
Specifying and Dynamically Monitoring the

Exception Handling Policy

Joilson Abrantes

Dep. of Informatics and Applied Mathematics

Federal University of Rio Grande do Norte

Brazil

joilson@ppgsc.ufrn.br

Roberta Coelho

Dep. of Informatics and Applied Mathematics

Federal University of Rio Grande do Norte

Brazil

roberta@dimap.ufrn.br

Abstract — The exception handling policy of a system comprises

the set of design rules that specify its exception handling behavior

(how exceptions should be handled and thrown). Such policy is

usually undocumented and implicitly defined by the system

architect. For this reason, developers may think that by just

including catch-blocks in the code they can deal with exception

conditions. This lack of information may turn the exception

handling into a generalized “goto” mechanism making the

program more complex and less reliable. This work proposes a

domain-specific language called ECL (Exception Contract

Language) to specify the exception handling policy and a runtime

monitoring tool which dynamically checks this policy. The

monitoring tool is implemented in the form of an aspect library,

which can be added to any Java system without the need to

change the application source code. We applied this approach to

a large-scale web-based system and to a set of versions of the

well-known JUnit framework. The results indicate that this

approach can be used to express and to automatically check the

exception handling policy of a system, and consequently support

the development of more robust Java systems.

Keywords - exception handling; monitoring; dynamic analysis.

I. INTRODUCTION

Modern applications have to cope with an increasing
number of abnormal computational states that arise as a
consequence of faults in the application itself (e.g., access of
null references), noisy user inputs or faults in underlying
middleware or hardware. The exception handling (EH)
mechanism [24] is one of the most frequently used techniques
for developing robust systems, enabling such applications to
detect and recover from these exceptional conditions.

Although exception handling mechanisms have been
embedded in several mainstream programming languages (e.g.
Java, C++, C#), studies have shown that the exception handling
code is often poorly understood and the least-tested part of
software systems [13], [14], [15], [16]. The exception handling
behavior of a system is poorly understood, because it is
generally spread over several implementation artifacts, and
often the exception handling constructs (e.g., throw statements
and try-catch blocks) lead the developers into believing that by
just including EH constructs in the code that they can (i) deal
with exceptional situations, and (ii) focus on the development
of “happy path” scenarios [17]. This “ignore-for-now”
approach may turn the exception handling into a generalized
“goto” mechanism [17] making the program more complex and

even less reliable. As a consequence they may negatively affect
the system, favoring the introduction of failures such as
uncaught exceptions [30], [20] - which can lead to system
crashes, making the system even less robust [5].

Work has shown that the lack of information about how to
design and implement exceptional conditions leads to complex
and spaghetti-like exception structures [12]. To the best of our
knowledge, few studies have been proposed to better
understand and check the exception handling behavior of
systems. Some of them are based on the use of static analysis
tools [20][21][22] and others on automated testing tools [1][7].
Both approaches, however, have intrinsic limitations.

The static analysis approaches [20][21][22] propose tools
to discover the paths that exceptions take from signalers (i.e.,
elements that throw exceptions) to handlers (i.e., elements
responsible for catching them). However, due to the limitations
inherent in static analysis approaches combined with the
characteristics of modern languages (e.g., inheritance,
polymorphism and virtual calls) such approaches usually report
many false positives. On the other hand, approaches based on
the definition of test cases [1][7] limit the ability of checking
exception handling behavior to the execution of test scenarios.
Moreover, the high number of signaling and handling sites to
be tested may lead to the test explosion problem [18][19].

None of the work mentioned above enables the developer to
specify the exception handling behavior of a system and to
check such behavior while the system is running on its
production environment. Doing so, we could use the input data
provided by real users or acceptance testers in order to check
the exception handling behavior of a system.

This work proposes a domain-specific language (DSL) to
specify the exception handling policy of a system (i.e., a set of
design rules that specify the exception handling behavior of a
system such as, how exceptions should be handled and thrown
by its main elements). More often than not, such policies are
not documented, and usually remain implicit in the form of a
set of exception handling constructs spread over
implementation artifacts. Moreover, this work also provides a
runtime monitoring tool which verifies whether or not the
exception handling behavior of a system is in accordance with
the handling policy defined beforehand.

