
A Middleware Framework for Leveraging Local and
Global Adaptation in IT Ecosystems

Soojin Park
Graduate School of MOT

Sogang University
Seoul, South Korea

psjdream@sogang.ac.kr

Young B. Park
Dept. of Computer Science & Engineering

Dankook University
Seoul, South Korea

ybpark@dankook.ac.kr

Abstract — Impressive advancements in recent smart devices
suggests that the direction of software engineering’s future is in
development of System of Systems (SoS). Among many
concepts that emerged from SoS, we focus on IT Ecosystem – a
type of SoS that evolves itself in response to unplanned
environment changes. Maintaining autonomy of its participant
systems while preserving controllability over entire ecosystem
involves various challenges that we need to solve. In this paper,
we propose a middleware framework for supporting global
adaptation of IT Ecosystem which guides how to determine the
optimal adaptation strategy for configuring available systems
to satisfy local constraints while achieving global goals. To
support the selection of optimal set of participant systems, we
have applied genetic algorithm. The effectiveness of our
approach is evaluated through analyzing the results of a
simulated unmanned forest management IT Ecosystem
running the proposed framework while undergoing various
environmental changes.

Keywords-self-adaptive systems; dynamic reconfiguration;
IT ecosystems.

I. INTRODUCTION
We live among numerous and constant interactions with

smart devices running software. Recent technologies such as
cloud computing and Internet of Things (IoT) herald a
paradigm shift in the operation of software systems, where its
focus is transiting from operation of a single system to
operation of System of Systems (SoS). A number of recent
researches built on the idea of SoS introduced the new
concept of IT Ecosystem [2][3]. An IT Ecosystem is a
complex system compound composed of interactive and
autonomous individual systems, adaptive as a whole based on
local adaptivity [1]. Individual component systems within an
IT Ecosystem must constantly monitor their environmental
contexts in their working territories. If an identified
environment change demands reactive change to the system
configuration in a participant, that participant dynamically
changes its configuration using predefined strategy or
knowledge accumulated from previous learnings. The local
adaptation loop can be identified as a MAPE-K [3] loop and
can be realized through application of adaptation frameworks
such as Rainbow [5], MUSIC [6], or DiVA [7].

To create a sustainable IT Ecosystem, we need more than
a local adaptation mechanism: we need a means for global

adaptation as to enable IT Ecosystem-wide dynamic
reconfiguration in reaction to environmental changes.
Unfortunately, existing adaptation frameworks mainly offer
benefits limited to local adaption of a single system,
restrictive in their applicability to ensuring sustainability
across entire IT Ecosystem. Therefore, in our research, we
propose a new adaptation middleware framework designed to
support both local and global adaptation mechanisms.

While the proposed framework is to be included in all
participant systems, not all components are always run.
Among the constituent components, those which implement
local adaptation mechanism in response to changes in
individual environments are always run. On the other hand,
components that execute global adaptation mechanism via
deploying new participant systems or dynamically
reconfiguring existing systems in response to drastic
environmental changes or significant performance drop
across the entire IT Ecosystem are only run on participant
system with <<Team Leader>> role. The role of Team
Leader is assigned dynamically, based on the environmental
situations of participant systems. The global adaptation
mechanism applies a genetic algorithm to make decisions
regarding where to place the most appropriate participant
system within a working environment, because genetic
algorithms can solve computational overhead problems when
IT Ecosystems grow in scale.

We have implemented our proposed adaptation
framework in a case study of IT Ecosystem for unmanned
forest management system, which is among the target
domains of our on-going research project. The case study will
help understand the benefits, along with the drawbacks, of the
proposed adaptation framework. The rest of the paper is as
follows: Section 2 introduces the proposed middleware
framework for IT Ecosystem adaptation. Section 3 illustrates
our proposed mechanisms in use for local and global
adaptations within the IT Ecosystem for unmanned forest
management. Section 4 discusses the effectiveness of the
global adaptation mechanism of the proposed framework
through analysis of experiment results. Section 5 reviews
related works addressing self-adaptation problems. Finally,
in Section 6, we present the conclusions for this study, along
with plans for our on-going work.

