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Abstract — Impressive advancements in recent smart devices 
suggests that the direction of software engineering’s future is in 
development of System of Systems (SoS). Among many 
concepts that emerged from SoS, we focus on IT Ecosystem – a 
type of SoS that evolves itself in response to unplanned 
environment changes. Maintaining autonomy of its participant 
systems while preserving controllability over entire ecosystem 
involves various challenges that we need to solve. In this paper, 
we propose a middleware framework for supporting global 
adaptation of IT Ecosystem which guides how to determine the 
optimal adaptation strategy for configuring available systems 
to satisfy local constraints while achieving global goals. To 
support the selection of optimal set of participant systems, we 
have applied genetic algorithm. The effectiveness of our 
approach is evaluated through analyzing the results of a 
simulated unmanned forest management IT Ecosystem 
running the proposed framework while undergoing various 
environmental changes.  

Keywords-self-adaptive systems; dynamic reconfiguration; 
IT ecosystems. 

I. INTRODUCTION  
We live among numerous and constant interactions with 

smart devices running software. Recent technologies such as 
cloud computing and Internet of Things (IoT) herald a 
paradigm shift in the operation of software systems, where its 
focus is transiting from operation of a single system to 
operation of System of Systems (SoS). A number of recent 
researches built on the idea of SoS introduced the new 
concept of IT Ecosystem [2][3]. An IT Ecosystem is a 
complex system compound composed of interactive and 
autonomous individual systems, adaptive as a whole based on 
local adaptivity [1]. Individual component systems within an 
IT Ecosystem must constantly monitor their environmental 
contexts in their working territories. If an identified 
environment change demands reactive change to the system 
configuration in a participant, that participant dynamically 
changes its configuration using predefined strategy or 
knowledge accumulated from previous learnings. The local 
adaptation loop can be identified as a MAPE-K [3] loop and 
can be realized through application of adaptation frameworks 
such as Rainbow [5], MUSIC [6], or DiVA [7]. 

To create a sustainable IT Ecosystem, we need more than 
a local adaptation mechanism: we need a means for global 

adaptation as to enable IT Ecosystem-wide dynamic 
reconfiguration in reaction to environmental changes. 
Unfortunately, existing adaptation frameworks mainly offer 
benefits limited to local adaption of a single system, 
restrictive in their applicability to ensuring sustainability 
across entire IT Ecosystem. Therefore, in our research, we 
propose a new adaptation middleware framework designed to 
support both local and global adaptation mechanisms.  

While the proposed framework is to be included in all 
participant systems, not all components are always run. 
Among the constituent components, those which implement 
local adaptation mechanism in response to changes in 
individual environments are always run. On the other hand, 
components that execute global adaptation mechanism via 
deploying new participant systems or dynamically 
reconfiguring existing systems in response to drastic 
environmental changes or significant performance drop 
across the entire IT Ecosystem are only run on participant 
system with <<Team Leader>> role. The role of Team 
Leader is assigned dynamically, based on the environmental 
situations of participant systems. The global adaptation 
mechanism applies a genetic algorithm to make decisions 
regarding where to place the most appropriate participant 
system within a working environment, because genetic 
algorithms can solve computational overhead problems when 
IT Ecosystems grow in scale.  

We have implemented our proposed adaptation 
framework in a case study of IT Ecosystem for unmanned 
forest management system, which is among the target 
domains of our on-going research project. The case study will 
help understand the benefits, along with the drawbacks, of the 
proposed adaptation framework. The rest of the paper is as 
follows: Section 2 introduces the proposed middleware 
framework for IT Ecosystem adaptation. Section 3 illustrates 
our proposed mechanisms in use for local and global 
adaptations within the IT Ecosystem for unmanned forest 
management. Section 4 discusses the effectiveness of the 
global adaptation mechanism of the proposed framework 
through analysis of experiment results. Section 5 reviews 
related works addressing self-adaptation problems. Finally, 
in Section 6, we present the conclusions for this study, along 
with plans for our on-going work. 
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II. ADAPTABLE MIDDLEWARE FRAMEWORK FOR IT 
ECOSYSTEM  

In this section, we provide an overview of the proposed 
adaptation middleware framework for IT Ecosystem. The 
architecture of the framework is composed of five packages: 
Felix, MAPE Core Bundle, Local Adaptation, ITE Global 
Adaptation, and ITE Bridge (as shown in Fig. 1). Felix 
package acts as the bridge between Android platform and 
OSGi [4] which provides dynamic life cycle management 
services for components. As depicted in Fig. 1, the proposed 
framework targets Android platform because of the 
platform’s support for mobility and for its flexibility in its 
applicability to various application domains where it can 
control a wide range of passive devices in individual 
domain’s IT Ecosystems. 