To evaluate the proposed language and the supporting tool,
we conducted two case studies. We specified and checked the

(DOI reference number: 10.18293/SEKE2015-133)

exception handling policy of large-scale web system (SIRH) –
which contains 593 KLOC of Java source code, 14781 throw
statements and 2912 catch-blocks - and the well-known JUnit
testing framework - for which four releases were evaluated.
Results have shown that the proposed approach could be used
to specify and dynamically check the exception handling policy
of both systems. The contribution of this work is two-fold:

 It introduces a domain-specific language to specify the
exception handling policy of a system.

 It presents a runtime monitoring tool implemented to
support the dynamic check of the exception handling
policy.

The remainder of this paper is organized as follows: Section
II presents the main concepts related to this work; Section III
presents a motivating example for using the proposed
approach; Section IV presents the domain-specific language to
define the exception handling policy and the supporting tool
which checks such rules during runtime; Section V presents the
case studies conducted in this work, and finally, Section VI
presents the conclusions and future work.

II. THE EXCEPTION HANDLING MECHANISM

In order to support the reasoning for exception handling
behavior of a system we present the main concepts of an
exception-handling mechanism. An exception handling
mechanism is comprised of four main concepts (i.e., the
exception, the exception signaler, the exception handler, and
the exception model - that defines how signalers and handlers
are bound [14]) and two supporting concepts (i.e., the
exception types and the exception interface) described next.

Exception Raising. An exception is raised by a method
when an abnormal state is detected. In Java an exception is
thrown using the throw statement [23].

Exception Handling. The exception handler is the code
invoked in response to a raised exception. It can be attached to
protected regions (e.g. methods, classes and blocks of code)
[14]. In Java the handler is represented by the try-catch block
[23].

Handler Binding. In many languages as in Java, the search
for the handler to deal with a raised exception occurs along the
dynamic invocation chain. This is claimed to increase software
reusability, since the invoker of an operation can handle it in a
wider context [11].

Exception Interfaces [11]: The caller of a method needs to
know which exceptions may cross the boundary of the called
method. In this way, the caller will be able to prepare the code
beforehand for the exceptional conditions that may happen
during system execution. For this reason, some languages
provide constructs to associate a method’s signature with a list
of exceptions that this method may throw. However, they are
most often neither complete nor precise [20], because
languages such as Java provide mechanisms to bypass this
mechanism by throwing a specific kind of exception, called
unchecked exception, which does not require any declaration
on the method signature.

 Exception Types. Object-oriented languages usually support
the classification of exceptions into exception-type hierarchies.
The exception interface is therefore composed of the exception
types that can be thrown by a method. Each handler is
associated with an exception type that specifies its handling
capabilities - which exceptions it can handle. In Java,
exceptions are represented according to a class hierarchy, in

which every exception is an instance of the Throwable class
[23].

III. MOTIVATING EXAMPLE

Consider a layered-information system structured in three
layers: the data layer (which accesses the database); the
business layer and the presentation layer. One of the exception
handling design rules that could be defined in this system is the
following: the exceptions thrown by the Data layer should be

a subtype of DAOException and should be handled in the

Presentation layer. However, usually such rules are informally
defined in the system documentation or, more often than not,
remain undocumented as an implicit knowledge of the
development team.

Both ways of dealing with the exception handling rules
threaten the development of robust systems. Firstly, once
documented such documentation may become outdated and be
of little use. Secondly, the undocumented rules may become
unknown for new members of the development team, and as a
consequence, will not be followed. Moreover, none of these
scenarios support the automatic check of such rules during
system compilation or execution.

Let’s consider that in such a system an instance of

DAOException is thrown by the Data layer and is
mistakenly handled by a generic handler defined in the Facade
class (defined in the Business layer). How can we check if the
aforementioned rule is obeyed? The approach shown in Section
IV enables the developer to define and check such an exception
handling rule.

