Analyzing Exceptions in the Context of Test Data
Generation Based on Symbolic Execution

Marcelo Medeiros Eler
University of Sao Paulo
Sao Paulo - SP - Brazil

E-mail: marceloeler @usp.br

The Netherlands

Abstract—Testing exception scenarios is a challenging task in

the context of test data generation based on symbolic execution.

In such a context, test data is generated based on constraints
explicitly declared in the code. However, constraints required to
activate specific exceptions may not be directly declared in the
code. In such a case, implicit constraints have to be inferred
from exception handling mechanisms. Given that exceptions can
be raised in several situations, finding constraints to generate
test data to exercise all possible faulty scenarios can significantly
increase the number of paths and constraints, which can cause
or aggravate path explosion issues. This paper reports on an
investigation that we carried out to gauge the cost (i.e., number
of path constraints) of four data generation approaches aimed
at covering exception dependent paths.

Keywords — Exception handling; symbolic execution; test

data generation; software analysis

I. INTRODUCTION

Automatic test data generation is a notorious complex
problem. Symbolic execution and constraint solving have
been used as an approach to generate test data that achieve
high control-flow coverage [5, 9]. During symbolic execution,
program elements are represented as functions of symbolic
input values [5, 9]. Each path is represented by a path constraint,
which is a sequence of constraints that should be satisfied so
that the underlying path can be traversed. Constraint solvers
are thus used to generate concrete input values (i.e., test data)
that satisfy each set of constraints.

Often, the constraints required to traverse a path are explicitly
declared in the code by means of control-flow statements,
such as if and while. However, some constraints are not
explicitly declared in the code because they do not stem from
conventional control-flow statements. Some of these constraints
implicitly derive from exception handling mechanisms such as
Java’s try—-catch-finally blocks. For instance, a block
that declares a NullPointerException will be executed
only when such an exception is thrown. However, in general,
there are no constraint indicating in which condition such an
exception will be thrown.

We classify paths that depend on an exception being
thrown as exception-dependent paths (EDPs) [7], as oppose
to exception-free paths (EFPs) [14]. According to an analysis
performed over a sample of 100 open source projects called

DOI reference number: 10.18293/SEKE2015-170

Vinicius H. S. Durelli
University of Groningen

E-mail: v.h.serapilha.durelli@rug.nl

Andre Takeshi Endo
Federal Technological University of Parana
Cornelio Procopio - PR - Brazil
E-mail: andreendo@utfpr.edu.br

SF100 [8]!, we discovered that almost one third of the methods
have at least one EDP [7]. Although the number of EDPs of a
program is high, and exception handling is an important topic
in software development [4], the influence of exception mech-
anisms to unit test data generation using symbolic execution
has not been widely explored [1, 3, 5].

Taking into account the implicit constraints that stem from
exception handling mechanisms can significantly increase the
number of path constraints. This has the potential to exacerbate
a well-known issue faced by symbolic execution approaches:
path explosion [1, 5, 6], which is usually caused by complex
loop structures.

The contribution of this paper is twofold. First, we discuss
the characteristics and possible approaches to identify con-
straints that exercise EDPs and faulty scenarios. Second, we
investigate how different approaches to generate test data that
cover EDPs may impact the number of path constraints.

This paper is organized as follows. Section II provides back-
ground on symbolic execution and EDPs. Section III discusses
possible ways to identify constraints that lead to exceptions
being raised and, in turn, the execution of EDPs. Section IV
describes the investigation we conducted to measure the path
constraint overhead brought by approaches that generate test
data tailored to execute EDPs. Section V shows related work.
Finally, Section VI presents concluding remarks.

II. SYMBOLIC EXECUTION AND EXCEPTION
DEPENDENT PATHS (EDPS)

Symbolic execution is a program-analysis technique that
represents the elements of a program as symbolic input
values [9]. Each path is represented by a path constraint, i.e., a
set of constraints in a logical expression that must be satisfied in
order to execute the underlying path. To generate unit test data,
symbolic execution approaches resort to constraint solvers to
yield solutions to the path constraints. These solutions provided
by the constraint solvers are then used as test data to achieve
high coverage on control-flow criteria.

