the sensor group.

3.2. Implementation
The monitoring service was developed as part of the

Intelligent River R© system [15], a network of sensing de-
vices deployed throughout the Savannah River Basin to sup-
port water management and agricultural applications [11].
Each sensor transmits environmental data through the net-
work using RabbitMQ [9], an open source implementation

1 {"GroupID":"Sensor-Group-1",
2 "members":["sensor-1",
3 "sensor-2",
4 "sensor-3"],
5 "notificationGroupID":"Notification-Group-1",
6 "expectedInterval":900,
7 "notificationTime":1500,
8 "maxNotifications":5 }

Listing 1. Sample Sensor Group

1 {"notificationGroupID":"Notification-Group-1",
2 "addresses":["user1@domain.com",
3 "user2@domain.com"] }

Listing 2. Sample Notification Group

of the AMQP standard [8]. In the Intelligent River R© sys-
tem, RabbitMQ receives data reports routed through ded-
icated queues. The sensor monitoring service uses one
of these queues to obtain device readings, and to moni-
tor time-stamps. The implementation is developed in Java
and consists of three main classes: MessageHandler,
StatusChecker, and Notifier.

3.2.1. MessageHandler
The MessageHandler class consumes messages from a
dedicated message queue. Each message is parsed to de-
termine the identity of the reporting device and the time-
stamp of the report. Instances of the class maintain a local
hashmap, mapping from sensor ID to a data object contain-
ing the time-stamp of the most recent report, the time-stamp
of the most recent notification, the number of notifications
sent, and the current status of the sensor (i.e. alive or dead).

3.2.2. StatusChecker
The StatusChecker class determines if a sensor’s sta-
tus should be updated. At startup, a StatusChecker
thread is created for each sensor group identified in
the input configuration. Listing 3 summarizes the core
logic used in each thread. StatusChecker wakes ev-
ery expectedInterval seconds (line 2) and queries
MessageHandler for the latest time-stamp associated
with each sensor within the group (lines 3–4). The
system then calculates the most recent reporting inter-
val, timeDifference (line 5). If the reporting in-
terval is not within the expectedInterval, the sen-
sor’s status is set to dead (lines 6–7). After marking
a sensor as dead, StatusChecker determines the in-
terval between the last time of notification and the cur-
rent system time (line 8). If the interval is more than
notificationTime and the number of notifications
sent is less than maxNotifications, a Notifier in-
stance is created to handle notification (lines 9–10).
StatusChecker also detects revivals; i.e. sen-

sors marked as dead which begin to report. When

2

1 while(true) {
2 wait(expectedInterval);
3 for each sensorID in members {
4 sensor = hashmap.get(sensorID);
5 timeDifference = currentTime-sensor.lastReportTime;
6 if(timeDifference>expectedInterval) {
7 sensor.status(dead);
8 notifyInterval = currentTime-sensor.notifyTime;
9 if(notifyInterval < notificationTime &&

sensor.notificationsSent<maxNotifications) {
10 new Notifier(sensor);
11 sensor.notificationsSent++;
12 sensor.notifyTime = currentTime; }
13 } else if (sensor.status == dead) {
14 sensor.reset();
15 new Notifier(sensor); } } }

Listing 3. StatusChecker Algorithm

StatusChecker identifies such a sensor, the sensor’s
status, notification count, and time of last notification are
reset, and a notification is generated (lines 13–15).

3.2.3. Notifier
A Notifier instance is created to notify personnel of
node malfunctions and revivals. The sensor’s data object
is passed to the object at construction. The Notifier ob-
ject then retrieves the addresses within the notification
group identified by notificationGroupID and com-
poses a message containing the sensors’ status, identifier,
and time of last report. Malfunction notifications also con-
tain the notification count to remind network personnel of
how many messages they have already received.

4. The Adaptive Approach
Although each sensor is programmed to transmit at a

specific interval, environmental and other factors introduce
regular fluctuations in observed reporting behavior. In In-
telligent River R© deployments, wind, rain, dam discharge
events, and other factors can cause bouys to drop below the
water surface, preventing the enclosed sensors from trans-
mitting via cellular or satellite. We have observed that in
most locations, changes in transmission intervals due to
temporary environmental factors follow regular patterns.

Since each sensor deviates from its programmed report-
ing interval differently, it is difficult to set a uniform max-
imum time interval that encompasses the behavior of all
sensors. It would also be tedious to manually update the
expected behavior of every sensor within the network. To
avoid excessive notifications without requiring significant
effort from network administrators, we developed an ap-
proach that detects normal variance and estimates a best-fit
interval for each sensor within a given group.

