
Building a Large-scale Software Programming
Taxonomy from Stackoverflow

Jiangang Zhu
School of Software

Shanghai Jiao Tong University
jszjgtws@sjtu.edu.cn

Beijun Shen*
School of Software

Shanghai Jiao Tong University
bjshen@sjtu.edu.cn

Xuyang Cai
School of Software

Shanghai Jiao Tong University
bakercxy@hotmail.com

Haofen Wang*
East China University of

Science & Technology
whfcarter@ecust.edu.cn

Abstract—Taxonomy is becoming indispensable to a growing
number of applications in software engineering such as software
repository mining and defect prediction. However, the existing
related taxonomies are always manually constructed. The sizes of
these taxonomies are small and their depths are limited. In order
to show the full potential of taxonomies in software engineering
applications, in this paper, we present the first large-scale software
programming taxonomy which is more comprehensive than any
existing ones. It contains 38,205 concepts and 68,098 subsumption
relations. Instead of learning from a open domain, we focus on
taxonomy construction from Stackoverflow which is one of the
largest QA websites about software programming. We propose a
machine learning based method with novel features to create a
taxonomy that captures the hierarchical semantic structure of tags
in Stackoverflow. This method executes iteratively to find as many
relations as possible. Experimental results show that our approach
achieves much better accuracy than baselines. Compared with
taxonomies related to software programming which are extracted
from the general-purpose taxonomies such as WikiTaxonomy,
Yago Taxonomy and Schema.org, our taxonomy has the widest
coverage of concepts, contains the largest number of subsumption
relations, and runs up to the deepest semantic hierarchy.

Keywords—Taxonomy Construction, Stackoverflow, Software
Engineering

I. INTRODUCTION

Taxonomy plays an important role in software engineer-
ing. For example, in software maintenance such as measuring
quality and predicting defects, taxonomies are used to measure
the relatedness between documents and create links between
bugs and committed changes [1]. In program comprehension,
taxonomies provide an effective way to compute the semantic
similarities between words from the comments and identifiers
in software [2].

However, most existing taxonomies used in these applica-
tions are often manually created according to application spe-
cific requirements and their sizes are not large enough. A recent
literature [3] argued that the quality and the scale of taxonomy
would significantly benefit the performance when applied in
software engineering. On the other hand, there have been a
considerable amount of research works on taxonomy construc-
tion [4], [5], [6], [7], [8]. The value of automatic taxonomy
construction is two folds. Automatic taxonomy construction
can achieve large scale taxonomies while manual construction
is a laborious process. Moreover, compared with automatic
approaches that are data-driven, taxonomies built manually are

*Corresponding author

Fig. 1: An example from Stackoverflow

often highly subjective. Unfortunately, the resulting taxonomies
of these existing automatic approaches would probably lead to
poor results when applied in software engineering for several
reasons. First is timeliness. The techniques in software engi-
neering are fast changing, while the general web pages and
encyclopedic sites are insensitive to this change and always
fail to update in time. So it is not suitable to select text
corpora such as general web pages or Wikipedia as its input.
Second is granularity. Since the input of traditional taxonomy
construction approaches is from a open domain, some fine-
grained terms about software programming cannot be found in
these taxonomies. For example, “hashmap” about a well-known
data structure is not included in either Yago Taxonomy [9]
or WikiTaxonomy [4] which are the largest existing public
available taxonomies.

Recently, Stackoverflow has becoming one of the largest
QA websites about software programming. Specifically, ques-
tions are the key elements in Stackoverflow. Besides the ques-
tion description, as shown in Fig. 1, a question is also associated
with tags and authors. Formally, a question q is a triple in
form of (tq , bq , TSq), where tq is the title of the question,
bq is the body while TSq is the tag set which annotate the
question. A tag a in Stackoverflow can be represented as a

DOI reference number: 10.18293/SEKE2015-135

four-tuple (ta, da, ca, Qa), where ta is the name of the tag,
da is the description of a, ca is the number of questions that
it has annotated, Qa is the set of questions annotated by a.
These tags represent vocabularies about software programming.
They can also reflect the fast changing nature of technique
terms because they are created on the fly by Web users. So
the large amount of tags provide a promising way to build
the taxonomy. Therefore, in this paper, we try to construct a
software programming taxonomy from tags in Stackoverflow.