(DOI reference number: 10.18293/SEKE2015-131)

II. ADAPTABLE MIDDLEWARE FRAMEWORK FOR IT
ECOSYSTEM

In this section, we provide an overview of the proposed
adaptation middleware framework for IT Ecosystem. The
architecture of the framework is composed of five packages:
Felix, MAPE Core Bundle, Local Adaptation, ITE Global
Adaptation, and ITE Bridge (as shown in Fig. 1). Felix
package acts as the bridge between Android platform and
OSGi [4] which provides dynamic life cycle management
services for components. As depicted in Fig. 1, the proposed
framework targets Android platform because of the
platform’s support for mobility and for its flexibility in its
applicability to various application domains where it can
control a wide range of passive devices in individual
domain’s IT Ecosystems.

Felix package includes two major components:
Adaptation Bundle Activator which invokes bundle service
components required to run in higher level packages
according to system roles assigned at the participant system’s
initiation time, and Configuration Manager which manages
configuration changes when the need for internal component
reconfiguration arises due to external environment change.
Effectors implemented on Android follows instructions given
by Configuration Manager to carry out the actual
configuration change.

MAPE Core Bundle package includes MAPE-K cycle
managing components which enables applications to

perceive its environments and determine the next system
action to take. Components included in either ITE Global
Adaptation package and Local Adaptation package are
architecturally above MAPE Core Bundle package and
provided as OSGi bundles as to leverage basic component
lifecycle management services. All components included in
Felix package and MAPE Core Bundle package are domain
independent components. Local adaptation package, on the
other hand, includes different components depending on what
missions individual systems must carry out in order to
achieve the global goal of the ITE Ecosystem they participate
in. While basic skeleton components for maintaining MAPE
cycle operation threads are within MAPE Core Bundle
package, the domain-specific logic determining what to
monitor in order to analyze situational changes and what
action to execute are implemented by components included
in Local Adaptation package. In short, actual adaptation is
executed by binding Local Adaptation package components
to MAPE Core Bundle package components.

Information regarding the binding between MAPE Core
Bundle components and Local Adaptation components are
stored in Bundle Registry within Felix package. As
participant systems are activated, Adaptation Bundle
Activator is invoked to look up for information in Bundle
Registry to check which executable bundle should be bound
to MAPE Core Bundle, and thereafter activate its
corresponding bundles.

Figure 1. Overview of the proposed adaptable middleware framework for IT Ecosystem

While ITE Global Adaptation package is included in all
participant systems, it is only run on the participant system
assigned with <<Team Leader>> role, tasked to monitor the
collaboration performance of the entire IT Ecosystem. Where
Local Adaptation package components provide functional
services required to achieve domain goals, ITE Global
Adaptation package components measure the collaboration
efficiency among participant systems executing individual
local adaptations, triggering reconfiguration of participant
systems when the efficiency is below target threshold.

The core capability of maintaining overall-balanced and
sustained service across IT Ecosystem’s domain is provided
by the ITE Global Adaptation mechanism. Details of global
adaptation mechanism are introduced alongside a specific
case example in the next section. Components in Local
Adaptation package and ITE Global Adaptation package are
designed as plug-ins for the four components defined in
MAPE Core Bundle package. The components within the two
packages in Fig.1 illustrate components for unmanned forest
management IT Ecosystem, which will be introduced in
Section 3. However, the components are replaceable with
other components as the target domain changes.

Global ITE Knowledge package stores knowledge to be
shared among participant systems and includes ITE
Configuration Manager which provides the APIs for
accessing the knowledge. Knowledge stored at Global ITE
Knowledge includes environment model which reflects the
environment in which IT Ecosystem operates, profiles of
participant systems, and constraints or rules that must be
considered when mapping participant systems in their
working regions. In addition, the model for currently running
global configuration is also managed by this package. Such
global knowledge can be stored on a separate server or on a
cloud storage.

Finally, ITE Bridge package handles requests for remote
systems when required service components in demand are not
within the local system and provides protocols for activating
passive devices which are not directly controlled by local
systems.