Felix package includes two major components: 
Adaptation Bundle Activator which invokes bundle service 
components required to run in higher level packages 
according to system roles assigned at the participant system’s 
initiation time, and Configuration Manager which manages 
configuration changes when the need for internal component 
reconfiguration arises due to external environment change. 
Effectors implemented on Android follows instructions given 
by Configuration Manager to carry out the actual 
configuration change. 

MAPE Core Bundle package includes MAPE-K cycle 
managing components which enables applications to 

perceive its environments and determine the next system 
action to take. Components included in either ITE Global 
Adaptation package and Local Adaptation package are 
architecturally above MAPE Core Bundle package and 
provided as OSGi bundles as to leverage basic component 
lifecycle management services. All components included in 
Felix package and MAPE Core Bundle package are domain 
independent components. Local adaptation package, on the 
other hand, includes different components depending on what 
missions individual systems must carry out in order to 
achieve the global goal of the ITE Ecosystem they participate 
in. While basic skeleton components for maintaining MAPE 
cycle operation threads are within MAPE Core Bundle 
package, the domain-specific logic determining what to 
monitor in order to analyze situational changes and what 
action to execute are implemented by components included 
in Local Adaptation package. In short, actual adaptation is 
executed by binding Local Adaptation package components 
to MAPE Core Bundle package components.  

Information regarding the binding between MAPE Core 
Bundle components and Local Adaptation components are 
stored in Bundle Registry within Felix package. As 
participant systems are activated, Adaptation Bundle 
Activator is invoked to look up for information in Bundle 
Registry to check which executable bundle should be bound 
to MAPE Core Bundle, and thereafter activate its 
corresponding bundles. 

 

 
Figure 1. Overview of the proposed adaptable middleware framework for IT Ecosystem 



While ITE Global Adaptation package is included in all 
participant systems, it is only run on the participant system 
assigned with <<Team Leader>> role, tasked to monitor the 
collaboration performance of the entire IT Ecosystem. Where 
Local Adaptation package components provide functional 
services required to achieve domain goals, ITE Global 
Adaptation package components measure the collaboration 
efficiency among participant systems executing individual 
local adaptations, triggering reconfiguration of participant 
systems when the efficiency is below target threshold. 

The core capability of maintaining overall-balanced and 
sustained service across IT Ecosystem’s domain is provided 
by the ITE Global Adaptation mechanism. Details of global 
adaptation mechanism are introduced alongside a specific 
case example in the next section. Components in Local 
Adaptation package and ITE Global Adaptation package are 
designed as plug-ins for the four components defined in 
MAPE Core Bundle package. The components within the two 
packages in Fig.1 illustrate components for unmanned forest 
management IT Ecosystem, which will be introduced in 
Section 3. However, the components are replaceable with 
other components as the target domain changes. 

Global ITE Knowledge package stores knowledge to be 
shared among participant systems and includes ITE 
Configuration Manager which provides the APIs for 
accessing the knowledge. Knowledge stored at Global ITE 
Knowledge includes environment model which reflects the 
environment in which IT Ecosystem operates, profiles of 
participant systems, and constraints or rules that must be 
considered when mapping participant systems in their 
working regions. In addition, the model for currently running 
global configuration is also managed by this package. Such 
global knowledge can be stored on a separate server or on a 
cloud storage. 

Finally, ITE Bridge package handles requests for remote 
systems when required service components in demand are not 
within the local system and provides protocols for activating 
passive devices which are not directly controlled by local 
systems. 