IV. THE PROPOSED APPROACH

We propose an approach based on a DSL (Section IV-A)
and a dynamic analysis tool (Section IV-B) to enable
developers to define and verify the exception handling behavior
of a system. More specifically, this approach allows the
developer to create design rules for the exceptional flow, and
check if such rules related to the exception handling code are
neglected during the application execution.

A. The Exception Contract Language

We propose a domain-specific language called ECL
(Exception Contract Language) whose main goal is to allow the
creation of design rules for the exception handling behavior.
Figure 1 partially illustrates the grammar of ECL language in
BNF. In this version of BNF used, non-terminal symbols are
written in bold, terminals are written with capital letters. In
addition, the {} indicates zero or more repetitions of A. In
order to simplify the reasoning of the grammar we omitted the
definition of terminals such as ModID (which refers to a name
of any identifier).

S: Rule
Rule: signaler QualifiedNameWithWildcardSignaler

 exception SetOfNames
 handler SetOfNames ;

SetOfNames: QualifiedNameWithWildcard {:
 QualifiedNameWithWildcard }

QualifiedNameWithWildcardSignaler: QualifiedNameWithWildcard | *
QualifiedNameWithWildcard: QualifiedName |
QualifiedName+ | QualifiedName* | QualifiedName(..)
QualifiedName: ModID{.ModID}

Figure 1. Exception Contract Language (ECL) in Backus-Naur Form

notation.

The main elements of ECL are:

 signaler: this element represents a method, class or
package which can throw one or more types of
exceptions.

 exception: identifies the types of exceptions thrown
by the signaler.

 handler: this element represent the methods, classes
or packages that will be responsible for handling the types
of exceptions set to be launched by the signaler.

 Figure 2 shows an example of an exception handling design
rule created using ECL. This rule specifies that an exception of

type BusinessException launched by

login(..)method defined in SignSystemBean class,

must be handled by any method defined on LoginFilter

class.

Figure 2. Example of ECL design rule.

 The ECL language also supports the use of wildcards. The

first is ∗ : it matches any series of characters that can appear in
a Java identifier. So, for example, in Figure 1 it matches all

methods defined in LoginFilter class. The second is +
wildcard, which can be combined over types. It means ‘match
any subtype’. In Figure 1 we could add + to the exception
name, and in doing so the contract would be related to

BusinessException and its subtypes. We developed an
Eclipse plug-in using XText framework to support the
definition of design rules in ECL

1
.

B. Dynamic Analysis of Exception Handling

A runtime monitoring tool was developed to check such
rules while the program is running. This tool works in the
background, analyzing whether defined design rules are being
neglected. If a rule is not obeyed, a notification is sent to a
remote server which will store the non-compliance. The remote
server that receives such data, stores the notifications and
provides this information to other applications which can
generate EH reports, and mine such data.

1
 The language manual and the Eclipse plug-in is available at:

https://bitbucket.org/jvidalabrantes/daeh-tool/wiki.

Figure 3. DAEH architecture.

The monitoring tool is called DAEH (Dynamic Analysis of
Exception Handling), and consists of a set of monitors
responsible for monitoring any Java application and a central
server responsible for receiving the notifications from monitors
and storing them. Figure 3 illustrates DAEH architecture. This
architecture enables the implementation of other applications
that communicate with the DAEH server which may query the
monitoring information and perform any kind of data analysis.

C. DAEH Monitor

The DAEH monitor is added to the application to be
monitored and performs the verification of exception handling
design rules defined using ECL

2
. Such a monitor is

implemented as an aspect library which is combined at load-
time with the application code to be monitored. This library
was implemented using AspectJ and load-time weaving [8].
Since the monitor instrumentation is performed when the
application classes are loaded into the Java Virtual Machine,
there is no need to change the application source code. During
the load-time weaving the DAEH monitor (i) loads the
exception-handling design rules file and (ii) instruments every
place where an exception is handled (every catch block).
Hence, every time an exception is handled inside the system
the DAEH monitor checks whether or not the handling action
is breaking one of the existing exception handling design rules.

