
Experimental Frame Design Using E-DEVSML for
Software Quality Evaluation

Bei Cao, Linpeng Huang, Jianpeng Hu
Dept. of Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai,China

Email: caobei.sjtu@gmail.com, Huang-lp@sjtu.edu.cn, mr@sues.edu.cn

Abstract—Quality evaluation is a critical aspect in the area
of software development. If software quality problems could be
found in the early design phase, the cost for software development
and maintaining will be reduced. In this paper we propose an
evaluation framework including a software error model and its
corresponding experimental frame, which is based on Discrete
Event System Specification (DEVS), to support the evaluation
of multiple quality properties in the design phase. To accelerate
the modeling and simulation processes, we further extend E-
DEVSML to create model of system under evaluation and its
experimental frame, and transform them to executable models
automatically. A case study of a ticket booking system is presented
to demonstrate that our approach is applicable.

Keywords—System of Systems, DEVS, quality evaluation

I. INTRODUCTION

Automated software modeling and simulation tools are
by far the most promising approach to lowering the cost of
software development. For successful project managements, it
is very important to validate FRs and evaluate NFRs of systems
precisely in early design phase before implementation of the
systems [2]. Consequently the executable architectures are
commonly defined to be executable dynamic simulations that
are automatically or semi-automatically generated from static
architecture models or products [1]. In an executable evaluation
process, one of the most important issues is the design of
the Experimental Frame (EF). An EF is a specification of the
conditions under which a system is observed or experimented
with [6]. The EF can be viewed as a system that interacts
with the system of interest or system under test to obtain data
under specified conditions. In this way, for an early evaluation
of software quality we should concentrate on the behavior
description of the system under test and the design of EF
related to corresponding quality concerns, and interactions
between simulated system model and EF are consequently
captured for analysis and evaluation.

In this paper we propose a generic simulation approach to
software quality evaluation based on a Discrete Event System
Specification (DEVS) simulation framework to aid architects
in the analysis of software quality attributes. First, to accelerate
the modeling and simulation processes, we further extend
our formal work E-DEVSML [2] to facilitate the design of
experimental frame of quality evaluation. Second, an error
model is given to depict behavior of the system under test for

The work described in this paper was supported by the National Natural
Science Foundation of China under Grant No.61232007 and No.91118004.

quality concerns. At the last, we use a case of ticket booking
system to demonstrate our approach.

The rest of this paper is organized as follows. Section two
extends E-DEVSML for EF modeling. Section three presents
our DEVS-based software quality evaluation model. A case
study of a ticket booking system is present to explain how our
approach worked in section four. In section five, we make our
conclusion and discuss the future direction.

II. EF SPECIFICATION IN E-DEVSML

When we use DEVS to simulate a system, a critical part
is to design the experimental frame (EF), which controls
the simulation process. A DEVS experimental frame is often
composed of three parts: acceptor, generator and transducer.
The acceptor controls the beginning and end of the simulation,
the generator sends requests applied to the system or model,
and the transducer observes and analyzes the system output.
As creating EF is a necessary part of the simulation process,
reducing the complexity of writing EF programs will accelerate
the DEVS modeling process. Therefore, we extend our E-
DEVSML [2] to support the EF modeling. Thus EF models
can be created in E-DEVSML and automatically transformed
to executable languages through Xtend [4]. The detail of our
method will be introduced in the following sections.

A. Acceptor

The function of an acceptor is to control the beginning
and the end of simulation. The DEVS model of an acceptor is
shown in Fig.1. An acceptor contains an output port to send
start or stop messages. In the beginning of simulation, the
acceptor stays in passive state for a certain time. After that
time it sends a start message through control port and changes
its state to simulating. Then the acceptor sends a stop message
after a certain time simulation. The key information that is
needed for us is the simulation time, wait time and the output
port name which is used for the coupling with other models.
The abstract syntax of an acceptor in E-DEVSML is presented
in Fig. 1. We define an acceptor with keywords acceptor,
extends,waitTime, simTime, and control. A defined acceptor
can be extended by another acceptor using keyword extends.
To make the layout of the simulation model clear, we define
the acceptor as a coupled model, which contain several sub-
acceptors. As its external transition function, internal transition
function and output function are in the same form which can be
encapsulated, we can automatically get these functions through
Xtend [4].