The problem is non-trivial and poses unique technical
challenges. First, tags in Stackoverflow are always composed
of domain-specific terms. While natural language processing
techniques like segmentation or pos tagging are basis of some
Web-based approaches for taxonomy construction, directly ap-
plying these approaches to our scenario will lead to poor results.
Second, most tag-based taxonomy construction approaches only
use tag co-occurrences and annotated documents to help the
subsumption detection between tags [8], [7]. However, Stack-
overflow contains unique information such as wiki descriptions
of tags. We argue that these information will significantly
increase the performance of taxonomy construction. How to
design an algorithm to incorporate these information when
detecting subsumptions between tags has not been studied yet.
Moreover, there are tens of thousands of tags in Stackoverflow,
it is time-consuming and sometimes impractical to enumerate
all tag pairs for subsumption relation detection. How to perform
subsumption relation detection in a large scale scenario is also
a challenge problem.

In order to solve the above challenges, we propose a
machine learning based approach. Specifically, our approach
leverages several features from different aspects to measure
the semantic relatedness between tags. Then a semi-supervised
learning method is used to predict subsumption relations. To
the best of our knowledge, we are the first to focus on building
a software programming taxonomy from Stackoverflow. Our
contributions mainly include:

• To overcome the informality of tags, we leverage
different information from Stackoverflow to represent
these tags. Specifically, we design the co-occurrence-
based features to measure the semantic relatedness.
Moreover, we also use the wiki description and an-
notated questions of each tag to learn a topic rep-
resentation by applying Latent Dirichlet Allocation
(LDA) [10]. Together with a lexical feature, our pro-
posed approach can combine evidences from the co-
occurrence relevance, the implicit topic relevance and
the lexical relevance.

• We propose a unified model that incorporates these
features to automatically construct a software program-
ming taxonomy. Specifically, we design a blocking
mechanism to reduce the number of tag pairs to be
calculated which ensure our approach can be applied
to a large scale scenario. Then, we treat subsump-
tion relation detection as a binary-class classification
problem to solve. A semi-supervised learner is applied
which executes iteratively to find as many relations as
possible. Note that the blocking mechanism and semi-
supervised learning make our approach quite general
and can be applied to other domains.

• We present a taxonomy about software programming.
Experimental results show that our taxonomy not only
contains a large number of concepts and subsumption
relations, but also have a deep semantic hierarchy. That
is to say, concepts and subsumption relations in our
taxonomy are more fine-grained and can be applied in
many software engineering applications.

II. RELATED WORK

There have been a considerable amount of research works
on taxonomy construction. Approaches for automatic taxonomy
construction can be encyclopedic-based or Web-based.. For the
encyclopedic-based approaches, they mainly focus on extract-
ing concept hierarchies from Wikipedia. WikiTaxonomy [4]
builds a taxonomy from the Wikipedia category system. It
contains 105,000 subsumption relations with the accuracy of
88%. Kylin Ontology Generator (KOG) [5] uses Markov Logic
Network (MLN) to predict subsumption relations between
Wikipedia infobox classes. Yago [9] interlinks Wikipedia cat-
egories to WordNet synsets. There are over 200,000 classes
and 400,000 subsumption relations in Yago and the accuracy
is estimated to be 96%. Our research is quite different from
the encyclopedic-based approaches because there has been no
structure information between tags in Stackoverflow.

Regarding Web-based approaches, it can be free text based
or social tag based. For the free text based approaches, Hearst
patterns [11] are widely used. The most recent effort is
Probase [12]. It builds the largest taxonomy which contains
over 2.7 million classes from 1.7 billion web pages. For the
social tag-based approaches, Mianwei Zhou et al. [6] introduced
an unsupervised model to automatically derive hierarchical
semantics from social annotations. Jie Tang et al. [7] proposed a
learning approach to capture the hierarchical semantic structure
of tags. Xiance Si et al. [8] proposed three methods to estimate
the conditional probability between tags and used a greedy
algorithm to eliminate the redundant relations. Huairen Lin et
al. [13] described an integrated method for extracting ontolog-
ical structure from tags that exploits the power of low support
association rule mining supplemented by an upper ontology
such as WordNet. Zhishi.schema [14] is the first effort to
publish a general taxonomy from tags and categories in popular
Chinese Web sites. These traditional tag-based approaches for
a general domain only use the annotated documents to help
the subsumption detection. However, Stackoverflow is more
domain specific which contains other information such as wiki
descriptions. So traditional tag-based approaches may not be the
best because the additional information in Stackoverflow will
probably increase the performance of taxonomy construction.

