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Abstract—Recommendation systems are software tools and
techniques that provide customized content to users. The col-
laborative filtering is one of the most prominent approaches in
the recommendation area. Among the collaborative algorithms,
one of the most popular is the k-Nearest Neighbors (kNN)
which is an instance-based learning method. The kNN generates
recommendations based on the ratings of the most similar users
(nearest neighbors) to the target one. Despite being quite effective,
the algorithm performance drops while running on large datasets.
We propose a method, called Restricted Space kNN that is based
on the restriction of the neighbors search space through a fast
and efficient heuristic. The heuristic builds the new search space
from the most active users. As a result, we found that using only
15% of the original search space the proposed method generated
recommendations almost as accurate as the standard kNN, but
with almost 58% less running time.

Keywords—knn, recommendation systems, collaborative filter-
ing, space restriction.

I. INTRODUCTION

The emergence of Web 2.0 brought a significant increase in
the volume of information available on the Internet, contribut-
ing to the information overload problem [10], that overwhelm
the user with useless (in most cases) choices. Hence, recom-
mendation systems (RS) [15], [1], [17] gained prominence
and became very attractive for both the production sector and
academic field. These systems bring together computational
techniques in order to provide custom items (movies, music,
books, etc.) to users, thus facilitating their choices. In the rec-
ommendation area, a prominent approaches is the collaborative
filtering (CF) [22] that recommends items based on ratings of
users with common interests to the target user. The state-of-the-
art in recommendation field is formed by latent factor models
[18], where some of the most successful implementations are
based on Matrix Factorization (MF) [12]. In its basic form, the
MF characterizes users and items with vectors of latent factors
inferred from the pattern of the rated items. The latent factors
represent aspects of physical reality, but we can not specify
which aspects are these, therefore it is impossible to justify
the provided recommendation.

Considered state-of-the-art, before the emergence of latent
factor models, the k-Nearest-Neighbors (kNN) [11], [20], [21]
is an instance-based learning algorithm. In the recommendation
area this method is widely used as a collaborative technique
for rating prediction. In contrast to latent factor techniques,
the kNN recommendations can be justified, since they are
generated from the nearest neighbors data. The main limitation
of kNN is that its performance is inversely proportional to the
size of the dataset. As the number of users and items grows, the
computational cost to apply the method rises quickly, which
decreases its time performance.

In this paper, we propose a collaborative method to reduce
the running time and accelerate the nearest neighbor search,
called Restricted Space kNN (RS kNN). This method restricts
the search space to a percentage p of the original one, using a
heuristic based on selecting the most active users. As a result,
we found that with only 15% of the original space it is possible
to generate high accuracy recommendations, but with almost
58% less running time.

This paper is organized as follows: In Section II, we present
a background of the recommendation area. In Section III, we
describe the related work. In Section IV, the proposed method
is presented. Section V contains a description of the experiment
conducted and its results. Section 6 refers to the conclusion of
the work.

II. BACKGROUND

In this Section, we present basic concepts of the recom-
mendation area, that will allow to understand the proposed
method.

A. Collaborative Filtering

Collaborative Filtering is one of the most recurring ap-
proaches in the recommendation area. Its techniques recom-
mend items based on the ratings of other users. The ratings
can be implicit, when they are measured based on user’s
behavior (e.g, viewing time, number of hits, etc.), or explicit,
when users clearly express their interest on items through
numerical grades, for example. The idea behind CF is that
users with similar rating pattern tend to rate new items in a



similar manner. In CF, an instance is represented by a user
feature vector that records which items were evaluated and
which not. An advantage of collaborative techniques is the
object representation independence, since CF techniques use
only user ratings, which enables to work even with items in
which the content extraction can be complex, such as audio
and video. Another advantage refers to the recommendations
diversity, since CF can suggest items different from those the
user showed interest in the past.

Collaborative methods can be grouped as memory-based
or model-based algorithms. In memory-based algorithms the
dataset is loaded at the moment in which the recommendations
are generated. They are easier to implement and can better
adapt to changes of user interests. In contrast, model-based al-
gorithms generate recommendations using a model previously
constructed from the dataset. They can provide more accurate
recommendations, but the model construction is an expensive
step.