4.1. Configuration
A sample configuration showing the definition of a sen-

sor group in the adaptive approach is shown in Listing 4.
We continue to use the parameters from the static ap-
proach, with three additions. numberOfStdDevs repre-

sents the number of standard deviations from the average
reporting interval considered to be an acceptable deviation.
windowSize represents the number of previous reporting
intervals to be considered when calculating metrics such
as standard deviation and mean. decayConstant rep-
resents how quickly a sensor is expected to return to normal
reporting behavior after experiencing failure.

1 {"GroupID":"Sensor-Group-1",
2 "members":["sensor-1",
3 "sensor-2",
4 "sensor-3"],
5 "notificationGroupID":"Notification-Group-1",
6 "expectedInterval":900,
7 "notificationTime":1500,
8 "maxNotifications":5,
9 "numberOfStdDevs":3,

10 "windowSize":25,
11 "decayConstant":12 }

Listing 4. Sample Sensor Group (adaptive)

4.2. Implementation
In the adaptive implementation, StatusChecker is

modified, and an Analyzer class is added.

4.2.1. Analyzer
Each time a sensor reports, an instance of the Analyzer
class calculates the interval between the two most recent
reports and stores the interval in a circular buffer. The size
of the buffer is determined by windowSize. Each sensor
has a dedicated Analyzer object stored in the hashmap
discussed in Section 3.2.1. The object maintains the buffer
and provides mean and standard deviation methods.

4.2.2. StatusChecker
In the adaptive approach, we define three sensor states: (i)
initial, indicating that sufficient data to accurately predict
the sensor’s behavior has not yet been collected; (ii) nor-
mal, indicating that the sensor is reporting within the ex-
pected range; and (iii) abnormal, indicating that the sensor
is reporting outside its expected range.

As in the static approach, each StatusChecker
thread wakes every expectedInterval seconds to
check the status of the sensors within its associated group.
A new check() method is invoked at wake-up to deter-
mine the status of the sensor, as discussed in the next para-
graphs. Each time the MessageHandler object receives
a report from a sensor, the associated StatusChecker
updates its timer, its Analyzer object, and its last time-
stamp. This is handled in the update() function of
MessageHandler. As in the static approach, if a sensor
is identified as dead or revived, the system takes the nec-
essary notification steps. Listing 5 shows the update()
method for the adaptive version of StatusChecker.
timeDifference represents the observed interval be-
tween consecutive sensor reports (line 1). average rep-
resents the average of the intervals stored in the sensor ob-
ject’s buffer (line 3). stddev represents the standard devi-

3

1 timeDifference = currentReport - sensor.lastReport;
2 sensor.addToBuffer(timeDifference);
3 average = Analyzer.getAverage(sensor);
4 stddev = Analyzer.getStdDev(sensor);
5 allowable = average + stddev*numberOfStdDevs;
6 switch(sensor.state) {
7 case(INITIAL):
8 sensor.resetTimer(configExpectedInterval);
9 break;

10 case(NORMAL):
11 if(timeDifference>allowable) {
12 sensor.state = ABNORMAL;
13 sensor.expectedInterval = timeDifference;
14 sensor.resetTimer(timeDifference);
15 } else { sensor.resetTimer(allowable); }
16 break;
17 case(ABNORMAL):
18 if(timeDifference<sensor.expectedInterval){
19 sensor.expectedInterval -= (

(sensor.expectedInterval-allowable) /
decayConstant);

20 if(sensor.expectedInterval < allowable) {
21 sensor.state = NORMAL;
22 }
23 } else { sensor.expectedInterval = timeDifference;}
24 sensor.resetTimer(sensor.expectedInterval);
25 break;
26 }
27 sensor.lastReport = currentReport;
28 if(sensor.status == dead) {
29 sensor.status == alive;
30 new Notifier(sensor); }

Listing 5. StatusChecker update() Method

ation of these intervals (line 4). allowable represents the
allowable maximum interval between normal sensor reports
(line 5).

Initial State. Initially, the Analyzer’s buffer is empty.
Before the buffer contains the required number of inter-
vals, the average and standard deviation may not reflect the
longer-term values and may fluctuate significantly. In this
state, the system expects to receive the next report within the
period specified in the configuration (line 8). Regardless of
state, the time-stamp of the most recent report is updated to
reflect the new time-stamp (line 27). Finally, update()
checks if the reporting sensor is flagged as dead and notifies
network personnel of revivals (lines 28–30).

Listing 6 shows the logic for check() in the adaptive
version of StatusChecker. On wake-up in the initial
state, the system compares the time difference between the
current system time and the last known reporting time to
the expectedInterval specified in the configuration
file (lines 6–11). If the sensor has not reported within the
expectedInterval, a notification is sent (lines 7–8).
Next, the system checks if Analyzer contains enough
data to move the senor to the normal state (lines 9–10).