III. A CASE OF ADAPTATION MECHAMISM APPLICATION:
UNMANNED FOREST MANAGEMENT IT ECOSYSTEM

To demonstrate the proposed framework, in this Section
we describe a simulated IT Ecosystem for unmanned forest
management (hereafter UFM IT Ecosystem). UFM IT
Ecosystem is a management system equipped with twelve
unmanned aircrafts, helicopters, and ground vehicles for the
purpose of managing nine forest zones each 100 km in size.
Unmanned vehicles assigned to each forest zone utilize
sensors and actuators to achieve their goals. In our simulated
case, we highlight the process of dynamic reconfiguration
within UFM IT Ecosystem in achieving its Monitor Drought
goal. Depending on the situation, twelve unmanned vehicles
are assigned to appropriate roles as to achieve the goal. An
unmanned vehicle with <<Chief Gardner>> role activates
UFM IT Ecosystem’s global adaptation cycle to maintain the
Ecosystem’s sustainability. On the other hand, nine

<<Surveillant>> vehicles adjust their driving routes in
response to the layout of obstacles in their assigned zones to
achieve their goal Monitor Drought. In this context, Fig. 2
illustrates an instance of dynamic sequence of adaptation
mechanisms in operation where a weather state change
triggers a constraint rule violation in a <<Surveillant>> role
vehicle, causing it to withdraw from its positioned forest zone,
leading to local adaptation mechanisms within the vehicle
along with global adaptation executed by a <<Chief
Gardner>> as to select the optimal candidate vehicle for
providing sustainable service in the zone.

A. Local Adaptation Mechanism for Dynamic
Reconfiguration of Individual Participant Systems
Initially, the forest zone[0][2] has fair weather, has a lake

in the zone, and has high forest density. An unmanned
helicopter HE2 has been selected as the appropriate
<<Surveillant>> for the environment in this zone and is
performing Monitor Draught goal. We define the paired
information of a participant and a zone in the form of (HE2,
zone[0][2]) as a chromosome. Such definition becomes
useful when genetic algorithm is later applied to select the
optimal configuration as part of the global adaptation
mechanism.

While HE2 is carrying out its goal, suddenly a turbulent
gale of 25 m/s blows in zone[0][2]. The change in weather is
detected by the sensors in the zone and the sensor installed on
HE2, and is updated to the local environment storage. As
HE2 is assigned a <<Surveillant>> role which is not <<Team
Leader>>, its MAPE Core Bundle components are bound
with Local Adaptation components.

As in Fig. 2 (2), local adaptation is carried out in the
following order: WeatherMonitor periodically reads sensor
data from LocalEnvironment storage, calculates gauge values
to reflect the current environment zone[0][2], and sends the
data to WeatherAnalyzer to diagnose if current environment
in zone[0][2] violates HE2 assignment. The diagnose results
is passed to PullOutPlanner as parameters. PullOutPlanner
creates a component reconfiguration plan for HE2 to land
safely in a safe region in zone[0][2] and sends the plan to
AdaptationExecutor. If any component specified in the
reconfiguration plan does not exist within the particular
system, AdaptationExecutor requests it from
ITEBridgeService by passing the required service features as
parameters. ITEBridgeService is an OSGi bundle which
provides access to external resources. The REST[8] style
services provided by ITEBridgeService enables the proposed
framework to share components, services or other resources
among all participants. When all components necessary to
land HE2 have been secured, the results of component
reconfiguration is delivered to ConfigurationManager within
HE2 as to update its LocalConfiguration storage. Effector in
HE2’s controller then reads the updated new configuration
and implements the actual component reconfiguration. Lastly,
the changed environmental information in zone[0][2] and the
service-incapable status of HE2 are updated to ITE Global
Knowledge through ITEConfigurationManager.