A common scenario in collaborative filtering is the rating
prediction, where a user rating to a given item is inferred. In
this scenario, it is assumed that items with higher values are
more interesting. Ratings can be represented in different scales,
usually in 1-5 stars. The quality of the prediction is normally
measured through error-based metrics, calculated from the
difference between the predicted value and the real user rating.
A common metric for this purpose is the Mean Absolute Error
(MAE) represented by Equation 1, where r(u, i) is the rating
of a user u to an item i, r′(u, i) corresponds to the prediction
generated for u about i and |Iu| is the size of the item set
evaluated by u.

MAE =
1

|Iu|
·
∑
i∈Iu

|r′(u, i)− r(u, i)| (1)

B. k-Nearest Neighbors

The kNN is a memory-based method, thus it is necessary
to have all the training set stored to do the recommendation
process. In larger datasets the kNN computational cost can
grow quickly. This occurs because as the number of users
and items grows the kNN demands more memory to store the
data, more similarity calculations and more time to perform the
neighbors selection (because the search space becomes larger).

Recommendations are based on the k nearest neighbors
ratings, where a similarity measure to select the nearest neigh-
bors must be defined. This measure has a direct impact on
the kNN results, because it is used to determine how close
two users are. The similarity between two users is calculated
from the items they have rated simultaneously. A popular
similarity measure in the recommendation field is the Pearson
correlation, represented by the Equation 2, where |Iau| is the
size of the item set simultaneously evaluated by users u and
a, x = r(u, i) and y = r(a, i). The Equation 2 differs from
the traditional form, because it is adapted to perform faster
calculations.

sim(a, u) =

|Iau|
∑

i∈Iau

xy −
∑

i∈Iau

x ·
∑

i∈Iau

y√
[|Iau|

∑
i∈Iau

x2 − (
∑

i∈Iau

x)2] · [|Iau|
∑

i∈Iau

y2 − (
∑

i∈Iau

y)2]

(2)

The recommendation process consists in making a prediction for
the set of items not evaluated by the user. One of the most common
ways to accomplish this goal is through the Equation 3, where Ua is
the set of nearest neighbors of the target user a and r(a) corresponds
to the average ratings of the user a.

r′(a, i) = r(a) +

∑
u∈Ua

sim(a, u) · (r(u, i)− r(u))∑
u∈Ua

sim(a, u)
(3)

III. RELATED WORK

Boumaza and Brun [3] proposed a method based on the restriction
of the nearest neighbors search space. In traditional search, it is
necessary to check the similarity among the target user with each other
user in the dataset, and then select the k nearest neighbors. On large
datasets, this task becomes expensive. In their work, Boumaza and
Brun used a stochastic search algorithm, called Iterated Local Search
(ILS) [13]. The ILS returns a subset of users, Global Neighbors (GN),
in which the neighbors are chosen. The idea is to accelerate the
neighborhood formation by seeking the neighbors in a smaller subset,
rather than search in the entire dataset. As a result, the proposed
method can reduce the search space to 16% of the original while
maintaining the accuracy of recommendations near to those achieved
by traditional search. We adapt their work by introducing a new
heuristic to perform a faster and less expensive GN selection, instead
of using the ILS algorithm.

Friedman et al. [5] proposed an optimization to k-Dimensional
Tree (kd tree). Originally proposed by Bentley [2], the kd tree is an
algorithm for storing data to be retrieved by associative searches. The
kd tree structure provides an efficient search mechanism to examine
only those points closer to the point of interest, which can reduce the
nearest neighbors search time from O(N) to O(logN). In Friedman’s
work, the goal was to minimize the number of points examined
during the search, that resulted in a faster search. Gother et al. [8]
developed a method which represents a slight variation of the work
done by Friedman et al. [5]. In the kd tree construction each node
is divided into two, using the median of the dimensions with greater
variance between the points in the subtree, and so on. As a result,
the method got 25% faster in the classification step. The kd tree
based methods differ from ours, because they accelerate the neighbor
selection using a non-linear search by partitioning the whole space
into non-overlapping regions.