Using symbolic execution and constraint solving to generate
test data is appealing and straightforward. However, even
though this research area has come a long way over the past

IDetails of the SF100 corpus of classes are available at http://www.st.cs.
uni-saarland.de/evosuite/SF100/

decades, several challenges still remain [1, 5-7, 10, 16], such
as path explosion and EDPs.

Path explosion is the problem of having to cope with too
many paths, which can overwhelm the constraint solver and
reduce the performance of the overall process [5]. The path
constraints assembled during symbolic execution are usually
based on individual constraints explicitly declared in the source
code by means of control-flow statements. EDPs, on the other
hand, are paths that can only be traversed if a specific exception
is thrown. The constraints required to raise the underlying
exception of an EDP, however, are not explicit in the code.
Therefore, the constraints that lead to the execution of EDPs
have to be abstracted from exception handling mechanisms,
viz., try—catch—-finally blocks.

Listing 1 presents an illustrative example of EDPs. The
Java method evalBMI classifies the weight of a person as
underweight, healthy weight, or overweight, given its body
mass index (BMI) calculated by calcBMI, which might throw
an ArithmeticException.

Listing 1: Source code of evalBMI.

1 public void evalBMI(Dialog ud, float mass, float height) {

2 winlayout.setStyle ("default”);

3 float bmi = 0; @

4 try {

5 bmi = calcBMI(mass, height); @

6 String msg = String.valueOf(bmi); @

7 ud. print (msg);
s if (bmi < 18.5) @

9 ud. print (" Underweight”); @

10 else

noif (bmi < 25) @

12 ud. print(”Healthy weight”); @

13 else{

14 ud.print(“0verweight””);®

15 ud. getLayout (). setColor(”red”);@
16 }

17} @

18 catch (ArithmeticException e) {

19 ud. print(”Height must be greater than zero”); @
catch (NullPointerException e) {

21 e.printStackTrace (); @

finally {

n ControlBoard.addBMI(bmi); @ — @

}
=) @
.

Notice that evalBMI has a try-catch-finally con-
struct with two exception handlers: each catch block is
an exception handler whose argument declares the type of
exception that the handler can treat. The first handler catches
an unchecked exception: ArithmeticException. The
second handler catches another sort of unchecked exception:
NullPointerException. The finally statement en-
sures that all instructions within its block are executed regard-
less of what happens in the try block.

In Java, unchecked exceptions inherit from either
RuntimeException or Error. In general, good
programming practices can avoid raising unchecked exceptions.
Therefore, the compiler does not force the programmer to
handle such type of exceptions, albeit it is a common practice.
Notice, for example, that both winlayout.setColor (line
2) and ud.print (lines 7, 9, 12, and 14) instructions may
throw a NullPointerException, but only the latter are
within a try block. As oppose to unchecked exceptions, the
compiler force the programmer to catch or propagate checked
exceptions.

We represent the methods under test as control-flow graphs
(CFGs) [11, 17]. CFGs are directed graphs in which each node
usually represents a block of instructions without flow deviation
(i.e., a basic block) and directed edges represent transitions (i.e.,
unconditional branch or jump) in the control-flow.

Figure 1 shows the CFG generated for evalBMI. The
numbers after each instruction in Listing 1 indicate their
corresponding node in the CFG. Nodes related to try, catch,
and finally blocks are also shown. Dashed edges represent
branches that are executed when some exception occurs.
The exception handling mechanism of the Java language
is conservative: it considers that any instruction within a
try-catch-finally block may throw an exception. Thus,
there are edges from all nodes within the try statement to
the exception handling nodes.

Finally block
node

Fig. 1: CFG for evalBMI.

Notice that nodes 2—-6 have edges to nodes 8, 9, and 11;
we use only one edge from the try box for improving the
legibility of the graph. The exception handling notation we
use is adapted from the notations proposed by Sinha and
Harrold [13] and Vincenzi et al. [14].