Normal State. Consider the update() logic for a
sensor in the normal state, shown in Listsing 5 (lines 10–
16). The method queries the corresponding Analyzer
for the average and standard deviation of the sensor’s re-
porting intervals (lines 3–4). The maximum reporting in-
terval is calculated based on the current average and the

numberOfStdDevs parameter, which controls the sen-
sitivity of acceptability. The system places the sensor in the
abnormal state if the observed reporting interval is outside
of allowable, and the timer corresponding to that sensor
is then reset (lines 11–14). When the sensor is moved to the
abnormal state, the sensor’s expectedInterval is set
to the observed reporting interval (line 13). This outlying
interval serves as an estimate of the delay the sensor will
experience while in the abnormal state.

Once a sensor enters the normal state, the check()
method follows the actions in Listing 6 on wake-up
(lines 12–16). allowable is calculated as before, in the
update()method. The system then checks if the time dif-
ference between the current system time and the last known
reporting time is outside allowable (line 13). If so, the
sensor object is updated to reflect its change in status, and a
notification is sent (lines 14–15).

Abnormal State. When a sensor reports outside of
its expectedInterval, it is placed in the abnor-
mal state. In this state, the system assumes the sen-
sor is malfunctioning and does not expect it to re-
port within the calculated expectedInterval. The
update() logic for the abnormal state is shown in List-
ing 5 (lines 17–25). allowable is calculated as in
the normal state. If the observed reporting interval is
less than the expectedInterval stored in the sensor
object, it is assumed that the sensor is recovering, and
the stored value is adjusted to reflect this (lines 18–19).
The rate at which the adjusted interval is decreased is
dependent on expectedInterval, allowable, and
decayConstant. The rate is calculated as the differ-
ence between the sensor object’s expectedInterval
and allowable, divided by decayConstant (line 19).
decayConstant enables network administrators to con-
trol how quickly abnormal behavior is expected to con-
verge to normal behavior. If a sensor reports out-
side of its expectedInterval, expectedInterval
is raised to the outlying value (line 23). Once
expectedInterval is within allowable, the sensor
is returned to the normal state (lines 20–22). This process
ensures that a sensor is consistently demonstrating normal
behavior before being returned to the normal state.

The check() method for the abnormal state follows
the actions shown in Listing 6. The system checks if the dif-
ference between the current system time and the last known
reporting time is within expectedInterval, and noti-
fies network personnel accordingly (lines 17–20).

5. Evaluation
We collected data over a six-month period for 122 unique

devices in various locations with various reporting intervals.
These devices provided a total of 2,648,267 transmissions to
analyze. First, we perform a baseline evaluation of the noti-

4

1 timeDifference = currentTime-sensorID.lastReportTime;
2
3 ... average, stddev, and allowable are calculated as in

Listing 5 on lines 3, 4, and 5 respectively ...
4
5 switch(sensorID.state) {
6 case(INITIAL):
7 if(timeDifference > configExpectedInterval) {
8 new Notifier(sensor); }
9 if(sensorID.isFull()) {

10 sensorID.state = NORMAL; }
11 break;
12 case(NORMAL):
13 if(timeDifference>allowable) {
14 sensor.status = dead;
15 new Notifier(sensor); }
16 break;
17 case(ABNORMAL):
18 if(timeDifference > sensor.expectedInterval) {
19 new Notifier(sensor); }
20 break; }

Listing 6. StatusChecker check() Method

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.5 1 1.5 2 2.5

N
um

be
r

of
 D

ev
ic

es

Notifications per Transmission

Figure 1. Static Approach Performance

fication tool’s performance using the static approach. Next,
the effects of the 3 configuration parameters introduced in
the adaptive approach are evaluated. We then compare the
performance of the adaptive and static approaches in terms
of the number of notifications generated and the ability to
customize performance based on user needs.
5.1. Static Approach

For the static method, expectedInterval was set
for each device by personnel familiar with the reporting be-
havior of the device. The number of notifications generated
was then compared to the number of transmissions sent by
each device. The findings are shown in Figure 1. Figure 1
shows the distribution of notification rates across devices.
Devices were placed in bins of width .265 (notifications per
transmission) based on notification rate. The x-axis rep-
resents the number of notifications sent per transmission.
The y-axis represents the number of devices with a notifi-
cation rate within the given range. 93 out of 122 devices
(76%) exhibited a notification rate of less than .265 notifi-
cations per transmission. This means that for the majority
of devices, out of every 100 transmissions, approximately
26 or less of the transmissions were flagged as irregular,
generating a notification. The other 29 devices exhibited
notification rates greater than .795 notifications per trans-

mission. Devices with a notification rate greater than .795
notifications per transmission generated at least 79 notifi-
cations for every 100 transmissions. Due to the configura-
tion of notificationTime, which enables multiple no-
tifications to be generated during a single interval between
transmissions, some devices had a rate greater than 1 noti-
fication per transmission. The maximum rate observed was
2.12 notifications per transmission.
5.2. Adaptive Approach