III. A CASE OF ADAPTATION MECHAMISM APPLICATION: 
UNMANNED FOREST MANAGEMENT IT ECOSYSTEM 

To demonstrate the proposed framework, in this Section 
we describe a simulated IT Ecosystem for unmanned forest 
management (hereafter UFM IT Ecosystem). UFM IT 
Ecosystem is a management system equipped with twelve 
unmanned aircrafts, helicopters, and ground vehicles for the 
purpose of managing nine forest zones each 100 km in size. 
Unmanned vehicles assigned to each forest zone utilize 
sensors and actuators to achieve their goals. In our simulated 
case, we highlight the process of dynamic reconfiguration 
within UFM IT Ecosystem in achieving its Monitor Drought 
goal. Depending on the situation, twelve unmanned vehicles 
are assigned to appropriate roles as to achieve the goal. An 
unmanned vehicle with <<Chief Gardner>> role activates 
UFM IT Ecosystem’s global adaptation cycle to maintain the 
Ecosystem’s sustainability. On the other hand, nine 

<<Surveillant>> vehicles adjust their driving routes in 
response to the layout of obstacles in their assigned zones to 
achieve their goal Monitor Drought. In this context, Fig. 2 
illustrates an instance of dynamic sequence of adaptation 
mechanisms in operation where a weather state change 
triggers a constraint rule violation in a <<Surveillant>> role 
vehicle, causing it to withdraw from its positioned forest zone, 
leading to local adaptation mechanisms within the vehicle 
along with global adaptation executed by a <<Chief 
Gardner>> as to select the optimal candidate vehicle for 
providing sustainable service in the zone. 

A. Local Adaptation Mechanism for Dynamic 
Reconfiguration of Individual Participant Systems  
Initially, the forest zone[0][2] has fair weather, has a lake 

in the zone, and has high forest density. An unmanned 
helicopter HE2 has been selected as the appropriate 
<<Surveillant>> for the environment in this zone and is 
performing Monitor Draught goal. We define the paired 
information of a participant and a zone in the form of (HE2, 
zone[0][2]) as a chromosome. Such definition becomes 
useful when genetic algorithm is later applied to select the 
optimal configuration as part of the global adaptation 
mechanism.  

While HE2 is carrying out its goal, suddenly a turbulent 
gale of 25 m/s blows in zone[0][2]. The change in weather is 
detected by the sensors in the zone and the sensor installed on 
HE2, and is updated to the local environment storage. As 
HE2 is assigned a <<Surveillant>> role which is not <<Team 
Leader>>, its MAPE Core Bundle components are bound 
with Local Adaptation components.  

As in Fig. 2 (2), local adaptation is carried out in the 
following order: WeatherMonitor periodically reads sensor 
data from LocalEnvironment storage, calculates gauge values 
to reflect the current environment zone[0][2], and sends the 
data to WeatherAnalyzer to diagnose if current environment 
in zone[0][2] violates HE2 assignment. The diagnose results 
is passed to PullOutPlanner as parameters. PullOutPlanner 
creates a component reconfiguration plan for HE2 to land 
safely in a safe region in zone[0][2] and sends the plan to 
AdaptationExecutor. If any component specified in the 
reconfiguration plan does not exist within the particular 
system, AdaptationExecutor requests it from 
ITEBridgeService by passing the required service features as 
parameters. ITEBridgeService is an OSGi bundle which 
provides access to external resources. The REST[8] style 
services provided by ITEBridgeService enables the proposed 
framework to share components, services or other resources 
among all participants. When all components necessary to 
land HE2 have been secured, the results of component 
reconfiguration is delivered to ConfigurationManager within 
HE2 as to update its LocalConfiguration storage. Effector in 
HE2’s controller then reads the updated new configuration 
and implements the actual component reconfiguration. Lastly, 
the changed environmental information in zone[0][2] and the 
service-incapable status of HE2 are updated to ITE Global 
Knowledge through ITEConfigurationManager. 



