
An Oracle based on Image Comparison for
Regression Testing of Web Applications

Akihiro Hori∗, Shingo Takada∗, Haruto Tanno† and Morihide Oinuma†
∗Dept. of Information and Computer Science, Keio University, Yokohama, Japan

{hori, michigan}@doi.ics.keio.ac.jp
†Software Innovation Center, NTT Corporation, Tokyo, Japan

{tanno.haruto, oinuma.m}@lab.ntt.co.jp

Abstract—Much work has been done on automating regression
testing for Web applications, but most of them focus on test
data generation or test execution. Little work has been done
on automatically determining if a test passed or failed; testers
would need to visually confirm the result which can be a tedious
task. The difficulty is compounded by the fact that parts of a
Web page (such as advertisements) may change each time the
Web application is executed even though it has no bearing on the
Web application function itself. We thus propose a test oracle for
automatically determining the result of regression testing a Web
application. The key point of our approach is the identification
of parts that may change, which we call variable region. We
first generate the expected result, by executing the original (pre-
modification) Web application multiple times so that variable
regions can be identified. Then, after the Web application is
modified, regression testing is conducted by comparing the output
of the modified Web application against the expected output. An
evaluation confirmed the usefulness of our approach.
Keywords- web application testing; regression test; image compar-
ison

I. INTRODUCTION

The Web application is a popular form of application due
to the user basically only needing a Web browser to access
it. They, however, tend to be modified frequently for various
reasons, including bug fix, enhancements, and security attacks
[1][2].

As with any software, each time a Web application is
modified, it must go under regression testing, which checks
that functions that performed correctly before modification
still do. Although much work has been done on automatic
regression testing [1][3][4][5][6][7][8], most focus on the
automation of test data generation, selection, prioritization, or
its execution.

An important part of regression testing is to check the
result of test data execution against the expected result. This
may be done automatically through means such as DOM
tree comparison [8] and XML/HTML output [4]. However,
in many cases, this is done manually [9][10], especially for
testing that relies on visually checking the screen display
(i.e., browser output) [11]. Such manual checking is time
consuming as human testers must check each Web page one
by one; this is compounded by the fact that checking each
Web page needs to take place each time the application has
been modified [10].

We thus focus on the automation of checking if the screen
display has changed or not. Specifically, we target the devel-
opment of a test oracle for Web applications.

A test oracle can be defined as having two essential parts
[12]:

1) oracle information that represents expected output
2) an oracle procedure that compares the oracle information

with the actual output

In our approach, we automatically generate the expected
output for each test case by executing the test case multiple
times and saving the resulting screen display as an image.
After the Web application is modified, its screenshot is also
saved and compared with the expected output. If the images
are the same, the test case is said to have passed, otherwise it
has failed.

Although the basic steps are simple, there is one impor-
tant difference between the output of Web applications and
conventional GUI applications. There may be regions within
the output of Web applications that may change each time
that Web page appears regardless of the actual results of the
Web application execution. We call such a region as variable
region. For example, many Web applications have pages that
contain advertisements, which may change each time that
page is shown. Such regions must be accounted for; otherwise
even if the Web application result is correct, a change in the
advertisement being shown will cause the image comparison to
fail. Thus an important part of our approach is the elimination
of these variable regions.

This paper thus proposes an oracle for the regression testing
of Web applications. The main contributions are as follows:

• Automatic identification of variable regions by executing
the Web application multiple times before modification.

• Automatic generation of an expected result (baseline
image) for a given test case based on the identification
of variable regions.

• Automatic “PASS/FAIL” judgement of test case execution
by comparing screenshots taking into account variable
regions.

The rest of this paper first starts with a discussion of
related work. Section 3 then describes our approach. Section 4
evaluates our approach. Section 5 makes concluding remarks.

DOI 10.18293/SEKE2015-017 



II. RELATED WORK

Web application testing focusing on the visual aspect of the
output includes [11][13][14][15][16].