V. CASE STUDIES

This approach was used in two case studies: SIGRH - an
enterprise large-scale web-based system developed in Java and
the well known JUnit framework (from which 4 releases were
used). Table I illustrates the characteristics of both systems.

TABLE I. METRICS OF SYSTEMS

Metrics SIGRH
JUnit

4.6

JUnit

4.7

JUnit

4.8

JUnit

4.9

LOC 593.276 13098 14049 14373 15684

of classes 3841 268 290 293 308

of methods 51408 1724 1853 1885 2041

of catch-blocks 2912 156 152 153 164

of throw

 statements
1775 110 122 123 131

Since SIGRH had no exception design rules explicitly
documented, we needed to talk with the system architect in

2
 The ECL manual and plug-in and DAEH tool is available at:

https://bitbucket.org/jvidalabrantes/daeh-tool/wiki.

order to document the exception handling policy in the form of
ECL rules. As a result of this talk, five main exception
handling design rules were documented. Table II illustrates one
of them. This rule states that instances of

BusinessException thrown by any method should be

handled by any method of ViewFilter class.

TABLE II. EXAMPLE OF DESIGN RULE CREATED FOR THE MONITORED

SYSTEM

Id Exception Handling Design Rule

3
signaler { * }
exception { br.ufrn.arq.erros.BusinessException }
handler { br.ufrn.arq.web.ViewFilter.* };

After defining the rules, we added the DAEH monitor to the
application server on which the SIGRH system was running for
acceptance tests. In a 5-day period, the DAEH server received
12,027 notifications of broken design rules. Table III shows the
number of violations per design rule.

TABLE III. NUMER OF DESIGN RULES VIOLATIONS (DRVS).

SIGRH JUnit

Contract Id # DRVs Version # DRVs

1 6 4.6 0

2 0 4.7 0

3 12,015 4.8 0

4 6 4.9 0

5 0 - -

As can be seen, only three design rules were violated (i.e.,
rules 1, 3 and 4). Figure 4 illustrates one of such notifications.
Analyzing the violations associated with design rule 3 we
observed that all of them were caused by 8 handlers defined in

different locations outside the ViewFilter class (specified
in the design rule illustrated in Table II). Such violations
occurred often (i.e., 12,015) because the same pieces of code
were exercised more than once during acceptance testing.

<Exception:class br.ufrn.arq.erros.BusinessException >
expected: <Handlers:[br.ufrn.arq.web.ViewFilter.*]>
but was <Handler: UserMBean. login()>

Figure 4. Design rule violation message.

The proposed approach was also used to define and monitor
the exception handling design rules of the JUnit testing
framework. The design rules were defined manually by
inspecting the source code of the framework. Manual
inspection was needed because the JUnit documentation had no
reference to the exception handling policy adopted in the
framework. This task was possible since JUnit is a small-scale
framework and very well structured. As a result of this task we
were able to define 9 exception handling design rules. Table IV
illustrates two of them.

TABLE IV. EXAMPLE OF SET DESIGN RULES FOR JUNIT

Exception Handling Design Rule

signaler{ org.junit.experimental.max.MaxHistory.readHistory(..) }
exception {org.junitt.max.CouldNotReadCoreException}
handler {org.junit.experimental.max.MaxHistory.forFolder(..)};
signaler { * }
exception {junit.framework.AssertionFailedError}
handler {junit.framework.TestResult.* : junit.tests.*};

 In order to exercise the framework and to check for
exception design rule violations, we ran the test suite that
comes with the framework and added the DAEH monitor to the
JVM were the tests were executed. Although the rules where
defined for version 4.6 of JUnit, we used the same set of rules
to check the exception handling behavior of a set of subsequent
versions (i.e., 4.6, 4.7, 4.8 and 4.9). Our goal was to check
whether there had been changes in the exceptional behavior as
the framework evolved. To our surprise, none of the specified
contracts broke across the subsequent versions of JUnit. Such
behavior can be explained by the fact that JUnit is a very stable
framework and that although the exception handling design
rules are not explicitly documented, they are adequately
maintained by the development team.