Regarding taxonomy construction in software program-
ming, the most recent research is Lexical Views [3]. It applied
some natural language processing techniques to automatically
extract and organize concepts from software identifiers in
a WordNet-like structure. But more software programming
terms would not be included in this taxonomy since Lexical
Views only use the software identifiers as its input. In our
research, we first focus on automatically constructing a software
programming taxonomy from Stackoverflow. Specifically, we
design several novel features which can capture similarities
between tags from several aspects. Also, we use a more

sophisticated semi-supervised learning approach by generating
labeled examples semi-automatically.

III. APPROACH

In this section, we start with a brief introduction of our
proposed approach, and then describe it in details.

A. Approach Overview

We now provide a workflow to explain the whole process
and how different components interact with each other. As
shown in Fig. 2, we have four main components, namely
Candidate Selection, Labeled Data Generation, Feature Engi-
neering, and Semi-supervised Learning. The input of Candi-
date Selection is tags collected from Stackoverflow. Candidate
Selection tries to divide all tags into blocks. Each block
includes similar tags which can form candidate tag pairs for
further processing. Candidate Selection leads to a significant
reduction of the number of tag pairs to be further processed for
subsumption relation detection, which guarantees the scalability
and efficiency of our approach. We generated labeled data (both
positive and negative) semi-automatically using a rule-based
method. All the tag pairs are fed to Feature Engineering to
extract features like co-occurrence-based features and the topic-
based features. A semi-supervised learning algorithm is adapted
to discover hypernym-hyponym relations. The learned classifier
can be updated iteratively by adding new labeled data of high
confidence. Finally we build a software programming taxonomy
composing subsumption relations between tags.

B. Candidate Selection

Since Stackoverflow contains tens of thousands of tags
and the number is still increasing, it is time-consuming and
sometimes impractical to enumerate all tag pairs as candidates
for subsumption relation detection. To avoid brute-force com-
parison, we leverage the co-occurrence information to limit the
number of candidates. Previous research [8], [15] shown the
effectiveness of the co-occurrence information in subsumption
relation detection. So, only if two tags have once co-occurred,
they can be divided into the same block and can be selected
as candidate pairs. Note that given a candidate tag pair (a, b),
both a subsumes b and b subsumes a will be checked in the
next learning process. Given we collected 38,205 tags from
Stackoverflow, there would be over one billion pairs without
blocking. Only less than 3 million candidates will be retained
after using the above candidate selection mechanism. It is
obvious that the blocking mechanism reduces the number of
candidate pairs significantly.

C. Feature Engineering

The purpose of feature engineering is to quantitatively
characterize the similarities or relatedness between tags. We
define six features to characterize the tag relations. The details
of these features are as follows:

Lexical Feature:

1) Lexical Feature: Given a tag pair “asp.net” and “asp.net
mvc”, it is intuitive that they hold the subsumption relation
in term of the lexical pattern. So we define a Token-based
Longest Common Sub-string Asymmetric Similarity as lexical

feature by considering the length information. Then the lexical
similarity between two tags a and b is computed by

s(a, b) =
|LCS(seq(ta), seq(tb))|

|seq(ta)|
(1)

Where seq(ta) is the word sequence of the name of the tag a,
|.| returns the length of a word sequence, and LCS is a function
to calculate the longest common sub-string sequence between
two tag labels. This similarity measure captures the lexical
similarity between two tags. Since we treat version number
as a seperated token, this metric can also capture subsumption
relations between those tags and their instance versions. For
example, “c++” and “c++11”.

Co-occurrence-based Features: Although the lexical fea-
ture works well, its limitation is obvious. Many tag pairs
which actually hold the subsumption relations have very low
lexical similarities. Thus, we also leverage the co-occurrence
information to measure the semantic relatedness between tags.
For example, “word2vec” and “deep-learning” do not share any
lexical tokens. However, by considering the co-occurrences of
them in questions, we can find that they always co-occur and
may be semantically closed.

2) Question Divergence Feature: We define this feature to
measure the co-occurrence of tags in questions based on the
Normalized Google Distance [16].

d(Qa, Qb, Q) =
log(max(|Qa|, |Qb|))− log(|Qa ∩Qb|)

log(|Q|)− log(min(|Qa|, |Qb|))
(2)

where Qa and Qb are the sets of questions annotated with
a and b, respectively; and Q is the set of all questions in
Stackoverflow.