Other works use the approximate nearest neighbors (ANN) con-
cept to deal with the kNN search problem. The ANN methods do not
guarantee to return the exact nearest neighbors in every case, but in
the other hand, it improves speed or memory savings. An algorithm
that supports the ANN search is locality-sensitive hashing (LSH).
According to Haghani et al. [9], the main idea behind the LSH is to
map, with high probability, similar objects in the same hash bucket.
Nearby objects are more likely to have the same hash value than those
further away. Indexing is performed from hash functions and from
the construction of several hash tables to increase the probability of
collision between the nearest points. Gionis et al. [7] develop a LSH
method to improve the neighbors search for objects represented by
the points of dimension d in a Hamming space {0, 1}d. Their method
was able to overcome in terms of speed the space partitioning tree
methods, when data are stored on disk. Datar et al. [4] proposed



a new version of the LSH algorithm that deals directly with points
in a Euclidean space. To evaluate the proposed solution experiments
were carried out with synthetic datasets, sparse vectors with high
dimension (20 ≤ d ≤ 500). As a result, they obtained performance
of up to 40 times faster than kd tree. The ANN methods are related
to ours, because they aim to accelerate the neighbor search by giving
up accuracy in exchange for time reduction.

IV. RESTRICTED SPACE KNN

In standard kNN, the nearest neighbors are selected by checking
the similarity of the target user with each other user in the dataset.
For every user, a distinct neighborhood has to be formed. When
the number of users and items in the training set grows, the kNN
running time decreases, because its computational cost rises quickly.
To minimize this problem we proposed a collaborative method derived
from the k-Nearest Neighbors for rating prediction. Our method is
based on the restriction of the neighbor search space. In Figure 1,
we can see the main idea of the proposed method in contrast to the
standard approach. The search space is reduced to a percentage p of
the original one, which is accomplished by selecting a subset of users
capable to offer ratings to generate accurate recommendations. Then,
the neighbor search is performed in the new space, which allows it to
be faster, since the space becomes smaller. Finally, the most similar
users to the target one are chosen to form his neighborhood.

Fig. 1: Standard search and restricted Search

The RS kNN was inspired by the work presented by Boumaza and
Brun [3]. Their method was able to achieve accurate recommendations
with a reduced search space that corresponds to 16% of the original
one. A stochastic search algorithm called Iterated Local Search does
the user selection. The ILS is an efficient algorithm for optimization
problems, but requires a considerable running time and expensive
operations to achieve its results. Given this limitation, we saw an
opportunity to improve Boumaza and Brun’s work [3]. Therefore,
instead of using the ILS algorithm, we propose a faster and accurate
heuristic to select the percentage p of users who will compose the
new search space.

Our approach aims to reduce computational cost and improve
running time, but it is susceptible to lose recommendation accuracy,
since it works with a considerably smaller amount of data. In order
to minimize such loss, it is necessary to define an efficient heuristic
for the user selection. In our work, we investigated the following
heuristics1:

• Similarity Average: users are selected according to their
similarity average. For each user, we calculate his similarity
with each other that remains in the dataset and then get the
average. Those with the highest averages are chosen;

• Number of Connections: select users according to their
ability to be neighbors. Each time a user shows a positive

1The Similarity Average and Number of Connections were already intro-
duced in [3]. The others were proposed in our work.

similarity with another he receives one point. In the end,
those with the highest scores are selected;

• Neighbors Recurring: users are scored according to the
number of times that arise between the k nearest neighbors
of a target user. For example, we check the k nearest
neighbors of a target user and then assign one point for
each neighbor. This process is repeated with all users in the
dataset and at the end, we have the list of the most common
neighbors;

• Most Active Users: it selects users according to the number
of items rated. Those with the largest quantities are chosen;

• Distinct Items: it corresponds to a variation of the previous
heuristic, with the aim of bringing together users with the
greatest possible number of distinct items. It selects users
that, together, offers the most distinct set of items.

V. EXPERIMENT

We conducted an experiment to evaluate the proposed method.
The experiment was divided into two stages. The first aims to
evaluate the heuristics described in Section IV, in order to choose
the most suitable to compose our method. The second corresponds
to the evaluation of the proposed method by comparing it with
implementations developed to accelerate the kNN search. In the
experiment, we focused on measuring time performance (in seconds)
and accuracy (error rate of the predictions, measured by the Mean
Absolute Error metric).