Nodes within the try block can reach any exception
nodes (8, 9, and 11), depending on the type of the thrown
exception. Node 8 catches an ArithmeticException
and node 9 captures a NullPointerException. Node
11 is an implicit catch included by the compiler to capture
any uncaught’ exception, even those that might be thrown
within catch statements. Node 10 represents the finally
statement, which is reached by the exception nodes (8 and 9)
and by node 7. It is important to mention that Node 11 is a
copy of the finally block that was automatically created by
the compiler to assure that the instructions under the finally
block are executed even when an uncaught exception is thrown.
Node 11 is also an exit node since it throws an exception.

During symbolic execution, we adopted a breadth-first algo-
rithm whose goal is to generate paths that cover all branches
of a CFG. Table I shows all paths of evalBMI, which may
be either (i) EDP, when the path includes an exception edge
(dashed), or (ii) EFP.

TABLE I: EDPs and EFPs of evalBMI.

Path ID EDP T1[{1, 2, 4, 6, 8, 10, 12}
I {1, 2, 11} 12[{1, 2, 4, 5, 8, 10, 12}
2 {1, 2,4 11} 3] {1,209, 10, 12}

3 {1,2,3, 11} 4] {1, 23,9, 10, 12}
Z {1,2,9, 11} 15 {1,2,4, 09,10, 12}
5 {1,2,8, 11} 16]{1, 2, 4, 5,9, 10, 12}
6 {1,2,4,5, 11} 17]{1, 2, 4, 6,9, 10, 12}
7 {1,2,4,6, 11} EFP

8 {1,2,8, 10, 12} | [18 {1, 2, 3, 7, 10, 12}
9 [{1,2, 3,8, 10,12} | |19|{1, 2, 4, 5, 7, 10, 12}
10 [{1,2 4,8, 10,12Y| |20|{1, 2, 4 6, 7, 10, 12}

Symbolic execution approaches yield path constraints based
on the constraints explicitly declared along the underlying path.
However, there is no constraint associated with the exception
edges. Therefore, approaches that want to generate test data
to exercise EDPs must implement mechanisms to derive
constraints from exception handling mechanisms, otherwise
they will not be covered. For instance, edge 2-9 is executed
only when a NullPointerException is raised. In such
a case, an analysis of the code would show that the constraint
(ud==null) would result in the execution of that path.

Given that the constraints that cover EDPs are not explicit
in the code, many symbolic execution techniques ignore
EDPs, thereby building path constraints that take into account
only explicit constraints. A clear advantage of not dealing
with implicit constraints is that the number of paths to be
processed is low, which can speed up test data generation. The
disadvantage, however, is that many possible execution paths
remain uncovered.

III. HANDLING EDPS AND UNCAUGHT

EXCEPTIONS

Current symbolic execution tools and approaches do detail
whether or not and how they handle EDPs. Therefore, we
devised four possible approaches to generate test data that

2 An uncaught exception is an exception thrown that is not captured by an
exception handling mechanism. In Java, only unchecked exceptions may be
uncaught.

cover EDPs and uncaught exceptions in order to increase the
likelihood of covering more faulty scenarios. The impact of
using these approaches is discussed in Section IV.

A. Analyzing try-catch Statements: Single Constraint

This approach analyzes instructions declared within try
statements and tries to identify constraints that would throw
exceptions caught by the catch clauses. For example, if the
target exception is a Nul1lPointerException, instructions
that access methods and fields of an object are considered. Even
though there are several instructions that could raise the target
exception, only one constraint is selected for each block of
instructions.

The advantage of this approach is that test data is gener-
ated considering both explicit and implicit constraints. The
drawback is the increase in the number of path constraints.
In addition, complex analysis techniques are required to de-
rive constraints from exception handling mechanisms, mainly
because each type of exception requires different constraints
to be raised. Also, selecting only one constraint to raise the
target exception may not be enough since it can be unsolvable,
i.e., it is not possible to find a concrete solution to satisfy all
constraints. For instance, if the constraint (ud==null) is
selected to execute the exception edge 6-9, path {1, 2, 4, 6, 9,
10, 12} would remain uncovered since edges 2—4 and 4-6 are
executed only if (ud!=null).