3) Sentence Divergence Feature: Stackoverflow additional-
ly provides wiki description for each tag. The wiki description
provides a more precise explanation for each tag. If two tags
have co-occurred in the same sentence such as “java” and
“programming language”, they may be semantically closed
even if the question divergence feature of them is rather low.
Inspired by this idea, we define the sentence divergence feature
which aims to measure the co-occurrence of tags in sentences.
These sentences are extracted from wiki descriptions of all
tags. The computation of this feature d(Sa, Sb, S) is similar as
Equation 2, where Sa and Sb are the sets of sentences which
contain a and b, respectively; and S is the set of all sentences
in all wiki descriptions from Stackoverflow.

4) Tag Divergence Feature: Given two tags a and b, if
both of them have co-occurred with tag c, they tend to hold a
semantic relation. Inspired by this basic idea, we also design a
tag divergence feature to measure the relatedness between tags.
We compute this feature d(Ta, Tb, T) as Equation 2, where Ta
and Tb are the sets of tags of Qa and Qb, Qa and Qb are the
sets of questions annotated with a and b, respectively; and T
is the set of all tags in Stackoverflow.

Topic-based Features: The lexical feature and the co-
occurrence features only capture the semantic relation in an
explicit way which can not detect the implicit relations between
tags. For example, most people tend not to annotate “ma-
chine learning” together with “artificial intelligence” because
“artificial intelligence” is too high-level. But it is obvious
that “artificial intelligence” is semantically closed to “machine

…

Candidate

Selection

Unlabeled

Tag Pairs

Feature

Engineering

Labeled Data

Generation

Labeled Tag

Pairs

Lexical Feature

Co-occurrence-

based Features

Topic-based

Features

Semi-supervised

Learning

Tags

Questions

Software Programming Taxonomy

Data:

Component:

…

Fig. 2: The workflow to generate taxonomy for Stackoverflow

learning”. So we also try to represent each tag in a sematic
level and design some topic-based features. We leverage a
topic modeling method named LDA [10] to generate a topic-
based representation for each tag. In our proposed approach, we
model a tag using both of its wiki description and the bodies
of its annotated questions, and learn its topic representation by
LDA. In our experiments, the number of topics was empirically
set as 150.

5) Wiki Topic Divergence Feature: This feature is the
measure of the difference or dissimilarity between two topic
distributions of wiki descriptions of tag a and tag b. We define
this feature based on KL-divergence [17], a standard measure of
the difference between two probability distributions. Note that it
is an asymmetric metric, i.e. dKL(pwa, pwb) 6= dKL(pwb, pwa).

dKL(pwa||pwb) =

K∑
i=1

pwa(i)log
pwa(i)

pwb(i)
(3)

where pwa(i) and pwb(i) denote the probability of i-th topic
in the topic distribution of a and b respectively, using wiki
descriptions as document.

6) Question Topic Divergence Feature: In Stackoverflow,
some tags only contain few contents in their wiki descriptions,
especially when the tags are newly created or have fewer
editors. In this circumstance, wiki topic divergence cannot
accurately assess the dissimilarity between tags. However, the
topic of questions can better represent their tags, since the
same tag in different questions is annotated by different editors,
which can avoid the subjectivity. Therefore, for a given tag, we
also use questions annotated by it to represent the tag. Similarly,
we compute this feature as Equation 3.
D. Labeled Data Generation

We treat subsumption relation detection as a binary-class
classification problem to solve. Classification (binary or multi-
class) is supervised learning, which requires labeled data for
training. The classification performance depends on whether
the labeled data is adequate and whether training data and test
data have the similar distributions. In order to ease the burden
of manual labeling and to avoid distribution bias, we propose an
effective rule-based method to create labeled data. Both positive
and negative examples are checked manually. These examples
are not only used to boost the learning process but also treated
as ground truth to evaluate our approach in Section IV.

For positive examples, we apply some lexical-syntactic
patterns on descriptions of tags. These patterns are extended
from the Hearst patterns [11] (e.g. NP1 is a/an NP2). Finally, we
have 12,608 hypernym-hyponym candidate relations between
tags and 2,870 of them are manually checked as positive
examples.

