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Abstract—With the flourish of Web-based large Online Social
Networks (OSNs), people on OSNs can easily yield influence
on others. Finding how the influence spreads and maximizing
influence spread within OSNs have been extensively studied.
State-of-the-art researches suffer two defects: (a) need to
acquire the topological structure of the network, which is
impractical for the continuously changing networks in real life
and thus can not balance very well between influence spread
and running time; (b) assign the same cost for every node in
OSN which cannot reflect the reality. To solve these problems
we firstly propose PageRank Based Cost (PRBC) model to
assess the cost of nodes in OSN according to their importance
(influence); secondly we present Budgeted Random Maximal
Degree Neighbor (BRMDN) algorithm by exploiting the scale
free property. Results from extensive experiments show that
BRMDN can well balance influence spread and running time.

Keywords-social network; cost model; influence maximiza-
tion;

I. INTRODUCTION

A. Background and Motivations

The Web today is a growing universe of interlinked Web
pages and Web applications, teeming with videos, photos,
and interactive content. The Web-based large online social
network(OSN)s such as Facebook, Twitter, WeChat etc. ac-
quire great success for their interactive features like sharing,
forwarding and discussing contents. According to eBizMBA,
in February 2015, Facebook has estimated unique monthly
visitors numbered 900 million 1. People spend a lot of time
on these communication platforms making friends, sharing
daily affairs, spreading interesting news, and expressing
different opinions, which provides us with affluent real-life
data to mine valuable information. Taking advantage of the
popularity of OSNs, many researchers have studied diffusion
phenomenon in OSNs, which includes the diffusion of
news, ideas, innovations, and the adoption of new products
[1]. These diffusion phenomenons are referred as influence
diffusion or propagation in [1]. Influence maximization is an
extensively investigated topic in influence diffusion [1] [2]
[3] [4]. It tries to find a set of nodes in one OSN to maximal
the influence spread over the OSN under certain diffusion
model such as Independent Cascade (IC) proposed in [2].

1http://www.ebizmba.com/articles/social-networking-websites

However, the aforementioned research works suffer two
defects: (a) need to acquire the topological structure of the
network, which is impractical for the continuously changing
networks in real life and thus can not balance very well
between influence spread and running time; (b) assign the
same cost for every nodes in OSN which cannot reflect the
real situation in life. In reality, time can be a critical factor
in some situations such as disease controlling, emergency
evacuation. Furthermore, different nodes in one OSN should
not be assigned the same cost. For example, in the domain
of online advertisement, different service providers have
different advertising prices [5].

Taking account of the above situations, also with the fact
that most of the large OSNs are complex networks and have
the scale free property [6], we firstly define a cost function
to assess the cost of a given node in one OSN, then research
budgeted influence maximization problem and propose our
algorithm.

B. Our Contributions

In this paper, we propose a cost function to assess every
node in terms of their influence and dedicate to solving the
problem of budgeted influence maximization. Our contribu-
tions in this paper are summarized as follows.

• We propose PRBC model to assess nodes’ costs accord-
ing to their importances (influences) which are assessed
by the nodes’ PageRank value [7] and degrees in OSN.

• We exploit the scale-free property [6] [8] that most
OSNs hold, and then propose BRMDN under PRBC
model.

• Finally, we test the performance of BRMDN under
two real datasets with extensive experiments, which
proves the effectiveness and efficiency of the proposed
algorithm.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III provides preliminar-
ies for budgeted influence maximization. Section IV presents
our algorithms and the theoretical analysis. Section V shows
our experimental results. Finally we conclude the paper in
section VI.
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II. RELATED WORK

A. Diffusion Models

In influence maximization process, we label every node
with one status−activated or inactivated. We tag a node
activated if it accepts the message or event we concern, in-
activated otherwise. In a widely connected network, people
may influence each other by publishing, sharing, re-directing
messages or news etc. Therefore, influence spreading is to
a large extent similar to information diffusion process. One
pioneer information diffusion model is IC [2].