The experiment was executed on a machine with Core i7 2300K
(3.4 GHz) processor, 8GB of DDR3 RAM and Windows 7 64-bit.
We used the Java language and Eclipse2 (Kepler) in its 64-bit version
for developers. We also used two external libraries, the MyMediaLite
[6], which is specialized in recommendation systems methods, and
the Java Statistical Analysis Tool (JSAT) [16], which offers dozens
of machine learning algorithms.

A. Dataset

We choose two popular datasets that contain real data from movie
domain. The first one is the MovieLens 100K, which has 943 users,
1,682 movies and 100,000 ratings. The second has 6,040 users, 3,952
movies and 1,000,209 ratings. Both have ratings on a scale of 1 to 5
stars that represent the level of the user interest to an item.

The data were segmented following the 10-fold cross-validation
pattern, which consists in the separation of 90% of the data for
training and 10% for testing. This process was repeated five times
to provide a final amount of 50 samples for execution.

B. Setting Parameters

Before going on with the experiment we had to set some parame-
ters. Thus, we used the standard kNN algorithm for rating prediction,
whose implementation was based on the source-code available in
MyMediaLite library. We performed 10 execution on the MovieLens
100K dataset, focusing in accuracy. The parameters and their values
are listed below:

• Similarity measure: we compared the Pearson correlation
with another popular measure in the recommendation area,
the Cosine similarity [19]. As we can see in Table I, the
Pearson correlation provides a lower MAE, which means
more accurate recommendations. Therefore, we chose the
Pearson correlation as similarity measure for our approach.

2www.eclipse.org



• Number of nearest Neighbors (k): choosing the optimal
value for k is not a trivial task, because it can vary according
to the data. In Figure 2, we can see that for the MovieLens
100K the best k is 30, because it provided the lowest error
rate. We used the same k for the larger dataset to maintain
the speed gains. In addition, a greater k would increase the
running time.

• Percentage of the search space (p): we used the Most
Active Users heuristic to find the optimal value for p. A
greater p would give better MAE, but at the expense of
the running time. Thus, our choice was given by a trade-
off between the MAE and the running time. According to
the Figure 3 when p reaches 15%, it seems to be the best
trade-off. Besides it, we thought that should be important to
choose a p closer to the one in Boumaza and Brun [3], since
our work is inspired by theirs.

TABLE I: Comparison of Pearson Correlation and Cosine Similarity

Similarity measure MAE
Pearson 0.6813
Cosine 0.7100

Fig. 2: Variation of k and its respective error rates

Fig. 3: Variation of p and its respective error rates

C. Heuristic Evaluation

The heuristic evaluation process was based on the time needed to
select the users to compose the new search space and the accuracy that
they can provide. Tables II and III contain the results of each heuristic.
Similarity calculations are expensive, thus the heuristics Similarity
Average, Number of Connections and Neighbors Recurring demanded
the largest time to select their users. The others showed significantly

shorter times, because they use less expensive operations, since there
is no similarity computing. Regarding the accuracy, the results were
more homogeneous, there was even a decrease in error rate in the
larger dataset.

The results showed the heuristic Most Active Users as the best
option to compose the proposed method. It provided the smallest
error rate, resulting in more accurate recommendations. In addition,
the selection time was the best among the heuristics and remained
almost constant in the tests with the larger dataset.