For negative examples, we define a conditional probability
metric to measure the probability of a as the hypernym given b.
This metric relies on an implication, that if a user has annotated
a document d with b, he also tend to annotate tags that subsumes
b. Specifically, we use the following formula:

p(a|b) = Nd(a, b)

Nd(b)
(4)

where Nd(a, b) is the number of documents that are annotated
by both a and b, and Nd(b) is the number of documents that
are annotated by b. Given a tag b, we select the tag a as its
hypernym with its probability less than 0.01 and treat the pair
(a, b) as negative examples. Besides, we also manually select
those relations, which do not hold subsumption relations but
their probabilities p(a|b) are more than 0.5 to enrich the set of
negative examples. Finally, among these enriched sets, 3,000
negative examples are manually checked and selected.
E. Semi-supervised Learning

While we generate labeled data by applying some lexical-
syntactic patterns and heuristic rules semi-automatically, the
number of positive and negative examples is very small com-
pared with that of the candidate tag pairs. So a natural idea
is to use some kind of semi-supervised learning algorithm to
predict new semantic relations between these candidate pairs.

We select the simplest and the most efficient one - self-
training. In each iteration, self-training accepts the labeled data
as training data and learns a classifier. Then the classifier
is applied to the unlabeled data and adds tag pairs of high
confidence to the labeled data to train a new classifier for the
next iteration. The whole process will terminate if the difference
between the predicted labels of these candidates (whether they
satisfy subsumption relations or not) given by classifiers in
the two consecutive iterations is smaller than a threshold or
we have achieved the maximal number of iterations. Note that
we use the Support Vector Machine (SVM) algorithm to train
the binary classifier, which is known as one of the best single
classifiers [18].

IV. EXPERIMENTS

A. Experiment Setup

1) Data Statistics: In order to evaluate our approach, we
use the Stackexchange dump from https://archive.org/details/
stackexchange. Note that before further process, we first singu-
larize the names of all tags and then replace underscores and
hyphens by spaces as preprocess. In total, there are 38,205 tags
and 7,990,787 questions. Among these tags, 25,798 tags have
descriptions. The number of questions annotated by the tag
ranges from 1 to 708,533. On the average, each tag annotated
617 questions.

0

10

20

30

40

50

60

70

80

90

Precision Recall F1-score

TL CT CTL

Fig. 3: Three models with different feature sets

2) Comparison Methods: We select several state of the
art methods as comparison methods, namely Tag-Tag Co-
occurrences (TTC) method and Tag-Word Co-occurrences
(TWC) method.

• Tag-Tag Co-occurrences (TTC). The TTC
method [15] uses Equation 4 to estimate p(a|b).
One of its benefits is that it does not rely on the
content of the annotated document, so it can be
applied to tags for non-text objects.

• Tag-Word Co-occurrences (TWC). This method [8]
uses the content of the annotated document to estimate
p(a|b). We use the following formula to estimate p(a|b)
by tag-word co-occurrences:

p(a|b) =
∑
w∈W

p(a|w)p(w|b)

=
∑
w∈W

Nd(a,w)

Nd(w)

Nd(b, w)

Nd(b)

(5)

where Nd(a,w) is the number of documents that
contains both tag a and word w, and Nd(w) is the
number of documents that contains the word w. Instead
of computing tag-tag co-occurrences directly, TWC
uses words in the document as a bridge to estimate
p(a|b).

For these two comparison methods, we first sort the discov-
ered relations by their probabilities in descending order. Then,
we take the top-n relations, discarding the others. Here we
evaluate these methods with n = 1 and n = 5.
B. Result Analysis

1) Feature Contribution Analysis: We discuss the effect
of different features for predicting subsumption relations. We
use the labeled data generated in Section III-D as the ground
truth. Then we train three SVM classifiers based on different
combinations of features. The first classifier (denoted as TL)
only uses topic-based features and the lexical feature. The sec-
ond classifier (CT) combines the co-occurrence-based features
and the topic-based features. The third one (CTL) includes
all features. We apply 5-fold cross validation to train the
three classifiers. Precision, recall, and F-measure are used for
effectiveness study. As shown in Fig. 3, the classifier with all
features performs best. That is to say, all these features are use-
ful in predicting new subsumption relations. We can also find
all classifiers use topic-based features, this is mainly because
the subsumption relation is asymmetric, so only asymmetric

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Iter1 Iter2 Iter3 Iter4 Iter5

A
cc

u
ra

cy
(%

)

Fig. 4: Accuracy in each iteration

metrics can capture this relation semantically. In our feature
set, only topic-based features can measure the subsumption
relations while the co-occurrence-based features are symmetry
and the lexical feature can only capture the surface patterns.