Figure 2. Local and global mechanism by applying the adaptable middleware framework and GUI form of simulated Unmanned Forest Monitor

B. Global Adaptation Mechanism for Dynamic
Reonfiguration of the Entire IT Ecosystem
In the given case, AP2(unmanned airplane) was assigned

the role of <<Chief Gardner>>. As HE2 implements its local
adaptation to land during turbulence, AP2 starts to find a new
optimal configuration against the changed situation as
depicted in Fig.2 (3). The following process is for the global
adaptation for finding a new optimal configuration:
CollaborationMonitor periodically reads the global
configuration and calculates the current configuration’s
global collaboration score. Global collaboration score is
obtained as the sum of all collaboration scores of gene
chromosomes (participant and environment zone pair)
comprising a configuration. The global collaboration score
represents how effective the particular assignment of the
selected participant to the zone was. Details of calculating
each collaboration score are not presented in this paper. The
result of global collaboration score calculation is passed on to
CollaborationAnalyzer as a gauge value. If the global
collaboration score is below a predefined threshold,
Collaboration Analyzer identifies gene chromosomes that
violate any constraints and passes them to Collaboration
Planner as its diagnosis result. Fig. 2 illustrates a case where
the gene chromosome (HE2, zone[0][2]) is passed on to
CollaborationPlanner.

First, CollaborationPlanner takes invalid gene
chromosomes passed on as a diagnosis result and generates
second generation population by mutating the unmanned
vehicle information with other possible candidates applicable
to the particular zone. Then collaboration scores for the
newly generated gene chromosomes are individually
calculated, and the chromosome with the highest score is
selected and included to the next configuration. Fig. 2 (3)
shows a case where the second generation population (UAV1,
zone[0][2]) and (JE2, zone[0][2]) have been generated to

replace the invalid gene chromosome (HE2, zone[0][2]).
After comparing their collaboration scores, in the next
configuration (UAV1, zone[0][2]) will replace (HE2,
zone[0][2]) because it has a higher collaboration score. If
multiple invalid gene chromosomes have been detected, the
above process is repeatedly applied to each invalid gene
chromosome as to obtain the optimal configuration with the
highest global collaboration score.

Reconfiguring or moving participant systems using
obtained optimal configuration requires a plan. In the current
example, the change of configuration from chromosome
(HE2, zone[0][2]) to chromosome(UAV1, zone[0][2])
implies that HE2 assigned at zone[0][2] must withdraw and
UAV1 must move to the zone[0][2]. AP2, now assuming
<<Team Leader>> role, issues orders to other participants
using ITEBridgeService as to move them sequentially
according to the adaptation plan. Then, ITEBridgeService
activates external ParticipantService to implement the
operation ordered by AdaptationExecutor. Lastly, the new
configuration obtained as the result of dynamic
reconfiguration is updated to ITE Global Knowledge.

The right-most part of Fig. 2 shows the captured GUI
form representing the status of nine forest zones in the
simulated IT Ecosystem for unmanned forest management,
along with the configuration of unmanned vehicles stationed.
As the result of the aforementioned mechanisms in operation,
we can visually confirm that UAV1 is newly stationed in the
forest zone[0][2] which is highlighted by a dashed box.

IV. EVALUATION
Here we look at the performance evaluation results. The

main objective of the proposed framework is to provide
efficient global adaptation mechanism to guarantee
sustainability in entire IT Ecosystem without requiring
human intervention. To evaluate the performance, we have

created a UFM IT Ecosystem that simulates continuous
weather change (wind velocity, weather type, etc.) to trigger
series of global system reconfigurations. Weather changes
are divided into two types: slow and rapid. Another element
of change introduced is fuel consumption: an internal status
of participant systems simulated in correspondence to the
distance covered by the participant. Fuel consumption
represents fuel efficiency determined for each vehicle.