Stocco, et al. proposed an approach to migrate test suites
based on DOM (Document Object Model) [17] to test suites
based on images [11]. Although the goal of their work is
different from ours, there are aspects similar to our work;
specifically, the mapping of DOM elements with visual el-
ements of the Web page.

Choudhary, et al. proposed an approach to detect cross-
browser incompatibilities in Web applications [13]. Although
the goal of their work is different from ours, they also target
eliminating variable regions. However, their approach gener-
ates the expected output by executing the pre-modification
Web application twice. If the variable regions always change,
this would be sufficient, but this is not the case. Our approach
solves this issue.

Selay, et al. [10] proposed an approach that compares
images for regression test. Their approach was able to ef-
ficiently detect layout faults while neglecting insignificant
variations. However, their “insignificant variation” does not
include our variable region. Our approach thus differs from
this perspective.

Applitools [15] is a tool that automatically tests Web
applications in a variety of environments (e.g., OS, browsers),
and saves screenshots. After the tests are executed, the saved
images are shown one by one, and testers need to determine
“PASS/FAIL” one by one. Our approach goes a step further
as the “PASS/FAIL” determination is done automatically.

PhantomCSS [14] is a tool that automatically executes
regression testing of Web applications by comparing screen-
shots of modified Web applications with screenshots of pre-
modification Web applications. The goal of their tool is the
same as ours, but variable regions can only be eliminated
manually. Our approach solves this issue by automatically
removing variable regions.

Screenster [16] is a tool that automatically determines
“PASS/FAIL” of tests. Developers first record the initial result
of executing a Web application. After making changes to the
Web application, it is executed and the execution result is
compared with the initial result. If the images are the same,
the test is determined as pass. Otherwise, differences in the
two results are highlighted. Testers then manually check if
the differences can be ignored (in which case the test passes)
or not (in which case the test fails). Although Screenster can
automatically determine “PASS/FAIL”, it cannot handle the
dynamic parts (variable region), while our approach can.

In sum, although much work has been done on visual testing
of Web applications, the determination of “PASS/FAIL” is
still done manually. PhantomCSS and Screenster can make
an initial determination of “PASS/FAIL”, but they cannot
automatically handle variable regions. Our proposed approach
addresses this issue.

Fig. 1. Overview of proposed approach

III. IMAGE COMPARISON BASED TEST ORACLE

A. Overview of our approach

Fig. 1 shows the overview of our proposed approach. The
basic steps are as follows:

1) Execute a test case multiple times before the program
is modified, and produce n screenshots of the resulting
Web page. We call this pre-modification test execution.
The number of times (n times) is set by the tester.

2) Extract the common parts of n screenshots (subsection
III-B). This eliminates the variable regions, and the
resulting image serves as the expected result for the
regression test.

3) Execute the test with the modified program, and produce
a screenshot of the resulting Web page.

4) Remove the variable region from the resulting Web page
(subsection III-C).

5) Compare the baseline image with the post-modification
image (subsection III-D). If the two images match, then
the regression test result is PASS. Otherwise, it is a
FAIL.

B. Common Part Extraction

The common part extraction first divides each screenshot
into several regions based on the DOM tree (Fig. 2). The
DOM tree is traversed from its root until an element reaches
a specified size, at which point all children of that element is
deleted (Fig. 3). Each leaf in the remaining tree is considered
as a “region”. Note that all n screenshots will have the same
DOM tree structure, and thus the same resulting regions.

The element size is set by the tester. If the threshold takes
too large a value, a region that contains both variable parts
and non-variable parts will be designated as being a variable
region. On the other hand, too small a value will lead to many
regions which will cause unnecessary computation.

The common part extraction continues by comparing the
regions one by one based on the position within the DOM tree.
The set of regions that are the same with all n screenshots are



Fig. 2. Separation into region images

Fig. 3. The search and delete of elements in the DOM tree (Values express
the size of the element)

stored in a log file (which we call pre-modification common
part log file). Each log in this file is a pair of the image of
the region and its DOM tree absolute path. This set of regions
forms the baseline image, i.e., the expected output. Regions
that differ at least once are considered as variable regions.