IC is firstly proposed by D Kempe et al. in [2], and now
becomes the most important model in influence maximiza-
tion problem. Given OSN G = (V,E), an initial seed set
S, let p(u, v) denote the probability of u influencing v and
p(u, v) is independent assigned for ∀u, v ∈ V . IC runs as
follows: Let St denote the nodes activated in step (time)
t, te represents the step when the activation process ends,
initially we have t = 0, St = S. At step t + 1, every node
u ∈ St tries to activate its out-neighbors v ∈ V \

⋃
0≤i≤t Si

with an independent probability of p(u, v). This procedure
proceeds until no more nodes can be activated. It should
be mentioned that each node can activate its out-neighbors
one time and when a node is activated, it never fails. The
final activated set can be calculated by

⋃
0≤i≤te Si which

we denote as σIC(S).

B. Influence Maximization

1) Greedy Algorithms: In [2], D Kempe et al. proposed
a general greedy algorithm for influence maximization and
proved that general greedy algorithm can approximate to the
optimal solution by a factor of 1− 1/e, but it is extremely
expensive to compute. CELF [9] improved general greedy
algorithm by exploiting the property of submodular function.
Results show that CELF achieves 700 times faster than
general greedy algorithm. NewGreedy and MixGreedy in
[10] presented two variants of greedy algorithm which aim
at improving effectiveness and efficiency, yet still suffer high
computation cost.

2) Random Based Algorithm: Random algorithm always
contains a randomization procedure within itself, in the field
of influence maximization, the most obvious and straightfor-
ward random based algorithm is referred as Random in [2]
[10]. It runs as follows, it iterates for k times, every time
it randomly selects a node which has not been added to the
seed set. As we can see from Table I, Random runs fastest,
but we will show later it performs the worst in terms of
influence spread.

3) Degree Based Heuristic Algorithms: In OSNs, one
node that has a larger number of in-neighbors most probably
means that it is more important. It is referred as degree
centrality [11]. DegreeHeuristic algorithm sorts all the nodes
according to their degree and then chooses the Top-K nodes.
In [10] SingleDiscount is a simple degree discount heuristic

Table I
TIME COMPLEXITY OF ALGORITHMS

Algorithms Complexity
Random O(K)

Degree Heuristic O(m)
Degree Discount O(K ∗ log(n) +m)
Single Discount O(K ∗ log(n) +m)
New Greedy IC O(KRm)
CELF Greedy O(KnRm/700+)

General Greedy O(KnRm)

where each neighbor of a newly selected seed discounts its
degree by one, while DegreeDiscount is a more accurate
degree discount heuristic algorithm. It excludes nodes that
can possible be influenced by nodes which have already been
added into the seed set. Experiments show that SingleDis-
count and DegreeDiscount have almost the same result in
influence spreading as greedy algorithms, while achieving
significant speedup in running time.

The time complexities of some aforementioned algorithms
are shown in Table I, where K denotes # of nodes in the
initial seed set, n represents # of vertices, m depicts # of
edges in the given graph and R is # of rounds in the specific
algorithm. These notations used in the following sections
will have the same meaning if there is no explicit declaration.

C. Cost Models

Most state-of-the-art influence maximization algorithms
such as [1] [2] [3] [4] [10] etc. take the constant cost (i.e.
unit cost) model. That is, CF(s) = 1 for all node s ∈ V ,
CF(·) denotes cost function. In [9], J. Leskovec et al used #
of posts for their case 1, they assigned a non-negative cost
for case 2; [5] does not give their detailed cost model; while
[12] randomly gives a value to nodes in OSN. To our best
of knowledge, few non-constant cost models have been used
for budgeted influence maximization.

III. PRELIMINARIES

A. Scale-free Networks

In the real world, there are numerous networks existing
in form of complex network [6] such as biosphere, citation
network, OSNs and so on. Many large OSNs (such as
Facebook, Twitter, MySpace, Flickr [13]) share the property
of scale-free [6]. A node in a network with degree k subjects
to power-law distribution has probability p(k) = ck−γ [14].
When the power-law distribution exponent γ values are
between 2 and 3, the network holds the property of scale-
free.

B. PageRank Algorithm & Proposed Cost Model

PageRank algorithm has been widely taken as a method
for measuring the importance of web pages which was
firstly proposed in [7]. With the web pages modeled as
nodes, and hyperlinks between them represented as edges,
the interlinked Web can be seen as a complicated graph. As



we have described in previous section, OSN is represented
by G = (V,E), so we can apply the PageRank algorithm
to the OSN to estimate the importance of nodes. According
to nodes’ differences in importance we give them different
cost. The cost model is shown as follows.