TABLE II: Results of the heuristic evaluation on MovieLens 100K

Heuristic Time
(s)

Error
(MAE)

Most Active Users 0.001 0.6937
Distinct Items 0.072 0.6954
Similarity Average 1.604 0.7053
Number of Connections 1.591 0.7046
Neighbors Recurring 1.631 0.6994

TABLE III: Results of the heuristic evaluation on MovieLens 1M

Heuristic Time
(s)

Error
(MAE)

Most Active Users 0.002 0.6546
Distinct Items 1.097 0.6549
Similarity Average 92.713 0.6588
Number of Connections 92.652 0.6579
Neighbors Recurring 100.390 0.6553

D. Method Evaluation

To evaluate our method, we chose four approaches that cor-
respond to implementations derived from the kNN method. They
were developed to accelerate the nearest neighbor selection. Their
performance were measured under accuracy and running time and the
results are presented in Tables IV and V. The compared approaches
are:

• k-dimensional tree (kd tree): implemented in JSAT tool.
Corresponds to the traditional form [2];

• Locality Sensitive Hash (LSH): implemented in JSAT tool.
It was based on the algorithm presented by Dating et al. [4];

• Standard k-Nearest Neighbors (kNN): corresponds to the
kNN for rating prediction. We implemented it based on the
source code of the MyMediaLite library;

• Iterated Local Search (ILS) kNN: we implemented this
method based on the paper presented by Boumaza and Brun
[3].

Three of them (standard kNN, ILS and the RS kNN) are collabo-
rative techniques from the recommendation field that were developed
focusing on the rating prediction task. They usually deal with sparse
vectors and try to “fill” each missing value of the vectors. Regarding
the running time, our method achieved the best values, being almost
58% faster (in MovieLens 1M) than the standard kNN, which took
second place. The running time of ILS was much greater than the
others, because its fitness function needs to check the errors provided
by the subsets of users build at each iteration of the algorithm.
Furthermore, as a non-deterministic method, it is impossible to predict
the number of iterations needed to find the final subset. As expected,
the accuracy of the recommendations generated by our method was
a little lower than standard kNN, but considering the running time
gain, the results were very promising.

The kd tree and LSH methods were originally implemented for
the classification task. They generally work with dense vectors and



aim to label an unknown instance. In the proper domain, they are
capable to reduce the search time from linear to logarithmic level,
although in this experiment this behavior was not evidenced. The
classification methods presented poor performances in running time
and accuracy. The kd tree tends to lose great performance with high
dimension vectors (d ≥ 10) [7], [5], a problem known as the curse of
dimensionality [14], which contributes to the low performance, since
the datasets are composed of high dimension sparse vectors. The LSH
prioritizes time instead of accuracy, since it returns the approximated
nearest neighbors. This reason justifies the high error rate of the LSH.
The running time performance of the LSH was unexpected, because
this algorithm is designed to be fast even with high dimension data.
We believe the data sparsity was responsible, because it reduces the
probability of collisions, making difficult to group users in the same
hash bucket and consequently it increases the search time.

TABLE IV: Results on MovieLens 100K

Method Running Time
(s) MAE

kd tree 22.24 0.8333
LSH 11.13 0.7528
ILS 1233.15 0.7083
kNN 4.35 0.6826
RS kNN 2.45 0.6937

TABLE V: Results on MovieLens 1M

Method Running Time
(s) MAE

kd tree 1576.01 0,7875
LSH 454.42 0,7014
ILS 7892.7 0,6591
kNN 242.13 0,6500
RS kNN 100.87 0,6546

VI. CONCLUSION

In this paper, we presented the Restricted Space kNN, a collabo-
rative method to reduce the running time and accelerate the k-Nearest
Neighbors search. The RS kNN focuses on the idea of restricting the
nearest neighbors search space using a fast and efficient heuristic for
user selection. The method was capable to perform up to 58% faster
than standard kNN. The Most Active Users heuristic was quick in
reducing the search space, getting together a set of users able to
provide accurate recommendations. Using only 15% of the original
search space we have achieved an error rate just 0.7% higher than
the standard method.

The main limitation of our method refers to the validation process.
We evaluated it in only one domain, which makes difficult to general-
ize the results achieved. Our method showed great performance gains
in exchange for a small reduction in accuracy, however, we cannot
guarantee that the error rate will remain constant in other domains.

As future work, we intend to investigate the effects of the
proposed method in a larger dataset, because we noticed that the
accuracy gap between our method and the standard kNN became
smaller when the data increased. In the MovieLens 100K, we obtained
an absolute difference of 0.0111, whereas with MovieLens 1M, the
difference was reduced to 0.0046. In addition, we also intend to
investigate the proposed method in the item predicting scenario with
implicit feedback.
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