The comparison between each region, i.e., the comparison
between two images, is done by calculating the distance
between the two regions, and then checking if the distance
is less than a specified threshold. If the distance is less than
the threshold, the two regions (i.e., images) are considered to
be the same. If it is greater than or equal to the threshold, they
are considered to be different.

We adopted the χ2 histogram distance for the region
comparison, which is often used in image processing. It has
been found to be accurate and computationally fast [13]. χ2

histogram distance is computed as follows:

χ2 (H1,H2) =
∑
i

(H1 (i)−H2 (i))
2

H1 (i) +H2 (i)
(1)

H1 and H2 are the histograms of the images. These his-
tograms are the distribution of the luminance, i.e., i indicates
the luminance value and H (i) indicates the number of pixels
that has luminance value i.

C. Variable Region Removal

The variable region removal process starts by first dividing
the screenshot image of the post-modification Web page into
regions in the same way as the common part extraction. The
DOM tree is then used to remove the regions corresponding
to the variable regions. Specifically, the DOM tree absolute
path for each region is checked to see if it exists in the
pre-modification common part log file. If it exists, then the
image of that region will be compared with the corresponding
baseline image in the next step. Otherwise, that region is
considered as a variable region and ignored in the next step.

D. Comparison

This module compares the corresponding regions based
on the DOM tree between the baseline image and the post-
modification image with the variable regions removed. The
algorithm used to compare each region is the same as the one
used during the common part extraction (section III-B). If all
regions are the same, the regression test has passed. Otherwise,
it has failed.

E. Tool Implementation

We implemented our proposed approach on top of a testing
tool that we had previously developed [18] [19]. In our previ-
ous tool, users first define what we call a base scenario, which
corresponds to a set of steps that end-users take when they use
a given Web page “normally”. Test cases are then generated
by using the steps in the base scenario, and searching a
knowledge-base to find similar steps. Found steps will include
information such as constraints on user input and previously
used test data that are used for the generated test cases.



The generated test cases are then executed using Selenium
Web Driver [20], and the screen display is saved. Our previous
work was able to automate many steps that are required
for testing Web applications, but it could not automatically
judge if a test case execution passed or failed. Our proposed
approach makes this possible.

We list below values that the tester can specify:
• REPEAT indicates the value of n, i.e., the number of

times the test is executed pre-modification. The default
value is 3.

• SIZE is the threshold specifying the minimum size of
elements in the DOM tree (Fig. 3). The default value is
100,000 pixels.

• DISTANCE is the threshold for determining if two re-
gions are considered to be the same or not. The default
value is 10.

• INTERVAL is the wait time between pre-modification
tests. This is to account for cases where variable regions
may change only after a certain amount of time has
passed. The default value is 0.

The default values were specified based on preliminary
experiments that we conducted.

IV. EVALUATION

We conducted a case study to evaluate our approach, focus-
ing on the following three research questions:

• RQ1: Does our tool judge as correctly as humans?
• RQ2: Does our tool judge more quickly than humans?
• RQ3: Does our tool remove more variable regions when

the number of times of the pre-modification test is bigger?
RQ1 checks how accurate our tool is compared to manual

human comparison. RQ2 checks the time taken to compare
images. Since automation is supposed to help humans, our tool
needs to be as accurate (or nearly as accurate) as humans, and
it also needs to be faster. RQ3 checks whether the repeated
execution of pre-modification test is meaningful.

A. Target Applications

We targeted three demo Web applications: Zen Cart [21],
Takai [22], and Welcart [23]. Zen Cart is a shopping cart
software. Welcart is also a shopping cart software, but it is
a WordPress plugin. Takai is a free Joomla template, that can
be used to build Web sites. We chose these Web applications
because they are open source, have variable regions, and have
sample data available.