2) Accuracy Evaluation of Iterations: We applied the itera-
tive semi-supervised learning approach with all features to build
a taxonomy containing 68,098 subsumption relations. Since
there are no ground truths available for the whole taxonomy, the
qualities of these relations have to be verified manually. Due
to the large number of relations, it is impossible to evaluate
all of them by hand. Therefore, we design an evaluation theme
including a sampling strategy and a labeling process. Sampling
aims to extract a subset of relations (called samples) which can
represent the distribution of the whole result set. Then we can
perform manual labeling to evaluate the correctness of samples.
The accuracy assessment on the subset can further be used to
approximate the correctness of the resulting taxonomy.

We first evaluate the performance improvements in each
iteration compared with the estimated accuracy produced by
the previous iteration if existed. We randomly select 1,000
subsumption relations from the resulting taxonomy. We record
their predicted labels after each iteration. Four students from
our laboratory are invited to participant in the labeling process.
We provide them three choices namely agree, disagree and
unknown to label each sample. Then we can compute the
average accuracy. Finally, the Wilson interval [19] at α = 5%
is used to generalize our findings on the samples to the whole
taxonomy. Fig. 4 shows the accuracy of each iteration. Accord-
ing to the results, the accuracy increases consistently when we
perform more iterations. In particular, after the fifth iteration,
our approach achieves the best accuracy of 75.90%± 2.64%.

C. Performance Comparision

We further compare the two baseline approaches with ours.
Accuracy and scale are used as evaluation metrics. According
to the result, the TTC and TWC method get a similar scale of
184,818 and 184,816 subsumption relations respectively with
n = 5. It is obvious because they all apply a ranking mechanism
by probability. For accuracy, the TTC method achieves accuracy
of 53.29% ± 3.09%, while the TWC method only achieves
accuracy of 37.05% ± 3.0%. Even the threshold n is set to
1, the accuracy of TTC and TWC method is only 70.42% ±
2.82% and 43.03%± 3.06% respectively with the trade-off of
scale which is only 38,166. Compared with these two baseline
methods, our method can find 68,098 subsumption relations
and the accuracy of resulting taxonomy using our proposed
method is 75.90% ± 2.64%. Therefore, our approach can not

TABLE I: Comparison with other datasets

Ours Yago WikiTaxonomy Schema.org
Concept Number 38,205 898 711 10
Concept Overlap / 29 27 2

Subsumption Number 68,098 870 630 0
Subsumption Overlap / 0 1 0

Maximum Depth 28 3 6 1
Minimum Depth 1 2 1 1
Average Depth 6.99 2.24 1.39 1.00

only discover more subsumption relations but also achieve a
better accuracy.

D. Comparison with Other Datasets

Since there is no public software programming taxonomy,
we only compare our taxonomy with the subsets about soft-
ware programming extracted from other well-known general-
purpose datasets namely Yago Taxonomy, WikiTaxonomy and
Schema.org1 in terms of concepts and subsumption relations.
Table I not only shows the concept and subsumption informa-
tion of each dataset, but also lists the concept overlaps and
subsumption overlaps between our taxonomy and the other
datasets. Moreover, we present the maximum, minimum and
average depth of each dataset to illustrate the granularity and
richness. As for the concept and subsumption number, our
taxonomy is much larger than any other datasets. The overlaps
of both concept and subsumption with these datasets are not
so high. The reason mainly comes from two aspects. First,
concepts in our taxonomy are fine-grained while those in Yago
Taxonomy, WikiTaxonomy and Schema.org are more high-
level. Second, the overlaps between our taxonomy and any
of the other three (i.e., Yago Taxonomy, WikiTaxonomy, and
Schema.org) are the lower bounds and can actually be larger
due to the fact that we compute the overlaps using the exact
string matching and tag from Stackoverflow are not as formal
as those in the three compared datasets.