VI. DISCUSSIONS

Exception handling policy: a global design problem. The
definition of the exception handling policy is a global design
problem [12]. However, none of the languages which have
embedded EH mechanisms provide a way to specify and check
such a policy. Due to this lack of guidance developers, tend to
focus their design activities on the normal behavior of the
application [2], [3] and forget the exceptional behavior design
[4]. In this work, we propose a language to express the
exception handling policy of a system in the form of simple
design rules, which link signaling and handling sites. Such sites
can be methods, classes or packages. The ECL language and
the supporting monitoring tool proposed in this work are the
first step towards providing an infrastructure to help developers
in specifying and analyzing the exception handling behavior of
a system as a whole.

Limitations of the proposed approach. The way the
exception handling policy is expressed in ECL could be
improved to (i) specify the handling action (i.e., what should be
performed inside the try-catch block) or to (ii) express a
complete set of rules (i.e., if no rule is specified for a signaler
no exceptions are allowed). However, the current grammar was
sufficient to express all exception handling design rules needed
during the execution of the case studies.

VII. RELATED WORK

Two approaches [1][7] extended the JUnit testing tool to
support the definition of automated tests for the exception
handling behavior. The limitations of both approaches are two-
fold: the developer needs to manually implement each test case,
and each test case focuses on one single exception flow (i.e.
throw-catch pair) at a time. Since most Java systems may
contain dozens or even hundreds of exception flows it is hard
to choose which ones should be tested. Our approach tackles
this limitation since the exception handling design rules involve

higher level modules than single methods (i.e., classes or
packages), enabling the checking of several flows at a time.

Terra and Valente [9] proposed a dependency constraint
language for specifying acceptable and unacceptable relations
among the elements of a system architecture. Such restrictions
are statically checked in order to detect the points in the source
code that violate the defined relations. This language allows the
developer to define which exceptions a given module (i.e.,
method, class or package) can throw. However, it does not
address the handling capabilities of modules nor how handlers
and signalers can be bound. Our approach supports the
specification of both handling and signaling design rules and
check such rules at runtime.

Brunet and Guerrero [10] proposed a tool called
DesignWizard that enables the developer to define design rules
in the same programming language of the analyzed application,
in the form of a set of JUnit test cases. Although such a tool
extends the JUnit framework, the checking of design rules is
performed statically based on ASM framework. DesignWizard
does not support the definition of design rules related to
exception signaling and handling capabilities nor how they are
bound.

Jin et al proposed JavaMOP [25] a monitoring framework
specific to Java programs. [20]. JavaMOP allows the definition
of properties based on event specifications and generates
AspectJ code for monitoring - weaved into the target program
in compile time. When a specification is validated or violated,
user-defined actions are executed. User-defined actions can be
any Java code from logging to runtime recovery. Our approach
differs form JavaMOP as our approach is specific to the
monitoring and checking of exception handling design rules.
The syntax of ECL is simpler than the one needed to specify
properties in JavaMOP, and there is a single action available in
our approach (send the violation information to DAEH server).

VIII. CONCLUSIONS AND FUTURE WORK

This paper introduces a domain-specific language to specify
the exception handling policy of a system, which is, more often
than not, undocumented and implicitly defined – negatively
impacting the system robustness [12]. This work also presents
a runtime monitoring tool to support the dynamic checking of
such an exception handling policy. Two case studies were
conducted to evaluate the proposed approach. Our findings
indicate that the approach can be used to specify and
dynamically check the exception handling design policy of a
system. We are currently working on evaluating the needs for
adding new language constructs to ECL.

REFERENCES

[1] R. Di Bernardo, R. Sales, F. Castor, R. Coelho, N. Cacho, S. Soares

Agile Testing of Exceptional Behavior. In Proc. of 25th Brazilian
Symposium on Software Engineering, 2011.