We used the provided programs as the original (pre-
modification) applications. The modifications were done by
changing the programs using the concept of mutation analysis
[24]. which basically changes or mutates a part of the code. We
employed 26 basic mutation operators each of which changes
one operator, such as changing < to >. Although mutating
the program basically means that we are injecting a bug into
the program, the goal of this case study is to check if our tool
can accurately judge if there has been a change in the output
Web page, and not to evaluate the test suite. In a true testing

TABLE I
ACCURACY RATE (%)

Tool Human
Zen Cart 99.4 99.8

Takai 98.0 90.7
Welcart 100 100

Total 99.4 98.8

environment, there will be additional test cases that check for
changes that were made to the program. Thus, some mutated
code will result in the output Web page being different from
the original output, while others will be the same. Adding new
test cases to account for changes made to the program is out
of scope of this paper.

Test cases were generated using our previously developed
tool [18][19]. Twenty-eight test cases were generated for Zen
Cart, five test cases for Takai, and twelve test cases for Welcart.

The case study was conducted using FireFox and specified
the following values:

• REPEAT: 6 for RQ1 and RQ2; 1 to 6 for RQ3
• SIZE: 100,000
• DISTANCE: 15
• INTERVAL: 0

B. Manual Judgement

We asked five students to compare pairs of Web page
images, and judge if each pair is the same or not. For each
pair, one Web page image was the result of executing the
original program, while the other was randomly chosen from
the mutated results. The variable region was specified for each
pair by highlighting the appropriate part of the Web page. In
other words, each student subject needed to check the non-
variable regions, and did not need to consider the variable
region(s) when judging if a pair was the same or not. This is
because in an actual testing environment, the tester will know
in advance which part(s) of the Web page will change each
time it is loaded.

C. Results

1) RQ1: Accuracy: We carefully analyzed both the results
of our tool and the results of the humans manually, and
checked if the judgement was correct or not.

Table I shows the results. The accuracy rate of our tool was
nearly as high as the human result.

Tables II - V show the breakdown of the results. “Tool”
denotes the result from our tool, while “Solution” denotes
the correct result, which was obtained from careful manual
analysis by the authors. “P” means pass, and “F” means fail.
The numbers indicate the number of test data. So, for example,
in Table II, our tool correctly identified 607 passes and 228
fails, while incorrectly identifying 5 fails as passes. The only
cases of a pass incorrectly being identified as a fail occurred
in the Takai Web application.



TABLE II
ZEN CART

Solution
P F

Tool P 607 5
F 0 228

TABLE III
TAKAI

Solution
P F

Tool P 106 0
F 3 41

TABLE IV
WELCART

Solution
P F

Tool P 111 0
F 0 249

TABLE V
TOTAL

Solution
P F

Tool P 824 5
F 3 518

TABLE VI
EXECUTION TIME (SECONDS)

Tool Human
Zen Cart 4.2 48.1

Takai 3.7 64.2
Welcart 2.4 27.7

Total 3.7 44.4

2) RQ2: Execution Time: We measured the execution time
for our tool. Specifically, we measured the time taken for
variable region removal and comparison (Fig. 1) We did not
include the time taken for common part extraction because, if
necessary, this can be executed when time is available such as
at night.

The time for the five human subjects were also taken. Since
they could judge failed comparisons more quickly than passed
comparisons, we took the percentage of passes and fails into
consideration and calculated a weighted average.

Table VI shows the results. This is the average time to
compare one regression test execution. Our tool took less than
one-tenth the time of the human subjects.

3) RQ3: Repeat Count: We executed our tool while chang-
ing the value of n from 1 to 6. Table VII shows the results. The
value indicates the percentage of variable regions that our tool
correctly identified. As expected, when the pre-modification
test is executed more (i.e., the value of n is greater), the
percentage of correct identfication becomes higher.