 
Figure 2. Local and global mechanism by applying the adaptable middleware framework and GUI form of simulated Unmanned Forest Monitor 

B. Global Adaptation Mechanism for Dynamic 
Reonfiguration of  the Entire IT Ecosystem 
In the given case, AP2(unmanned airplane) was assigned 

the role of <<Chief Gardner>>. As HE2 implements its local 
adaptation to land during turbulence, AP2 starts to find a new 
optimal configuration against the changed situation as 
depicted in Fig.2 (3). The following process is for the global 
adaptation for finding a new optimal configuration: 
CollaborationMonitor periodically reads the global 
configuration and calculates the current configuration’s 
global collaboration score. Global collaboration score is 
obtained as the sum of all collaboration scores of gene 
chromosomes (participant and environment zone pair) 
comprising a configuration. The global collaboration score 
represents how effective the particular assignment of the 
selected participant to the zone was. Details of calculating 
each collaboration score are not presented in this paper. The 
result of global collaboration score calculation is passed on to 
CollaborationAnalyzer as a gauge value. If the global 
collaboration score is below a predefined threshold, 
Collaboration Analyzer identifies gene chromosomes that 
violate any constraints and passes them to Collaboration 
Planner as its diagnosis result. Fig. 2 illustrates a case where 
the gene chromosome (HE2, zone[0][2]) is passed on to 
CollaborationPlanner. 

First, CollaborationPlanner takes invalid gene 
chromosomes passed on as a diagnosis result and generates 
second generation population by mutating the unmanned 
vehicle information with other possible candidates applicable 
to the particular zone.  Then collaboration scores for the 
newly generated gene chromosomes are individually 
calculated, and the chromosome with the highest score is 
selected and included to the next configuration. Fig. 2 (3) 
shows a case where the second generation population (UAV1, 
zone[0][2]) and (JE2, zone[0][2]) have been generated to 

replace the invalid gene chromosome (HE2, zone[0][2]). 
After comparing their collaboration scores, in the next 
configuration (UAV1, zone[0][2]) will replace (HE2, 
zone[0][2]) because it has a higher collaboration score. If 
multiple invalid gene chromosomes have been detected, the 
above process is repeatedly applied to each invalid gene 
chromosome as to obtain the optimal configuration with the 
highest global collaboration score.  

Reconfiguring or moving participant systems using 
obtained optimal configuration requires a plan. In the current 
example, the change of configuration from chromosome 
(HE2, zone[0][2]) to chromosome(UAV1, zone[0][2]) 
implies that HE2 assigned at zone[0][2] must withdraw and 
UAV1 must move to the zone[0][2]. AP2, now assuming 
<<Team Leader>> role, issues orders to other participants 
using ITEBridgeService as to move them sequentially 
according to the adaptation plan. Then, ITEBridgeService 
activates external ParticipantService to implement the 
operation ordered by AdaptationExecutor. Lastly, the new 
configuration obtained as the result of dynamic 
reconfiguration is updated to ITE Global Knowledge. 

The right-most part of Fig. 2 shows the captured GUI 
form representing the status of nine forest zones in the 
simulated IT Ecosystem for unmanned forest management, 
along with the configuration of unmanned vehicles stationed. 
As the result of the aforementioned mechanisms in operation, 
we can visually confirm that UAV1 is newly stationed in the 
forest zone[0][2] which is highlighted by a dashed box. 

IV. EVALUATION 
Here we look at the performance evaluation results. The 

main objective of the proposed framework is to provide 
efficient global adaptation mechanism to guarantee 
sustainability in entire IT Ecosystem without requiring 
human intervention. To evaluate the performance, we have 



created a UFM IT Ecosystem that simulates continuous 
weather change (wind velocity, weather type, etc.) to trigger 
series of global system reconfigurations. Weather changes 
are divided into two types: slow and rapid. Another element 
of change introduced is fuel consumption: an internal status 
of participant systems simulated in correspondence to the 
distance covered by the participant. Fuel consumption 
represents fuel efficiency determined for each vehicle. 