Regarding to the granularity and richness of concepts,
our taxonomy has the largest average depth and maximum
depth. That is to say, our taxonomy has a more fine-grained
concept hierarchy compared with other existing datasets. As
a representative example, our taxonomy contains a hyper-
nymy path like “machine learning”→“bayesian”→“bayesian
network”→“belief propagation”. Moreover, some newly terms
can also be found in our taxonomy such as “neural
network”→“deep learning”→“word2vec”. So our taxonomy
contains not only many newly-added and fine-grained concepts,
but also a richer semantic hierarchy.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a machine learning based
approach with some novel features to automatically create
hypernym-hyponym relations between tags in Stackoverflow,
which results in a taxonomy about software programming con-
taining 38,205 concepts and 68,098 relations. The experiments
show the high-quality of this taxonomy.

As for future work, we will try to extract more concepts
about computer programming from Wikipedia, Github and
other Web sites to enrich our taxonomy. Moreover, it would be
interesting to explore some more potential applications based
on this taxonomy such as linked data based recommendation,

1https://schema.org/

semantic relatedness measuring between terms about software
programming and so on.

VI. ACKNOWLEDGMENT

This research is supported by 973 Program in China (Grant
No. 2015CB352203) and National Natural Science Foundation
of China (Grant No. 61472242).

REFERENCES

[1] Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung.
Relink: recovering links between bugs and changes. In Proceedings of
the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, pages 15–25. ACM, 2011.

[2] Giriprasad Sridhara, Emily Hill, Lori Pollock, and K Vijay-Shanker.
Identifying word relations in software: A comparative study of semantic
similarity tools. In ICPC 2008, pages 123–132. IEEE, 2008.

[3] J-R Falleri, Marianne Huchard, Mathieu Lafourcade, Clementine Nebut,
Violaine Prince, and Michel Dao. Automatic extraction of a wordnet-like
identifier network from software. In Program Comprehension (ICPC),
2010 IEEE 18th International Conference on, pages 4–13. IEEE, 2010.

[4] Simone Paolo Ponzetto and Michael Strube. Wikitaxonomy: A large
scale knowledge resource. In ECAI, volume 178, pages 751–752, 2008.

[5] Fei Wu and Daniel S Weld. Automatically refining the wikipedia infobox
ontology. In WWW, pages 635–644. ACM, 2008.

[6] Mianwei Zhou, Shenghua Bao, Xian Wu, and Yong Yu. An unsupervised
model for exploring hierarchical semantics from social annotations.
Springer, 2007.

[7] Jie Tang, Ho-fung Leung, Qiong Luo, Dewei Chen, and Jibin Gong.
Towards ontology learning from folksonomies. In IJCAI, volume 9,
pages 2089–2094, 2009.

[8] Xiance Si, Zhiyuan Liu, and Maosong Sun. Explore the structure
of social tags by subsumption relations. In Proceedings of the 23rd
International Conference on Computational Linguistics, pages 1011–
1019, 2010.

[9] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard
Weikum. Yago2: a spatially and temporally enhanced knowledge base
from wikipedia. Artificial Intelligence, 194:28–61, 2013.

[10] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet
allocation. the Journal of machine Learning research, 3:993–1022, 2003.

[11] Marti A Hearst. Automatic acquisition of hyponyms from large text
corpora. In Proceedings of the 14th conference on Computational
linguistics-Volume 2, pages 539–545. Association for Computational
Linguistics, 1992.

[12] Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q Zhu. Probase: A
probabilistic taxonomy for text understanding. In SIGMOD 2012, pages
481–492. ACM, 2012.

[13] Huairen Lin, Joseph Davis, and Ying Zhou. An integrated approach to
extracting ontological structures from folksonomies. In The semantic
web: research and applications, pages 654–668. Springer, 2009.

[14] Haofen Wang, Tianxing Wu, Guilin Qi, and Tong Ruan. On publishing
chinese linked open schema. In ISWC 2014, pages 293–308. Springer,
2014.

[15] Patrick Schmitz. Inducing ontology from flickr tags. In Collaborative
Web Tagging Workshop at WWW2006, volume 50, 2006.

[16] Rudi L Cilibrasi and Paul MB Vitanyi. The google similarity distance.
IEEE Transactions on Knowledge and Data Engineering, 19(3):370–383,
2007.

[17] Solomon Kullback. Information theory and statistics. Courier Corpora-
tion, 1997.

[18] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani
Amorim. Do we need hundreds of classifiers to solve real world classifi-
cation problems? Journal of Machine Learning Research, 15:3133–3181,
2014.

[19] Lawrence D Brown, T Tony Cai, and Anirban DasGupta. Interval
estimation for a binomial proportion. Statistical Science, pages 101–
117, 2001.