D. Discussion

1) RQ1: Accuracy: Our approach had an accuracy of over
99%, which is comparable to human beings. The issues our
approach had were as follows:

• Warning dialogs
Five out of the eight incorrect judgements were due to

TABLE VII
PERCENTAGE OF CORRECT IDENTIFICATION OF VARIABLE REGIONS

n
1 2 3 4 5 6

Zen Cart 0 50.0 90.0 90.0 100 100
Takai 0 96.7 100 100 100 100

Welcart 0 76.7 96.7 100 100 100

not being able to capture the image of a warning dialog.
For example, in Zen Cart, when there is an issue with
registering user information, a warning dialog pops up.
Our tool uses Selenium to capture images, but these pop
up dialogs cannot be captured by Selenium. Thus our
current implementation takes an ad hoc approach of using
the “Print Screen” function of Windows. Unfortunately,
when we were conducting pre-modification test, this
method of capturing the dialog failed once. This led to
the warning image to be handled as a variable region.
In other words, it was not considered as a region image
to be checked, and thus led that to be PASS instead of
FAIL.

• Change in image size
Two out of the eight incorrect judgements were due to
the image size becoming smaller by two pixels. Whenever
there is a difference in image size, our tool first trims the
larger image so that the images are of the same size. But
our tool did not correctly trim an image.

• Timing of capturing a screenshot
The final incorrect judgement was due to the timing of
capturing a screenshot by Selenium. Our tool currently
waits three seconds after the Web page is loaded. The
image of the Web page is then captured. This would
handle cases where after the Web page is loaded, a widget
is briefly shown, and then disappears. Unfortunately, in
one case, a widget did not disappear after three seconds,
and thus was captured.

Note that none of the above issues were due to our usage
of χ2 histogram distance for the region comparison. Since this
approach only considers the distribution of the colors that are
used in the Web page, technically there is a possibility that
two completely different looking Web pages will have a χ2

histogram distance of zero, i.e., those two pages are computed
to be the same. This did not occur in our evaluation. Of course,
more experiments are necessary to correctly conclude that χ2

histogram distance is sufficient for our approach.
Furthermore, note that for Takai, the accuracy for manual

judgement was much lower than the other two applications.
This was due to a very small change in the Web page that the
subjects were not able to detect. Specifically, in one case, the
color of some text in a very small region changed from gray
to black. Our tool was able to detect such cases, as the χ2

histogram distance focuses on color.
2) RQ2: Execution time: As expected, our tool was faster

than manual checking. For Zen Cart and Welcart, our tool was
11.5 times faster, while it was 17.4 times faster for Takai. The
reason that our tool especially performed better for Takai was
probably because Takai’s Web page was more complex than
the other two, and thus it took subjects more time.

3) RQ3: Repeat count: The result of RQ3 found that the
percentage of variable regions that are correctly identified is
higher when the value of n (the number of times the pre-
modification test is executed) is higher. We consider this from
a probabilistic perspective.

Suppose that there are m variable regions in a Web applica-



Fig. 4. Repeat time and Accuracy Rate

tion under test and that the pre-modification test was conducted
n times. The probability P (n) where the tool can correctly
identify all m variable regions can be calculated as shown in
equation (2).

P (n) =
m∏

k=1

{
1 − (

1

ak
)
n−1}

(2)

In equation (2), ak means that the kth variable region has ak
contents that can be shown. In other words, for a given instance
of a Web page, one of ak possible contents is shown for the
kth variable region. When pre-modification test is executed
n times, the probability that the kth variable region is not
removed (i.e., correctly identified) is the same as the same
content being displayed consecutively n times. Assuming that
the probability of one of the ak contents being shown is the
same, a content being displayed consecutively n times can

be computed as
(

1
ak

)n−1

. Thus the probability of the kth
variable region being correctly identified is a complementary

event and can be computed as 1−
(

1
ak

)n−1

. Since the number
of variable regions is m, we take the product of each variable
region resulting in equation (2).