To evaluate changes in notification rate as a function
of changes to the three configuration parameters used in
the adaptive monitoring approach, we first determine the
value of windowSize for each device corresponding to
a 24-hour period. Each device is placed in one of seven
groups based on its programmed reporting interval: 6-
second, 5-minute, 10-minute, 15-minute, 20-minute, 30-
minute, and 1-hour. For each group, we run the adaptive
approach using various combinations of numStdDevs and
decayConstant. We varied numStdDevs between 0
and 5, and decayConstant between 0 and 1.4e6. This
range was chosen to explore expected time to recovery rang-
ing from instantaneous (decayConstant equal to 0) up
to 6 months (decayConstant equal to 1.4e6).

Figure 2 summarizes the effects of these two parameters
on notification rate for 3 of the groups. The graphs were
subdivided to provide a more detailed understanding of per-
formance. Figures 2(a), 2(b), and 2(c) show the effects of
decayConstant in the range of 0 to 1000, while Fig-
ures 2(d), 2(e), and 2(f) show its effects in the range of 1000
to 1.4e6. For each group, the worst performance (i.e., the
highest notification rate) occurs when both numStdDevs
and decayConstant are equal to 0. This case is equiv-
alent to the static approach. With the exception of the 6-
second group shown in Figures 2(a) and 2(d), the notifi-
cation rate generally decreases as decayConstant in-
creases. Again, with the exception of the 6-second group,
each group has a trough around decayConstant equal
to 400,000 where it reaches a local minimum and then in-
creases slightly before permanently decreasing toward 0.
Devices reporting at 6-second intervals are virtual machines
experiencing very little disruption. This is why devices in
this group experience the lowest notification rate, as well as,
the least variance in rate with respect to the parameters.
5.3. Static Versus Adaptive

Figure 3 depicts the behavior of both methods on a sin-
gle device over time. The x-axis represents time, and the
y-axis represents the interval between consecutive reports,
in seconds. The static approach is considered in Figure 3(a),
and the adaptive approach is considered in Figure 3(b). We
observe a more tailored fit to the behavior of the device in
the adaptive approach. Using the static approach, the major-
ity of devices exhibit a notification rate below 30%, while
some generate notification rates of 100%, and a few gen-
erate rates of 200%. The highest notification rate for the

5

 0
 1

 2
 3

 4
 5 0

 200
 400

 600
 800

 1000
 0.0115
 0.012

 0.0125
 0.013

 0.0135
 0.014

 0.0145

Notifications per
Transmission

numberOfStdDevs

decayConstant

Notifications per
Transmission

(a) 6-Second Group (low range)

 0
 1

 2
 3

 4
 5 0

 200
 400

 600
 800

 1000

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18

Notifications per
Transmission

numberOfStdDevs

decayConstant

Notifications per
Transmission

(b) 15-Minute Group (low range)

 0
 1

 2
 3

 4
 5 0

 200
 400

 600
 800

 1000

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Notifications per
Transmission

numberOfStdDevs

decayConstant

Notifications per
Transmission

(c) 30-Minute Group (low range)

 0
 1

 2
 3

 4
 5 0

 200000
 400000

 600000
 800000

 1e+006
 1.2e+006

 1.4e+006

 0.01175

 0.0118

 0.01185

 0.0119

 0.01195

 0.012

 0.01205

Notifications per
Transmission

numberOfStdDevs

decayConstant

Notifications per
Transmission

(d) 6-Second Group (high range)

 0
 1

 2
 3

 4
 5 0

 200000
 400000

 600000
 800000

 1e+006
 1.2e+006

 1.4e+006

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

Notifications per
Transmission

numberOfStdDevs

decayConstant

Notifications per
Transmission

(e) 15-Minute Group (high range)

 0
 1

 2
 3

 4
 5 0

 200000
 400000

 600000
 800000

 1e+006
 1.2e+006

 1.4e+006

 0.052

 0.054

 0.056

 0.058

 0.06

 0.062

 0.064

 0.066

Notifications per
Transmission

numberOfStdDevs

decayConstant

Notifications per
Transmission

(f) 30-Minute (high range)