B. Analyzing try-catch Statements: Multiple Constraints

The analysis performed in this approach is similar to the
previous approach (Subsection III-A). However, instead of
selecting only one constraint for each block or node, all possible
constraints are used according to the target exception. In such
a case, one new path constraint is generated for each new
constraint identified. For instance, two path constraints would
be generated for EDP {1, 2,4, 6,9, 10, 12}: one considering the
constraint (ud== null),and other considering the constraint
(ud.getlLayout () ==null).

The advantage of this approach is that it explores all possible
situations in which an exception can be raised within an
exception handling environment. Even though many of the path
constraints generated may turn out to be unsolvable, choosing
several constraints increases the chances of finding test data
to cover the target EDP. Nevertheless, the main drawback is
that the number of path constraints yielded for each EDP may
be too high, leading to path explosion.

C. Beyond try-catch Statements

Both aforementioned approaches are based in the fact that,
in theory, programmers generally employ exception handling
mechanisms in scenarios where exceptions are more likely
to be thrown. According to Cabral and Marques [4], how-
ever, programmers do not catch enough unchecked exceptions
making applications crash even on minor error situations.
Therefore, deriving constraints only from instructions within
try-catch-finally blocks may let several faulty scenar-
ios uncovered due to how programmers write their code [4, 12].

In this context, we devised a thorough approach that iden-
tifies constraints that traverse EDPs by analyzing exception
handling mechanisms and also constraints aimed at raising
uncaught exceptions that can be raised outside the boundaries
of try—catch statements. Yet considering a try-catch
environment, the constraints generated are not limited to the
declared exception. For each constraint identified, the under-
lying path constraint is replicated and the new constraint is
added.

The main advantage of this approach is that it allows for
yielding path constraints to generate test data that traverse EDPs
and also raise uncaught exceptions. The test data generated
are not limited to exercise EDPs abstracted from exception
handling mechanisms. Rather, the test data generated by this
approach exercises every possible faulty scenario by activating
all possible exceptions.

The main drawback of this approach is the huge number of
path constraints to process. This alternative can clearly aggra-
vate the path explosion problem. Furthermore, the complexity
of finding a concrete constraint to raise an exception is greater
in this context since the analysis must take into account any
type of exception, not only the target exceptions within catch
statements.

Another drawback of yielding a huge number of path
constraints is that many of them may be unsolvable. In such
cases, resources will be spent to process constraints that will
not generate any test data. One possible solution to mitigate
this problem is to apply static analysis techniques to identify
and eliminate unsolvable path constraints prior to sending them
to the constraint solver.

D. Beyond try-catch Statements: An Optimized Version

We devised an optimized version of the previous approach
(Subsection III-C) in which new path constraints are only
created when the new constraint that activates an exception
follows these rules: (i) it does not contradict any constraint
in the underlying path constraint; (ii) it is not yet in the
underlying path constraint; (iii) it does not raise an uncaught
exception before reaching the block where the target exceptions
is supposed to be thrown. The advantage of this approach is
that the amount of path constraints is kept in check.

IV. STUDY OF THE OVERHEAD BROUGHT BY
APPROACHES TO GENERATE TEST DATA TO FAULTY
SCENARIOS

A. Study Setup and Procedure

The main goal of this study is to investigate the impact
of generating unit test data to cover EDPs and uncaught
exceptions, taking into account the number of path constraints
for each of the four approaches presented above. Specifically,
we want to find out the overhead brought on the number of
path constraints.

To perform such an investigation, we selected a third party
benchmark named SF100 to be the object of our investiga-
tion [8]. SF100 is made up of a collection of 100 open
source Java projects that differ considerably in size, complexity,

and application domains. Altogether, these 100 Java projects
contain 18,344 classes and 136,156 methods.

We used a tool called CPASE (Constraint Profiling for
Symbolic Execution) [7] to analyze the SF100 benchmark.
CP4SE can symbolically execute a program under test based
on its bytecode and provide the path constraints generated for
each execution path. It uses a breadth-first search to find all
paths considering only one loop iteration and also the aim of
covering all branches. In order to tailor CP4SE for our purposes,
we implemented the four test data generation approaches to
cover EDPs and uncaught exceptions discussed in Section III.
We adopted CP4SE as a static analysis tool, focusing on the
analysis of path constraints associated to EFPs and EDPs. It
is worth mentioning that the generation of test data is out of
the scope of this paper.