We consider the result of Zen Cart (Table VII), which had 6
variable regions. Of the 6 regions, 3 regions had an extremely
high number of contents (i.e., the number of ak was very
large), and thus they can be ignored in terms of equation (2).
As for the other 3 regions, the number of contents were 3, 3,
and 4. Thus, if we assign m = 3, a1 = 3, a2 = 3, a3 =
4 to equation (2), we obtain the curve in Fig. 4. This figure
also contains the plots from Table VII.

E. Threats to Validity

The first threat to validity would be the use of students
as the human subjects. Since the task was to compare Web
page images, which anyone can do, we do not believe that
this is a threat in terms of students vs professional. However,
there is always the possibility that some humans are better at
comparing than others, and we cannot discount this possibility
as a threat.

The second threat to validity is the three Web applications
we used. We chose the three because they were open source,
have variable regions, and have sample data. Evaluation with

other Web applications should be conducted to strengthen our
findings.

The third threat to validity are the test cases that were used.
Test cases were generated using a tool that we had previously
developed. We cannot completely deny this as a threat, since
other test cases may result in Web pages that are difficult to
compare. However, we have manually inspected the possible
Web pages, and at least for the three Web applications, we do
not believe that the generated test cases would be a threat.

The fourth threat to validity is the values we specified for
the parameters REPEAT, SIZE, DISTANCE, and INTERVAL.
Table VII showed that specifying the value of REPEAT as
6 had no effect on the result as the correct identification
was 100% in all three Web applications. If anything, the
value of REPEAT could have been set lower. The value for
INTERVAL also had no effect as the three Web applications
did not have any variable regions based on the amount of
time needing to pass. The values for the other two parameters
SIZE and DISTANCE were determined based on preliminary
investigation, and these two may pose as threats. In fact,
DISTANCE especially seems to be important. This is because
if we used the default DISTANCE value of 10 (rather than
the 15 we used in the evaluation), differences of 1 pixel
would occur when dividing screenshots into regions. Although
this seems to be a very small difference, this would lead
to incorrectly identifying same images as different. In other
words, regions that should be considered as the same would
be considered as variable regions. Further evaluation should
be done to investigate this.

V. CONCLUSION

We proposed an oracle for regression testing of Web appli-
cations. The oracle consisted of two parts: the expected result
and the comparator. The key part of our oracle is accounting
for variable regions, i.e., regions within the output Web page
that may change each time it appears. The expected result is
generated by executing the test multiple times so that variable
regions can be identified and removed. The comparator checks
the post-modification test execution result against the expected
result.

An evaluation of our approach showed that our tool can
identify the variable regions as accurately as, but quicker than,
human subjects. We also showed that by repetitive execution
of the pre-modification Web application improves the accuracy
of the comparison.

As for future work, first we need to consider the optimiza-
tion of thresholds. Our tool uses two thresholds: the minimum
size of elements in the DOM tree to specify the region in
each screenshot, and the χ2 histogram distance threshold to
determine if two regions should be considered as the same or
not. The current (default) values are based on experience from
applying our approach to several Web pages. But this may not
always be optimal for other Web applications.

Second, although our approach had a very high accuracy,
it was still not 100%. One very important issue that we need



to handle to raise the accuracy is to be able to handle dialogs
that pop up as the result of executing a test case.

Finally, shortening the execution time further is another
important part of future work.

REFERENCES

[1] A. Marback, H. Do, and N. Ehresmann, “An effective regression testing
approach for PHP Web applications,” in Proc. IEEE 5th International
Conference on Software Testing, Verification, and Validation (ICST
2012), 2012, pp. 221–230.

[2] S. N. A. Kamalzaman, S. M. Syed-Mohamad, S. Sulaiman, and
K. Zamli, “Supporting maintenance of web applications using user-
centered technique,” in Proc. 19th Asia-Pacific Software Engineering
Conference, 2012, pp. 43–49.

[3] L. Xu, B. Xu, Z. Chen, J. Jiang, and H. Chen, “Regression testing for
web applications based on slicing,” in Proc. 27th Annual International
Computer Software and Applications Conference (COMPSAC 2003),
2003, pp. 652–656.