Graphs in Fig. 3 trace the trends in cost, benefit, and
global collaboration scores (c.score in the graphs) of optimal
configurations selected at every monitoring interval. Cost
and benefit factors of each IT ecosystem naturally depend
on its corresponding domain. In this case, the required
amount of money for operating each unmanned vehicle is
calculated as a cost value, and the coverage of drought
monitoring work by an individual unmanned vehicle per unit
time is calculated as a benefit value. c.score is derived from
the cost and benefit values and represents the degree of
configuration efficiency of the 9 participants in the forest
zone; a higher c.score indicates a more efficient configuration.
Graphs (a) and (c) at the left of Fig. 3 depict the changes in
cost, benefit, and c.score values in such cases where the
proposed dynamic reconfiguration framework is not provided
to participant systems that become incapable of continuing
Monitor Draught goal due to weather changes or fuel
shortages. In case of graph (a) where weather changes were
mild, c.score decrease is found from the 6th monitoring
interval. This decrease indicates an event where one or more
participants in the forest zone, among 9 total, have become
unavailable. As time passes, the number of disabled
participants increases dramatically around the 8th monitoring
interval, and by the 9th interval all participants have become
disabled. Since all participants are disabled at the 14th interval,
further monitoring renders no additional information.
Therefore, in graph (a), and in all other graphs in Fig. 3, the

scope of trend tracing is limited from the first to the 15th
monitoring interval.

Like graph (a), graph (c) depicts the trends in cost, benefit,
and c.score values when initially positioned participant
systems operated statically. However, in contrast with graph
(a), graph (c) represents an environment in which weather
conditions change more rapidly. As the result, where graph
(a) shows gradual trends change, graph (c) shows acute
decrease in c.score starting from the second monitoring
interval where the participants begin to fall into service
unavailable status. The point of time when all participant
become unavailable remains the same at the 14th interval, but
the average c.score during 15 monitoring intervals was
significantly lower in the weather turbulence in the
environment of graph (c), measured at -3.3 which is much
lower than -1.09 of graph (a). Rapid weather changes
accelerated the occurrence of constraint violations in
participant unmanned vehicles, drastically reducing
collaboration efficiency among participants.

Unlike graph (a) and (c), the two graphs (b) and (d) on the
right side of Fig. 3 show collaboration scores of UFM IT
Ecosystem where the proposed global adaptation mechanism
is applied. In contrast with (a) and (c) where dynamic
reconfiguration is not in effect, it can be seen that measured
cost, benefit, and c.score values are stable at all monitoring
intervals regardless of weather conditions. Initial
configuration of participants in each forest zone was identical
as graph (a) and (c). Likewise, the first participant to become
unavailable occurs on the second interval, as the result of
local internal adaptations in each participant that leads to a
constraint violation. However, the values captured in graph
(b) and (d) indicate that the global adaptation executed by a
Team Leader participant ultimately ensured sustained service
where unavailable participants were replaced with the most
appropriate replacement participant.

Figure 3. Calculated results of cost-benefit value and collaboration score on selected optimal configuration extracted from each take: (a)(c) without global

adaptation mechanism vs. (b)(d) with global adaptation mechanism

In case of graph (b) where weather changes were relatively
mild, the value trends are stable without any major fluctuation
with average c.score at 4.36. This value is significantly higher
than the average of -1.09 in graph (a) where no global
adaptation cycles were applied. In case of graph (d) where
rapid weather changes took place, value changes in cost,
benefit, and c.score can be observed. However these changes
are minor in comparison with graph (c) where global
adaptation was not in use: the average in graph (d) is 2.76,
considerably higher than -3.3 in graph (c).

Even acknowledging the limited nature of simulated
environment test results, it can be safely assumed that the
proposed framework’s local adaptation and global adaptation
mechanism played a positive role in ensuring sustainability of
services that are vital in completing the goal of the entire IT
Ecosystem.