Graphs in Fig. 3 trace the trends in cost, benefit, and 
global collaboration scores (c.score in the graphs) of optimal 
configurations selected at every monitoring interval. Cost 
and benefit factors of each IT ecosystem naturally depend 
on its corresponding domain. In this case, the required 
amount of money for operating each unmanned vehicle is 
calculated as a cost value, and the coverage of drought 
monitoring work by an individual unmanned vehicle per unit 
time is calculated as a benefit value. c.score is derived from 
the cost and benefit values and represents the degree of 
configuration efficiency of the 9 participants in the forest 
zone; a higher c.score indicates a more efficient configuration. 
Graphs (a) and (c) at the left of Fig. 3 depict the changes in 
cost, benefit, and c.score values in such cases where the 
proposed dynamic reconfiguration framework is not provided 
to participant systems that become incapable of continuing 
Monitor Draught goal due to weather changes or fuel 
shortages.  In case of graph (a) where weather changes were 
mild, c.score decrease is found from the 6th monitoring 
interval. This decrease indicates an event where one or more 
participants in the forest zone, among 9 total, have become 
unavailable. As time passes, the number of disabled 
participants increases dramatically around the 8th monitoring 
interval, and by the 9th interval all participants have become 
disabled. Since all participants are disabled at the 14th interval, 
further monitoring renders no additional information. 
Therefore, in graph (a), and in all other graphs in Fig. 3, the 

scope of trend tracing is limited from the first to the 15th 
monitoring interval. 

Like graph (a), graph (c) depicts the trends in cost, benefit, 
and c.score values when initially positioned participant 
systems operated statically. However, in contrast with graph 
(a), graph (c) represents an environment in which weather 
conditions change more rapidly. As the result, where graph 
(a) shows gradual trends change, graph (c) shows acute 
decrease in c.score starting from the second monitoring 
interval where the participants begin to fall into service 
unavailable status. The point of time when all participant 
become unavailable remains the same at the 14th interval, but 
the average c.score during 15 monitoring intervals was 
significantly lower in the weather turbulence in the 
environment of graph (c), measured at -3.3 which is much 
lower than -1.09 of graph (a). Rapid weather changes 
accelerated the occurrence of constraint violations in 
participant unmanned vehicles, drastically reducing 
collaboration efficiency among participants. 

Unlike graph (a) and (c), the two graphs (b) and (d) on the 
right side of Fig. 3 show collaboration scores of UFM IT 
Ecosystem where the proposed global adaptation mechanism 
is applied. In contrast with (a) and (c) where dynamic 
reconfiguration is not in effect, it can be seen that measured 
cost, benefit, and c.score values are stable at all monitoring 
intervals regardless of weather conditions. Initial 
configuration of participants in each forest zone was identical 
as graph (a) and (c). Likewise, the first participant to become 
unavailable occurs on the second interval, as the result of 
local internal adaptations in each participant that leads to a 
constraint violation. However, the values captured in graph 
(b) and (d) indicate that the global adaptation executed by a 
Team Leader participant ultimately ensured sustained service 
where unavailable participants were replaced with the most 
appropriate replacement participant.  

 
Figure 3. Calculated results of cost-benefit value and collaboration score on selected optimal configuration extracted from each take: (a)(c) without global 

adaptation mechanism vs. (b)(d) with global adaptation mechanism 



In case of graph (b) where weather changes were relatively 
mild, the value trends are stable without any major fluctuation 
with average c.score at 4.36. This value is significantly higher 
than the average of -1.09 in graph (a) where no global 
adaptation cycles were applied. In case of graph (d) where 
rapid weather changes took place, value changes in cost, 
benefit, and c.score can be observed. However these changes 
are minor in comparison with graph (c) where global 
adaptation was not in use: the average in graph (d) is 2.76, 
considerably higher than -3.3 in graph (c).  

Even acknowledging the limited nature of simulated 
environment test results, it can be safely assumed that the 
proposed framework’s local adaptation and global adaptation 
mechanism played a positive role in ensuring sustainability of 
services that are vital in completing the goal of the entire IT 
Ecosystem. 