(DOI reference number: 10.18293/SEKE2015-169)



passive simulating

Acceptor

control

[start/stop]

out:control=start

out:control=stop

Fig. 1: Acceptor model

B. Generator

The DEVS model of a generator is shown in Fig. 2. A
generator contains two ports: an input port to receive control
messages for start or stop the generator, and an output port to
generate requests. Requests are generated in a random way
following a probability distribution. The abstract syntax of
a generator is presented in Fig. 4. We define a generator
with keywords generator, extends, control, out, distribution. We
also defined some classical distribution types in the grammar,
including poisson distribution, normal distribution and uniform
distribution. We can choose an appropriate distribution suited
for actual situation or define a function by ourselves.

passive output

Generator

[start/stop]
control out

[request]
in:control=stop

in:control=start

out:out=request

Fig. 2: Generator model

C. Transducer

A transducer receives messages generated by the simulation
system and analyzes them through some calculations. The
DEVS model of a transducer is shown in Fig. 3. A trans-
ducer contains several ports: an input port to receive control
messages for start or stop the transducer, a set of input ports
to receive messages generated by the simulation system, and a
set of output ports to send the analysis results. We define the
grammar of a transducer with keywords transducer, extends,
vars, control, in, out in Fig. 4. Every input port of a transducer
is binding with some codes which describes the behavior when
a message comes to this port. Every output port of a transducer
is binding to a variable which records the analysis result. The
transducer is also defined as a coupled model and can be
extended by another transducer.

passive

calculating

output

Transducer

...

...dataIn

[start/stop]
control

dataOut
in:control=start

in:control=stop

out:dataOut

in:dataIn

Fig. 3: Transducer model

Fig. 4: The Grammar of EF Defined in EBNF

III. SOFTWARE QUALITY EVALUATION MODEL

In this section, we propose our DEVS-based software
quality evaluation model. The quality evaluation model is
composed of two parts: Error Model (EM) and EF. An EM
describes the dynamic behavior of software or software compo-
nent with parameters generated in the runtime. The EF controls
the simulation process and calculates the quality metrics.

Fig.5 describes the behavior of a DEVS-based Error Model
of system under evaluation with seven states: passive, active,
executing, failed, recovering, error, and reboot. The passive
state represents the model is waiting requests from req input
port. When the request come the state changes to active.
Then a message will be sent through state port. EM is in
executing phase when it is processing a request. The failed
state represents that a failure event happened. The recovering
state represents that the model is recover from a failure. The
error state represents that a fatal error event happened which
leads to system reboot. The reboot state represents that the
system is rebooting. An EM is in passive state before the
simulations beginning. If a request comes, the state will change
to active and an activated message will generate through state
port to activate the failure generator and error generator. Then
the state change to executing. If the request queue is not empty,
the EM will keep processing the request. When a request is
finished, the execution time will be sent through et port. If the
request queue is empty, the state will go back to passive. If
a failure comes in the executing state, the state will change
to failed. After a downtime, the system starts to recover. EM
comes to recover state. After a recover time, the state returns to
executing. If an error comes in the executing state, the state will
change to error. The system starts to reboot immediately. After
a reboot time, the state returns to executing. Some messages
will be produced in an internal transition as shown in Fig.5.
We will capture these messages with our experimental frame.



errorerror rebootreboot

passive

active

failed

executing

recoverring

Error Model

in:req=requesti

out:state=activated

req

failin

state [activated/finished]

dt [downTime]

rt [recoverTime]

rbt [rebootTime]

et [execuTime]

sreq [request]

failout [failure]

in:failin=failure

in:err=error

out:rbt=rebootTime

out:dt=downTime

out:rt=recoverTime

out:state=finished

out:state=finished

out:sreq=request

out:et=executiomTime

If (request.empty())

If (!request.empty())

External Transition

Internal Transition

[failure]

[request]

err

[error]

out:failout=failure

out:failout=failure

Fig. 5: Error model

We defined the corresponding EF of the error model with
one acceptor, three kinds of generators and three kinds of
transducers. The acceptor controls the start and the stop of
the simulation. Generators are composed of request generators,
failure generators, and error generators. The request generator
sends request to the req port, the failure generator sends
failure to failin port. The error generator sends error to the err
port. Transducers are composed of performance transducers,
reliability transducers and availability transducers. The per-
formance transducer receives message from the sreq port and
counts the total number of requests finished by the system.
The reliability transducer receives message from failout port
and counts the failures happened in the simulation process.
The availability transducer receives message from port dt, rt,
rbt, and et. It counts the available time and unavailable time
of the system.

IV. CASE STUDY

In this section, we use a ticket booking system to explain
how to design an experimental frame in E-DEVSML to
evaluate software quality. Eclipse Xtext is used to specify E-
DEVSML and transform E-DEVSML models to Java codes
for DEVS-suite [5] which is a popular DEVS simulator. We
will run the simulation and get the evaluation results in DEVS-
suite.

mobile phone

laptop

Server

Fig. 6: A ticket booking system

A. A ticket booking system

The example ticket booking system (Fig. 6) is composed of
two clients (laptop and mobile phone) and a server. Customers
may use these clients to request a service, such as querying

TABLE I: Experimental settings

mobile phone laptop server

etime(s) uniform
(0.3, 0.6)

uniform
(0.2,0.4)

uniform
(0.1,0.15)

rtime(s) 1 2 0.5
rbtime(s) 10 30 20
dtime(s) 0.3 0.2 0.1
failure rate 0.06 0.05 0.02
error rate 0.015 0.01 0.008
Request

frequency
funiform
(1.5, 3)

uniform
(1, 2)

depends on
clients

available tickets, booking movie tickets, online payment. The
server answers the requests and sends the results to the clients.
The server may stop providing the service if some failures or
errors happen, e.g., it cannot handle any more requests or the
system crashed. The clients may also experience some failures,
e.g., the mobile phone lost the signal, the laptop crashed. We
create DEVS models in E-DEVSML and evaluate the quality
of the laptop and phone and compare the results.