Definition 1. (PageRank Based Cost) Given an OSN G =
(V ,E), a pre-defined increase factor δ and coefficient λ, for
∀u ∈ V , we define its PageRank Based Cost, PRBC(u),
as follows,

PRBC(u) =
λ(PR(u) + δ)D(u)

D(vmax)
, vmax = argmax

v∈N (u)∪{u}
D(v)

where PR(u) is the PageRank value of node u, D(u) is the
degree of node u, N (u) is the neighbor set of node u.

C. Non-Constant Cost Influence Maximization

In reality, the nodes in OSN have different influences
should be assigned different costs. Compared with normal
unit cost influence maximization problem, Non-Constant
Cost Influence Maximization (NCC-IM) has tighter con-
straints. We formally formulate it as follows,

Definition 2. (NCC-IM) Given OSN G = (V ,E), a constant
K, a cost function CF(·), and a budget limit B, finding a set
S with K nodes which subjects to the following constraints:

σ(S) = argmax
|S|≤K∧S⊆V

Inf(S),
∑
u∈S
CF(u) < B

where σ(S) denotes the expected nodes set finally activated
by giving an initial set S under influence spread function
Inf .

Noting that in NCC-IM problem, we have constraints
that |S| ≤ K, because that in our algorithm and other
algorithms we implemented as baselines, we find that when∑
u∈S CF(u) > B, all the algorithms should stop.

IV. BUDGETED INFLUENCE MAXIMIZATION
ALGORITHM

Finding exact maximal influence spread is a NP-Hard
problem and the improved greedy algorithm variants are
expensive to compute. Random algorithms randomly choos-
ing K nodes also perform arbitrarily bad. [8] [15] [16] find
that in many OSNs vertices’ connectivities follow scale-free
property that most vertices are sparsely connected. However,
a small number of vertices are densely connected. We design
our own algorithm by combining randomly heuristic method
with the properties of scale-free networks.

A. Algorithm Design

Enlightened by the random algorithm and the property of
scale-free network, we propose Budgeted Random Maximal
Degree Neighbor (BRMDN) algorithm. Firstly, BRMDN
randomly selects a node u in the network; then it uses the
algorithm MDN (Algorithm 1) to find the candidate node

which will be added to initial set S if it satisfies the budget
constraints. we repeatedly run the above procedure to get
the qualified S. We give BRMDN as Algorithm 2.

Algorithm 1 MDN: Find the candidate node
Input: G = (V,E); node u; exclusive set ES;
Output: Node vmax selected to be added to the seed set

1: vmax ← u; vdegree ← D(u);
2: for all nbr ∈ N (u) do
3: if nbr 6∈ ES ∧ vdegree < D(nbr) then
4: vdegree ← D(nbr);
5: vmax ← nbr;
6: end if
7: end for
8: return vmax

Algorithm 2 BRMDN: Compute the seed set
Input: G = (V,E); seed set size K; budget limit B; fault

tolerance factor τ ; cost function CF ;
Output: Seed set S with |S| ≤ K ∧

∑
s∈S CF(s) < B

1: S ← Φ; i← 0; totalcost← 0
2: while i < K do
3: Randomly select a node u ∈ V \ S
4: Select umax ←MDN(G, u, S)
5: if CF(umax) + totalcost < B + τ then
6: S ← S ∪ {umax}
7: totalcost← totalcost+ CF(umax)
8: i← i+ 1
9: if totalcost > B then

10: i← K + 1
11: end if
12: end if
13: end while
14: return S

Noting that through MDN procedure in BRMDN, we only
need to know the local topological structure around node u,
which can greatly boost computing efficiency.

B. Feasibility of BRMDN

For network G = (V,E) which subjects to the power-law
distribution, a node with degree k has probability p(k) =
ck−γ . Let kmax be # of the maximal degree and kmin be
the minimal one, so we have:∫ +∞

kmax

p(k)dk =
1

n
,

∫ +∞

kmin

p(k)dk = 1 (1)

By solving (1), we get, kmax = kminn
1

γ−1 . For arbitrary
edge which starts from node u, let pTop−K denote the
probability of connecting a node with degree great than or
equal to Top-K (such node is also known as one Hub of the



network). We can get

pTop−K =

∫ kmax

kTop−K

p(m)dm =
k2−γmax − k

2−γ
Top−K

k2−γmax − k2−γmin

(2)