Figure 2. Effect of decayConstant and numOfStdDevs (windowSize=24-hours)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

05/31 06/14 06/28 07/12 07/26 08/09 08/23

R
ep

or
tin

g
In

te
rv

al
 (

in
 s

ec
on

ds
)

Time (M/D)

Acutal Time Difference
expectedInterval

Average

(a) Static Approach

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

05/31 06/14 06/28 07/12 07/26 08/09 08/23

R
ep

or
tin

g
In

te
rv

al
 (

in
 s

ec
on

ds
)

Time (M/D)

Acutal Time Difference
expectedInterval

Average

(b) Adaptive Approach

Figure 3. Static vs. Adaptive Approach

adaptive approach is 45%. This shows that in terms of noti-
fication rate, the adaptive approach can be used to generate
fewer notifications. In some cases, variation may be intol-
erable, and users may wish to define malfunction using a
constant threshold.

6. Conclusion
We presented two approaches to identifying malfunc-

tioning sensors in a streaming monitoring network: a static
approach and an adaptive approach. Trade-offs exist be-
tween the two approaches. The static approach may gen-
erate too few or too many notifications based on network
managers’ estimates of reporting behavior. The adaptive ap-
proach may generate too many notifications in sensors with
sporadic variation. However, we found that both approaches
are successful in detecting variations in a sensor’s behavior
and notifying personnel of sensor failure in real-time. With
this method, a sensor cannot be flagged as malfunctioning
unless it is actually exhibiting abnormal behavior. Due to
decayConstant, it is possible to neglect repeated mal-
functions within a close time frame, but this is by design.
This work was supported by the NSF (CNS-0745846).

References
[1] N. Bartzoudis and K. McDonald-Maier. An adaptive processing node architec-

ture for validating sensors reliability in a wind farm. In BLISS 2007., pages
83–86, Aug 2007.

[2] R.N. Duche and N.P. Sarwade. Sensor node failure detection based on round
trip delay and paths in wsns. Sensors Journal, IEEE, 14(2):455–464, Feb 2014.

[3] Stephen O. Friend and others. Standard deviaion: The new standard for out-of-
pattern transaction analysis. ACAMS Today, January/February 2009.

[4] Shuo Guo et al. Find: Faulty node detection for wireless sensor networks.
SenSys ’09, pages 253–266, New York, NY, USA, 2009. ACM.

[5] MichaelA Hayes and MiriamAM Capretz. Contextual anomaly detection
framework for big sensor data. Journal of Big Data, 2(1), 2015.

[6] Chun Lo et al. Pair-wise reference-free fault detection in wireless sensor net-
works. IPSN, pages 117–118. ACM, 2012.

[7] M.R. Napolitano et al. Kalman filters and neural-network schemes for sensor
validation in flight control systems. Control Systems Technology, IEEE Trans-
actions on, 6(5):596–611, Sep 1998.

[8] OASIS. AMQP:advanced message queuing protocol. www.amqp.org/
about/what, 2015.

[9] Pivotal. RabbitMQ: messaging that just works. www.rabbitmq.com, 2014.
[10] Nithya others Ramanathan. SenSys ’05, pages 255–267. ACM, 2005.
[11] Intelligent River. Intelligentriver R©: from observational to operational.

intelligentriver.org, 2015.
[12] Bilal Shebaro et al. Fine-grained analysis of packet loss symptoms in wireless

sensor networks. In Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’13, pages 38:1–38:2, New York, NY, USA,
2013. ACM.

[13] S. Taniguchi and Y. Dote. Sensor fault detection for uninterruptible power sup-
ply (ups) control system using fast fuzzy-neural network and immune network.
In Systems, Man, and Cybernetics, 2001 IEEE International Conference on,
volume 1, pages 99–104 vol.1, 2001.

[14] Ehsan Ullah Warriach et al. Fault detection in wireless sensor networks: A
hybrid approach. IPSN, pages 87–88, New York, NY, USA, 2012. ACM.

[15] D.L. White et al. The Intelligent River c©: Implementation of sensor web en-
ablement technologies across three tiers of system architecture: Fabric, middle-
ware, and application. pages 340–348, May 2010.

[16] Xi-Liang Zhang et al. Sensor fault diagnosis and location for small and
medium-scale wireless sensor networks. In Natural Computation 2010, vol-
ume 7, pages 3628–3632, Aug 2010.

[17] J. Zhao et al. Computing aggregates for monitoring wireless sensor networks.
In The IEEE International Workshop on Sensor Network Protocols and Appli-
cations, 2003., pages 139–148, May 2003.

6