B. Experiment settings

Parameters related to the quality aspects must be set before
the simulation based on the behavior of previous systems,
historical data and software experiences. To make the case easy
to understand, we set these parameters in table I according to
our experiences and set the simulation time to 3 days. In actual
situation, the experimental settings could be more complex.
In table I, etime represents the time to process a request,
rtime represents the time needed to recover from failed state,
rbtime represents the reboot time of the software system. dtime
represents the down time. The word uniform represents the
uniform distribution. As the clients depend on the server, the
failure of server will cause the failure of clients. Although we
only care about the quality properties of clients, we still have
to consider the parameters of the server.

C. E-DEVSML modeling

To evaluate the quality of the system, we should create the
evaluation model first. We define the ticket booking system in
E-DEVSML with experimental settings.Our evaluation model



Fig. 7: Simulation model

TABLE II: Simulation results
mobile phone laptop

turnaround time 51319.3 50192.7
Finished requests 112155 170407

Sent requests 115274 172835
fail number 3119 2428

unavailable time 4054.7 5341.6

TABLE III: Quality properties of different clients

Phone Laptop
Reliability (MTBF) 83.1 s 106.8 s

Availability (available time/total time) 98.44% 99.10%
Performance (Average turnaround time) 2.31s/request 1.52s/request

is composed of three atomic models, an acceptor, a coupled
generator, and two coupled transducer. We define the couplings
and input ports and output ports of the simulation system
in a coupled model. As E-DEVSML can be transformed to
executable language through Eclipse Xtend, we define some
mapping rules through Xtend and transform our E-DEVSML
model to Java code which can be run on the DEVS-suite [5].
The simulation model after transformation is shown in Fig 7 .

D. Simulation results Analysis

By tracking the output ports of transducers, we can get
the quality properties of the system. After the simulation, we
can get the turnaround time, finished requests, sent requests,
fail number and unavailable time. The results we get from
these out ports are shown in table II. We can calculate the
classical quality properties of the system through the data we
get. For example the mean time between failures (MTBF), the
availability and performance. Table III presents some quality
properties calculated by transducer. By comparison of the
quality properties of mobile phone and laptop system, we
found that the laptop provide better service than the mobile
phone.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we further extend our E-DEVSML with EF
specification. To describe the behavior of the system, the error
model presented here is general and representative, making
the modeling and simulation of software system for quality
evaluation more convenient.Our work in this paper has the
following features: 1) the error model of system under evalu-
ation considers not only the functional requirements, but also
takes into account non-functional concerns, including failures
and errors. 2) EF specification in E-DEVSML improves the
modeling efficiency and the reusability of DEVS models. 3)
The automated code generation improves the automation of
model based evaluation process and reduces the burden of
analyzers. Although E-DEVSML provides strong modeling
abilities, the text based modeling approach also brings in com-
plexity. Our future work is to enable transformation between
some graphical modeling languages and E-DEVSML for EF
modeling.

REFERENCES

[1] Hu J, Huang L, Cao B, et al. Extended DEVSML as a
Model Transformation Intermediary to Make UML Diagrams
Executable[C]. SEKE, 2014.

[2] Hu J, Huang L, Cao B, et al. Executable Modeling Approach
to Service Oriented Architecture Using SoaML in Conjunction
with Extended DEVSML[C].Services Computing (SCC), 2014
IEEE International Conference on. IEEE, 2014: 243-250.

[3] Sharma V and Trivedi K. Quantifying software performance,
reliability and security: an architecture-based approach. J Syst
Software2007; 80: 493-509.

[4] Bettini L. Implementing Domain-Specific Languages with Xtext
and Xtend[M]. Packt Publishing Ltd, 2013

[5] Kim S, Sarjoughian H S, Elamvazhuthi V. DEVS-suite: a
simulator supporting visual experimentation design and behavior
monitoring[C].Proceedings of the 2009 Spring Simulation Mul-
ticonference. Society for Computer Simulation International,
2009: 161.

[6] B.P. Zeigler, H. Praehofer, T.G. Kim, Theory of Modeling and
Simulation, Academic Press, 2000.