[2] H. Shah, et al., Why do developers neglect exception handling In Proc.
of the 4th International Workshop on Exception handling, 2008.

[3] R. A. Maxion and R. T. Olszewski, Eliminating exception handling
errors with dependability cases: a comparative, empirical study,
Software Engineering, IEEE Transactions on, vol. 26, 2000.

[4] H. Shah, Gerg, C. and M. J. Harrold,, Why do developers neglect
exception handling?. In Proc. of the 4th International Workshop on
Exception handling, 2008.

[5] F. Cristian. Exception handling and software fault tolerance.IEEE Trans.
Comput. 31(6):531540, 1982.

[6] J. Kienzle. On exceptions and the software development life cycle. In
Proc. of the 4th International Workshop on Exception Handling, 2008.

[7] R. Sales, R. Coelho, Preserving the ExceptionHandling Design Rules in
Software Product Line Context: A Practical Approach, In Proc. of the
1sr Workshop on Exception Handling on Contemporary Systems, 2011.

[8] Ramnivas Laddad. 2003. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications Co., Greenwich, CT, USA.

[9] R. Terra and M. Valente. A dependency constraint language to manage
object-oriented software architectures. Softw. Pract. Exper.,
39(12):1073–1094, 2009.

[10] J. Brunet, D. Guerrero, J. Figueiredo. Design Tests: An Approach to
Programmatically Check your Code Against Design Rules. In Proc. of
ICSE’09, 2009.

[11] R. Miller and A. Tripathi, Issues with exception handling in object-
oriented systems, In Proc. of ECOOP’97. 1997.

[12] M. P. Robillard and G. C. Murphy, Designing robust Java programs with
exceptions, In Proc. of FSE 2000.

[13] A. Garcia, C. Rubira et al., Extracting error handling to aspects: A
cookbook, In Proc. of ICSM 2007. IEEE.

[14] A. Garcia, C. M. Rubira, A. Romanovsky, and J. Xu, “A compara- tive
study of exception handling mechanisms for building dependable object-
oriented software,” Journal of systems and software, v. 59, n. 2, , 2001.

[15] B. Cabral and P. Marques, “Exception handling: A field study in Java
and .Net,” in Proceedings of ECOOP 2007. Springer, pp. 151–175.

[16] R. Coelho, A. von Staa, U. Kulesza, A. Rashid, and C. Lucena, “Un-
veiling and taming liabilities of aspects in the presence of exceptions: a
static analysis based approach,” Information Sciences, v.181, n.13, 2011.

[17] D. Mandrioli and B. Meyer, Advances in object-oriented software
engineering. Prentice-Hall, Inc., 1992.

[18] M. Bruntink, A. V. Deursen, T. Tourwe. Discovering faults in idiom-
based exception handling. In Proc. of ICSE’06, 2006.

[19] G. J. Myers. The Art of Software Testing. New York: John Wiley &
Sons, 2004..

[20] R. Coelho, A. Rashid, A. Garcia, F. Ferrari, N. Cacho, U. Kulesza, A.
von Staa, and C. Lucena, Assessing the impact of aspects on exception
flows: An exploratory study, In Proc. of ECOOP 2008.

[21] C. Fu, B. Ryder. Exception-Chain Analysis: Revealing Exception
Handling Architecture in Java Server Applications. In Proc. of ICSE’07,
2007.

[22] M. Robillard, G. Murphy. Static Analysis to Support the Evolution of
Exception Structure in Object-Oriented Systems. In ACM Trans. Softw.
Eng. Methodol, 2003.

[23] J. Gosling, The Java language specification. Addison-Wesley Profes-
sional, 2000.

[24] JB. Goodenough. Exception handling: Issues and a proposed notation.
Communic. of the ACM 1975.

[25] D. Jin, P. Meredith, C. Lee, G. Rosu. JavaMOP: Efficient parametric
runtime monitoring framework. In Proc. of ICSE’2012.