[4] K. Dobolyi and W. Weimer, “Harnessing web-based application simi-
larities to aid in regression testing,” in Proc. IEEE 20th International
Symposium on Software Reliability Engineering (ISSRE2009), 2009, pp.
71–80.

[5] M. Hirzel, “Selective regression testing for web applications created
with Google Web Toolkit,” in Proc. 2014 International Conference on
Principles and Practices of Programming on the Java platform: Virtual
machines, Languages, and Tools (PPPJ ’14), 2014, pp. 110–121.

[6] D. Garg, A. Datta, and T. French, “A two-level prioritization approach
for regression testing of web applications,” in Proc. 19th Asia-Pacific
Software Engineering Conference (APSEC 2012), 2012, pp. 150–153.

[7] S. Mirshokraie and A. Mesbah, “JSART: JavaScript assertion-based
regression testing,” in Proc. 12th International Conference on Web
Engineering (ICWE 2012), 2012, pp. 238–252.

[8] S. Raina and A. P. Agarwal, “An automated tool for regression testing in
web applications,” ACM SIGSOFT Software Engineering Notes, vol. 38,
no. 4, pp. 1–4, 2013.

[9] V. Dallmeier, M. Burger, T. Orth, and A. Zeller, “WebMate: A tool for
testing web 2.0 applications,” in Proc. Workshop on JavaScript Tools
(JSTools 12), 2012, pp. 11–15.

[10] E. Selay, Z. Q. Zhou, and J. Zou, “Adaptive random testing for image
comparison in regression web testing,” in Proc. 2014 International
Conference on Digital lmage Computing: Techniques and Applications
(DlCTA), 2014, pp. 1–7.

[11] A. Stocco, M. Leotta, F. Ricca, and P. Tonella, “PESTO: A tool for
migrating DOM-based to visual web tests,” in Proc. 14th IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM 2014), 2014, pp. 65–70.

[12] A. Memon, I. Banerjee, and A. Nagarajan, “What test oracle should I use
for effective GUI testing,” in Proc. 18th IEEE International Conference
on Automated Software Engineering (ASE 2003), 2003, pp. 1–10.

[13] S. Choudhary, H. Versee, and A. Orso, “A cross-browser web application
testing tool,” in Proc. 26th IEEE International Conference on Software
Maintenance (ICSM 2010), 2010, pp. 1–6.

[14] “PhantomCSS,” 2013. [Online].
Available: https://github.com/Huddle/PhantomCSS

[15] “Applitools.” [Online]. Available: https://applitools.com/
[16] “Screenster.” [Online].

Available: http://www.creamtec.com/products/screenster/
[17] “W3C Document Object Model.” [Online].

Available: http://www.w3.org/DOM
[18] R. Lacanienta, S. Takada, H. Tanno, and M. Oinuma, “A knowledge-

based approach for generating test scenarios for web applications,”
in Proc. 25th International Conference on Software Engineering and
Knowledge Engineering (SEKE 2013), 2013, pp. 166–171.

[19] H. Saito, S. Takada, H. Tanno, and M. Oinuma, “Test data generation for
web applications: A constraint and knowledge-based approach,” in Proc.
26th International Conference on Software Engineering and Knowledge
Engineering (SEKE 2014), 2014, pp. 110–114.

[20] “Selenium.” [Online]. Available: http://www.seleniumhq.org/
[21] Zen Ventures, LLC, “Zen Cart.” [Online].

Available: http://www.zen-cart.com/
[22] JoomlaWorks Ltd., “Takai.” [Online]. Available:

http://www.joomlaworks.net/joomla-templates/free-templates/takai
[23] Collne Inc., “Welcart.” [Online]. Available: http://www.welcart.com/
[24] Y. Jia and M. Harman, “An analysis and survey of the development of

mutation testing,” IEEE Trans. on Software Engineering, vol. 37, no. 5,
pp. 649–678, 2011.