If the seed set size is K, the probability to get at least one
hub node is phub = 1−(1−pTop−K)K−ε. Where ε denotes
the budget B affects the phub, actually if B > Kζ then
ε = 0, where ζ = maxu∈V {CF(u)} is the highest cost in
the OSN. If K is bigger enough (say K = 30) then we can
have (1− pTop−K)K → 0, and finally phub ≈ 1− ε. Here ε
is a random factor which is determined by random process
in BRMDN. But we can alleviate the random disturbance
by iterating BRMDN many times to decrease constraint ε
to a small number and so phub is close to 1. A high value
of phub indicates that BRMDN with a large possibility can
have at least one hub node in initial set S.

C. Time Complexity

According to Algorithm 2, after a node is randomly
chosen, we have to traverse its all neighbors. Let k̄ denote
the average degree in a scale-free network, we have:

k̄ =

n∑
1

kp(k) =

n∑
1

kck−γ = c

n∑
1

1

kγ−1
, p(k) = ck−γ

(3)

Lemma 1. Let G = (V,E) be a network that holds scale-
free property, if there are no self-loops or multiple links
between two nodes in G, there does not exist a G with
1 < γ < 2.

Proof: From section IV-B, we already have kmax =

kminn
1

γ−1 . Now assume that there exists a network that
subjects to power-law distribution and has 1 < γ < 2,
then we can get 0 < γ − 1 < 1, n

1
γ−1 > n, and

kmax = kminn
1

γ−1 > n, which means that a node with
the largest degree is even bigger than the number of the
total nodes in network G. It contradicts the fact that n is the
total # of nodes of network G.

According to lemma 1, γ > 2. Then

k̄ = c

n∑
1

1

kγ−1
≤ c

n∑
1

1

k
= cln(n), n→ +∞ (4)

If the size of the initial seed set is K, the time complexity
of Algorithm 2 can be computed by Kk̄. By substituting k̄
with equation (4), we get O(Klog(n)).

V. EXPERIMENTS

Considering different networks with different topological
structures, we choose two datasets which subject to power-
law distribution and have different γ values (Table II). We
will show that BRMDN performs very well in terms of both
influence spread and running time.

Table II
STATISTICS OF TWO REAL NETWORKS

Dataset n m k̄ kmax γ

Blogs 3982 6803 3.42 189 2.453
Facebook 4039 88234 43.69 1045 2.509

A. Experimental Setup
The two real scale-free networks listed in Table II are

summarized as follows:
• Blogs [17]. It contains about 4K nodes and 6K edges.

Obviously this network is sparely connected, and
#edges
#nodes = 1.70.

• Facebook [18]. It is just a small part of users of
Facebook. This network has 4K nodes but with 88K
edges, which is different from Blogs greatly in its high
density of connection, and #edges

#nodes = 21.84.
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Figure 1. Running time under datasets Blogs and Facebook with K = 30

We apply IC model to BRMDN and compare the results
with some state-of-the-art heuristic based influence maxi-
mization algorithms. We list those algorithms as follows,
RandomHeuristic(RH): It is a baseline for heuristic ap-
proaches. It simply selects K random vertices in the graph,
which is also evaluated in [2] and [10].
DegreeHeuristic(DH): It intuitively selects K vertices
which have the largest degrees in the given graph.
SingleDiscount(SD): A simple degree discount heuristic
where each neighbor of a newly selected seed decreases its
degree by one, proposed in [10].
DegreeDiscount(DD): Compared to SingleDiscount, it is a
refined heuristic method [10].

The greedy algorithms perform very well in terms of influ-
ence spread but are intolerable slow for large networks. For
example in our experiments, the general greedy algorithm
spends 20.78 hours running dataset Blogs with R = 5
(normally we have R = 1000), while one degree based
heuristic algorithm spends about 0.05 seconds, which almost
is 1,500,000 times faster. Therefore we do not compare
with them in this paper. We gain all the results on a server
computer with 24 cores of Intel(R) Xeon(R) CPU E5-2640
2.50GHz and 128G Memory.