In this study, we investigate the effects of generating path
constraints related to four out of the seven most common
exceptions used in the Java language according to Cabral and
Marques [4]. The four exceptions we investigated are presented
as follows:

e NullPointerException: instructions such as
obj.field or obj.method(...) generate the
constraint (obj==null), where object is a program
element (e.g., variable or method return) whose type is
an object.

e NegativeArraySizeException: instructions such
as array = new type[size] generate the con-
straint (size<0), where size is any numeric element
(e.g., variable, method return or arithmetic expression).

e ArrayIndexOutOfBoundsException: instructions
such as arrayl[i] generate the constraint
(i>=array.length) or (i<0), where array
is any array structure (e.g.,variable or method return) and
i is any numeric element.

e ArithmeticException: instructions such as (x/y)
generate the constraint (y==0), where y is a numeric
element (e.g, variable or arithmetic expression).

It is important to highlight that the first two approaches em-
ployed (Subsections III-A and III-B) only identify constraints
for specific exception. If an instruction such as (x/y) is within
a try statement caught by a NullPointerException,
no constraint will be identified. On the other hand, all types
of constraints are identified in handling mechanisms that
catch generic exceptions such as java.lang.Exception
or AnyException.

It is also worth mentioning that all instructions are analyzed
by CP4SE after the symbolic execution of the program under
test. Thus, CP4SE only identifies constraints to instructions
that follow the structure defined for each exception. For
example, consider a method with the instruction (x/y), but
the following assignment is always executed before: y=5. In
such a case, the constraint (y==0) is not identified since the
analyzed instruction becomes (x/5) after symbolic execution.
The same principle holds for the other types of instructions.

TABLE II: Path constraint overhead.

No EDPs Approach A Approach B Approach C Optimized Approach C
Exception—-Approach # PC #PC | Overhead | # PC | Overhead | # PC | Overhead | # PC Overhead
NullPointerException 115,305 | 134,490 | 16.6% |149,991| 30.1% |646,186| 460.40% | 295,701 156,5%
ArrayIndexOutOfBoundsException | 115,305 | 125,099 8.5% 127,560 8.5% 191,414 66% 158,078 37,1%
ArithmeticException 115,305 | 124,150 7.7% 124,160 7.7% 126,758 9.9% 126,487 9,7%
NegativeArraySizeException 115,305 | 124,724 8.2% 124,768 8.2% 136,906 18.7% 130,580 13,2%
All four exceptions 115,305 | 134,560 | 16.7% |154,085| 33.6% |[724,233| 528.1% |323,185 180,3%

B. Results

We executed CP4SE several times to generate path con-
straints to SF100 according to the four approaches presented
in Section III and the target exceptions commented in Sec-
tion IV-A. Each run of CP4SE considered a particular approach
and a particular exception. Table II summarizes the results of
these runs.

Rows 1 to 4 of Table II show the results for each type
of exception individually, while row 5 presents the results of
the four exceptions combined. The columns show the results
obtained by the execution of the four approaches discussed in
Section III. The first column shows how many path constraints
(#PC) were identified using CP4SE when no EDP or faulty
scenario is considered. This particular information is used in
the rest of the table as the basis to measure the overhead
brought by the implemented approaches. For each approach,
we present the number of path constraints (#PC) identified and
the overhead measure in percentage.

The results show that the Nul1PointerException type
brings more overhead than the other three types we investigated.
The overhead ranges from about 16% to 30%, when only
exception handling mechanisms are analyzed. On the other
hand, the overhead is increased by up to 460% when all blocks
of instructions are considered. The optimizations introduced
by the approach described in Subsection III-D seem to be a
possible solution to this problem since the overhead dropped
from 460% to 156%.

Although the number of path constraints with array elements
is low, as in previous results [7], the number of instructions
that uses arrays is high. As a result, the overhead brought
by exceptions related to arrays is relatively high (up to 66%).
The overhead regarding arithmetic exceptions is low, which is
consistent with the fact that complex and nonlinear arithmetic
expressions involving divisions are more frequent in specific
applications according to Barr et al. [2], such as mathematical
and scientific applications.