V. RELATED WORK
There are several frameworks for single self-adaptive

systems, such as Rainbow [5], MUSIC [6], and DiVA [7].
Such frameworks are invented to support MAPE-K adaptation
control loops. Rainbow [5] framework introduced a reusable
infrastructure as to separate concerns between adaptation and
application logic, thereby providing architecture-based self-
adaptability. While the reusable infrastructure enables self-
adaptation with relatively small cost and effort, the Rainbow
framework is limited in that its scope supports self-adaptation
only in certain situations when situation-specific action rules
are applicable. MUSIC [6] combines previous component-
based development methods with Service Oriented
Architecture (SOA) in that it breaks down all necessary
components of self-adaptation into business logic, context
awareness, and adaptation concerns as to respond to the
distributed and dynamic requirements in mobile environments.
However, MUSIC is limited in its need for manual adaptation
plan update or replacement because the framework does not
include goal management features in its MAPE-K self-
adaptation layers. DiVA [7] mainly provides methodologies
and framework for developing self-adaptive systems and for
managing variability of self-adaptive systems. Its architecture
is based on the characteristics of aspect-oriented programming
and supports self-adaptation through dynamic addition of
appropriate aspects in the form of plug-ins.

While existing works have differentiated benefits, they
share the common limitation that self-adaptation is limited to
single systems with focus on local adaptation. As their
architecture is proposed as conceptual models, developers
implementing self-adaptive applications in real-life must rely
on their own experiences to find working solutions in their
actual environments.

VI. CONCLUSIONS AND ON GOING WORK
In this paper, we have proposed an adaptation framework

supporting local adaptation for individual participant system
as well as global adaptation across the entire IT Ecosystem.
Where existing framework architectures mainly focus on the
concept of adaptation, our research details components at a

more concrete level. An IT Ecosystem literally creates an
ecosystem composed of individual systems assigned to
achieve a common goal even without human intervention. In
this context, reconfiguration is a core capability in maintaining
overall balance and sustainability in service operation across
domains covered by IT Ecosystem. Our work provides
optimal configuration in response to environmental changes.
Quantitative evaluation shows that the proposed dynamic
reconfiguration framework helps IT Ecosystem provide
sustainable services even in frequent environmental changes
and through successive failures in its participant systems.

In our future research, we plan to continue our designed
experiments to quantitatively verify how genetic algorithm
reduces the overhead from adaptation cycles to determine
optimal configurations. Further, we will continue to self-
evaluate as we extend our framework to other domains of IT
Ecosystems.

ACKNOWLEDGMENT
This work was supported by the Industrial Convergence

Foundation Technology Development Program of
MSIP/KEIT [10044457, Development of Autonomous
Intelligent Collaboration Framework for Knowledge Bases
and Smart Devices] and Next-Generation Information
Computing Development Program through the National
Research Foundation of Korea(NRF) funded by the Ministry
of Science, ICT & Future Planning [No. 2012M3C4A7033
348].

REFERENCES
[1] A. Rausch, J. Muller, D. Niebuhr, S. Herold, and U. Goltz, “IT

Ecosystems: A new paradigm for engineering complex
adaptive software systems,” In Digital Ecosystems
Technologies (DEST), 2012 6th IEEE International
Conference on, pp. 1-6, 18-20 June 2012.

[2] K. Manikas and K. M. Hansen, “Software ecosystems - a
systematic literature review,” Journal of Systems and Software,
vol. 86(5), pp. 1294-1306, 2013.

[3] IBM Autonomic Computing Architecture Team, “An
Architectural Blueprint for Autonomic Computing, Tech.Rep,”
IBM Hawthorne, NY, USA, June 2006.

[4] http://www.osgi.org/Specifications/HomePage
[5] D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P. Steenkiste.

“Rainbow: architecture-based self-adaptation with reusable
infrastructure,” , IEEE Computer, vol. 37(10), pp. 46-54, 2004.

[6] S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn, J.
Lorenzo, A. Mamelli, and G. A. Papadopoulos. “A
development framework and methodology for self-adapting
applications in ubiquitous computing environments,” Journal
of Systems and Software, vol. 85(12), pp. 2840-2859,
December 2012.

[7] A.Z, M. Araujo, F. Kuiper, D. Valente, J. Wenkstern, R.Z.
“DIVAs 4.0: A Multi-Agent Based Simulation Framework,”
Distributed Simulation and Real Time Applications (DS-RT),
2013 IEEE/ACM 17th International Symposium on, pp.105-
114, Oct. 30 2013-Nov. 1 2013.

[8] http://en.wikipedia.org/wiki/Representational_state_transfer