For the IC model with relatively large propagation proba-
bility p, the influence spread is not very sensitive to different
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(c) Facebook with B = 400
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(d) Facebook with B = 500

Figure 2. Performance under IC model for dataset Blogs and Facebook with different budget B
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5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

Blogs

In
fl

u
en

ce
 s

p
re

ad

Seed size

 RH
 DH
 SD
 DD
 BL-RMDN

(b) Budget B = 900

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

Blogs

In
fl

u
en

ce
 s

p
re

ad

Seed size

 RH
 DH
 SD
 DD
 BL-RMDN

(c) Budget B = 1200

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

Blogs

In
fl

u
en

ce
 s

p
re

ad

Seed size

 RH
 DH
 SD
 DD
 BL-RMDN

(d) Budget B = 1500

Figure 3. Performance under IC model for dataset Blogs with different budget B
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Figure 4. Performance under IC model for dataset Facebook with different budget B

algorithms. When simulating propagation process with IC
model, we set transmitting probability to a relative small
number 0.01. To correctly evaluate our method with a
reasonable precision, we set our iteration number R = 1000.
We use PageRank Based Cost Model to evaluate the cost of
every node in all the aforementioned algorithms, and we set
λ = 100, δ = 0.5.

In scale-free networks, the most nodes are sparsely con-
nected, while the hub nodes are densely connected. In the
logarithmic coordinate system, a network having scale-free
property is a straight-line with gradient valued between -2
and -3. We use the method proposed in [19] [20] to estimate
γ, the result is listed in Table II.

B. Experimental Results

The results show that under IC model, BRMDN performs
almost as good as DegreeDiscount according their influence
spread, while achieves great speedup with respect to running
time.

Influence spread: Considering influence spread in Figure
3 and Figure 4, we can see that DegreeDiscount, Degree-
Heuristic, SingleDiscount achieve the best; RandomHeuris-
tic, without any surprise, performs the worst; BRMDN
approximately approaches to the best algorithms by different
ratios with respect to different datasets. In Figure 3, with
the increasing of seed set size K, BRMDN gets the result
more and more close to DegreeDiscount. Let ∇fig denotes
the ratio between the influence spread of BRMDN and DD
in Figure fig, then from Figure 3 we have ∇3(a) = 95%,
∇3(b) = 96%, ∇3(c) = 91%, ∇3(d) = 85%. While in Figure
4, we can see that when the seed set size K < 15, BRMDN
gets a result approximate to DegreeDiscount with a ratio
less than 90%. But when K grows near to 30, BRMDN
achieves almost as good as DegreeDiscount. Finally we have
∇4(a) = 93%, ∇4(b) = 99%, ∇4(c) = 99%, ∇4(d) = 97%.
From Figure 3 and Figure 4, BRMDN performs very well
in terms of influence spread.

Running time: From Figure 1, we can see that for every



algorithm, the running time is almost a horizontal line which
indicates that budget B has little affect on running time.
From Figure 1, we can see that RH runs fastest, second
comes BRMDN, DH is the third, SD and DD are the slowest.
Specifically, from Figure 1(a) BRMDN is almost 14 times
faster than DD, and from Figure 1(b) BRMDN is almost 19
times faster than DD. For datasets Blogs and Facebook, they
have relative small number of nodes, so DH’s running time
is approximate to BRMDN. But from Table I, we can see
that when OSN has a large number of nodes (n), BRMDN
will show its great speedup.

Noting that in Figure 3(a), when K > 23, RH outperforms
other algorithms. From Figure 2(a), we find that when budget
B is very limited, other algorithms find a small number of
nodes with high cost, while RH can find a large number of
nodes with low costs, and finally RH can achieve a better
influence spread. From Figure 4, when budget B > 400,
all the algorithms can not improve their performance when
K is limited to 30. From Figure 2(d), we can see that it is
because the nodes selected by all the algorithms are close to
30, and most influential nodes have been already included.

VI. CONCLUSION

Influence maximization is important for activities like
products promotion, information transmission, emergency
evacuation etc.. It has been extensively studied to find K
nodes within the given budget in OSN to achieve maximal
spread under constant-cost (i.e. unit-cost) model. In this
paper, we firstly propose PRBC to assess nodes’ cost accord-
ing their importance (influence); secondly research budgeted
influence maximization under PRBC and propose BRMDN
algorithm; finally run extensive experiments to test the
performance of BRMDN. The experimental results show: (1)
budget B has little affects on running time when a specific K
is given; (2) BRMDN has almost the same influence spread
with SD and DD, but achieves great speedup. Therefore,
BRMDN balances well between running time and influence
spread.
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