The overhead brought by the constraints identified within a
try-catch-finally block (Subsections III-A and III-B)
is significantly lower than the overhead brought by the analysis
of all instructions (Subsections III-C and III-D). This means
that there are several scenarios in which an uncaught exception
may be thrown. This seems to agree with the analysis of Cabral
and Marques [4], in which they state that, since programmers
are not forced by the compiler, they do not catch unchecked
exceptions properly, making applications crash even on minor
error situations.

When all exceptions are considered, the overhead brought

by Approach A (Subsection III-A) is not high. As Cabral and
Marques [4] remark, developers tend to catch generic excep-
tions. In such a case, only one exception is enough to exercise
that particular path. When Approach B (Subsection III-B) is
used, the overhead is a bit higher (around 33%). Considering
Approach C (Subsection III-C), the overhead is extremely
high (528%), which exacerbates the path explosion issue.
However, when Approach D (Subsection III-D) is considered,
the overhead is about 180%.

The results of our investigation show that, even considering
only four types of exceptions, the overhead of thoroughly
generating test data for most exception scenarios is prohibitive
for many symbolic execution approaches. Practitioners and
researchers must perform a carefully analysis in hopes of
deciding which approach or which combination of approaches
should be used in each situation.

V. RELATED WORK

Researchers have been investigating how exception handling
mechanisms have been used by programmers and how these
mechanisms can be tested properly. Cabral and Marques [4]
carried out a quantitative study on how programmers use
exception handling mechanisms. They looked at 32 projects,
written in Java and .NET, and found that although the apt
exceptions are thrown in most situations, programmers are not
concerned with writing specialized handling code. Hindered by
inflexible handling mechanisms [12], programmers fall back on
writing generic exception handlers which are empty, exclusively
dedicated to re-throw exceptions, or halting the method or
program.

Xiaoquan et al. [15] proposed a static method to detect
faults related to erroneous exception handling in Java programs.
Their method combines two types of analysis: a forward flow-
sensitive analysis to detect unsafe use of variables and a
backward path feasibility analysis to prune false positives.

Few studies have been conducted to understand the charac-
teristics of real-world software regarding exception handling
from a symbolic execution point of view [7, 10, 16]. Xiao et
al. [16] investigated path explosion in the context of dynamic
symbolic execution. They analyzed the characteristics of loops
in 16 open source projects written in the C# language, but
their study focused on the characteristics of loops rather than
their overall presence and relation with exceptions.

In a previous paper [7], we studied the distribution of path
explosion, constraint complexity, dependency, and EDPs over
the SF100 benchmark [8]. Regarding path explosion, the impact
caused by loops and nested loops was investigated. Concerning

EDPs, we found out that 36% of the analyzed methods of
SF100 had at least an EDP, but the impact on the number of
path constraints generated has not been analyzed.

The main difference between our study and the related
research is the investigation of how generating test data to cover
EDPs can impact path explosion according to three different
approaches. To the best of our knowledge, no other studies on
this subject has been carried out.

VI.

Although symbolic execution has been extensively investi-
gated as a promising approach for test data generation, little
research has taken into account the generation of test data
that cover exception-related paths. Despite the fact that many
paths in a program are exception-dependent (i.e., EDPs), most
approaches have focused on exception-free paths (i.e., EFPs). In
this paper, we investigated this topic by looking at the increase
in the number of path constraints resulted from four different
test data generation approaches that cover exception scenarios.

The results would seem to suggest that the overhead caused
by common exceptions, as NullPointerException and
ArrayIndexOutOfBoundsException,is high, while the
overhead caused by the other two exceptions is relatively low.
When the four investigated exceptions are considered together,
the overhead may be manageable if constraints are derived
only from try-catch-finally statements (around 33%).
However, it may be impracticable if constraints are derived
from all instructions of the program under test (around 180%).

In conclusion, we believe that practitioners and researchers
that want to generate test data tailored to cover exception-based
scenarios should evaluate the trade-offs of using a thorough
approach: generating test data for most likely exception-based
scenarios results in a considerable overhead; on the other
hand, focusing only on instructions declared within exception
handling mechanisms or eschewing certain exceptions (e.g.,
NullPointerException) may leave many faulty scenar-
ios uncovered.

CONCLUDING REMARKS

ACKNOWLEDGMENTS

The authors would like to thank the financial support
provided by CAPES (BEX 1714/14-7), FAPESP (2014/08713-
9), and CNPq (445958/2014-6).

REFERENCES

[1] S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, and P. McMinn.
An orchestrated survey on automated software test case
generation. Journal of Systems and Software, 86(8):1978—
2001, 2013.

[2] E. T. Barr, T. Vo, V. Le, and Z. Su. Automatic detec-
tion of floating-point exceptions. In Proc. of the 40th
Annual ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, pages 549-560, New York, NY,
USA, 2013.

[3] E. Bounimova, P. Godefroid, and D. Molnar. Billions

and billions of constraints: Whitebox fuzz testing in
production. In Proceedings of the 2013 International

Conference on Software Engineering, pages 122-131,
Piscataway, NJ, USA, 2013. IEEE Press.

[4] B. Cabral and P. Marques. Exception handling: A field
study in java and .net. In Proceedings of the 21st Euro-
pean Conference on Object-Oriented Programming, pages
151-175, Berlin, Heidelberg, 2007. Springer-Verlag.

[5] C. Cadar and K. Sen. Symbolic execution for software
testing: three decades later. Communications of the ACM,
56(2):82-90, 2013.

[6] C. Cadar, P. Godefroid, S. Khurshid, C. S. Pasareanu,
K. Sen, N. Tillmann, and W. Visser. Symbolic execution
for software testing in practice: Preliminary assessment.
In Proceedings of the 33rd International Conference on
Software Engineering, pages 1066-1071. ACM, 2011.

[71 M. M. Eler, A. T. Endo, and V. H. S. Durelli. Quantifying
the Characteristics of Java Programs that May Influence
Symbolic Execution from a Test Data Generation Per-
spective. In The 38th Annual Int. Computers, Software
& Applications Conference, pages 181-190, 2014.

[8] G. Fraser and A. Arcuri. Sound Empirical Evidence in
Software Testing. In Proc. of the 2012 Int. Conf. on
Software Engineering, pages 178—188, 2012.

[9] J. C. King. Symbolic execution and program testing.

Commun. ACM, 19(7):385-394, July 1976.

X. Qu and B. Robinson. A Case Study of Concolic

Testing Tools and their Limitations. In International

Symposium on Empirical Software Engineering and Mea-

surement, pages 117-126, 2011.

S. Rapps and E. J. Weyuker. Selecting software test

data using data flow information. IEEE Transactions on

Software Engineering, 11(4):367-375, 1985.

[12] M. P. Robillard and G. C. Murphy. Designing Robust

Java Programs with Exceptions. ACM SIGSOFT Software

Engineering Notes, 25(6):2-10, 2000.

S. Sinha and M. Harrold. Criteria for Testing Exception-

Handling Constructs in Java Programs. In Proc. of the

Int. Conf. on Sw Maintenance, pages 265-274, 1999.

A. M. R. Vincenzi, M. E. Delamaro, J. C. Maldonado,

and W. E. Wong. Establishing structural testing criteria

for java bytecode. Software Practice & Experience, 36

(14):1513-1541, 2006.

X. Wu, Z. Xu, and J. Wei. Static Detection of Bugs

Caused by Incorrect Exception Handling in Java Pro-

grams. In 11th International Conference on Quality

Software (QSIC), pages 61-66, 2011.

X. Xiao, S. Li, T. Xie, and N. Tillmann. Characteristic

studies of loop problems for structural test generation via

symbolic execution. In Proc. 28th IEEE/ACM Int. Conf.

on Automated Software Engineering, November 2013.

H. Zhu, P. A. V. Hall, and J. H. R. May. Software Unit

Test Coverage and Adequacy. ACM Computing Surveys,

29(4):366-427, 1997.

(10]

(11]

[13]

[14]

(15]

[16]

(17]