V. RELATED WORK 
There are several frameworks for single self-adaptive 

systems, such as Rainbow [5], MUSIC [6], and DiVA [7]. 
Such frameworks are invented to support MAPE-K adaptation 
control loops. Rainbow [5] framework introduced a reusable 
infrastructure as to separate concerns between adaptation and 
application logic, thereby providing architecture-based self-
adaptability. While the reusable infrastructure enables self-
adaptation with relatively small cost and effort, the Rainbow 
framework is limited in that its scope supports self-adaptation 
only in certain situations when situation-specific action rules 
are applicable. MUSIC [6] combines previous component-
based development methods with Service Oriented 
Architecture (SOA) in that it breaks down all necessary 
components of self-adaptation into business logic, context 
awareness, and adaptation concerns as to respond to the 
distributed and dynamic requirements in mobile environments. 
However, MUSIC is limited in its need for manual adaptation 
plan update or replacement because the framework does not 
include goal management features in its MAPE-K self-
adaptation layers. DiVA [7] mainly provides methodologies 
and framework for developing self-adaptive systems and for 
managing variability of self-adaptive systems. Its architecture 
is based on the characteristics of aspect-oriented programming 
and supports self-adaptation through dynamic addition of 
appropriate aspects in the form of plug-ins. 

While existing works have differentiated benefits, they 
share the common limitation that self-adaptation is limited to 
single systems with focus on local adaptation. As their 
architecture is proposed as conceptual models, developers 
implementing self-adaptive applications in real-life must rely 
on their own experiences to find working solutions in their 
actual environments. 

VI. CONCLUSIONS AND ON GOING WORK 
In this paper, we have proposed an adaptation framework 

supporting local adaptation for individual participant system 
as well as global adaptation across the entire IT Ecosystem. 
Where existing framework architectures mainly focus on the 
concept of adaptation, our research details components at a 

more concrete level. An IT Ecosystem literally creates an 
ecosystem composed of individual systems assigned to 
achieve a common goal even without human intervention. In 
this context, reconfiguration is a core capability in maintaining 
overall balance and sustainability in service operation across 
domains covered by IT Ecosystem. Our work provides 
optimal configuration in response to environmental changes. 
Quantitative evaluation shows that the proposed dynamic 
reconfiguration framework helps IT Ecosystem provide 
sustainable services even in frequent environmental changes 
and through successive failures in its participant systems.  

In our future research, we plan to continue our designed 
experiments to quantitatively verify how genetic algorithm 
reduces the overhead from adaptation cycles to determine 
optimal configurations. Further, we will continue to self-
evaluate as we extend our framework to other domains of IT 
Ecosystems. 

ACKNOWLEDGMENT 
This work was supported by the Industrial Convergence 

Foundation Technology Development Program of 
MSIP/KEIT [10044457, Development of Autonomous 
Intelligent Collaboration Framework for Knowledge Bases 
and Smart Devices] and Next-Generation Information 
Computing Development Program through the National 
Research Foundation of Korea(NRF) funded by the Ministry 
of Science, ICT & Future Planning [No. 2012M3C4A7033 
348]. 

REFERENCES 
[1] A. Rausch, J. Muller, D. Niebuhr, S. Herold, and U. Goltz, “IT 

Ecosystems: A new paradigm for engineering complex 
adaptive software systems,” In Digital Ecosystems 
Technologies (DEST), 2012 6th IEEE International 
Conference on, pp. 1-6, 18-20 June 2012. 

[2] K. Manikas and K. M. Hansen, “Software ecosystems - a 
systematic literature review,” Journal of Systems and Software, 
vol. 86(5), pp. 1294-1306, 2013. 

[3] IBM Autonomic Computing Architecture Team, “An 
Architectural Blueprint for Autonomic Computing, Tech.Rep,” 
IBM Hawthorne, NY, USA, June 2006. 

[4] http://www.osgi.org/Specifications/HomePage 
[5] D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P. Steenkiste. 

“Rainbow: architecture-based self-adaptation with reusable 
infrastructure,” , IEEE Computer, vol. 37(10), pp. 46-54, 2004.  

[6] S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn, J. 
Lorenzo, A. Mamelli, and G. A. Papadopoulos. “A 
development framework and methodology for self-adapting 
applications in ubiquitous computing environments,” Journal 
of Systems and Software, vol. 85(12), pp. 2840-2859, 
December 2012. 

[7] A.Z, M. Araujo, F. Kuiper, D. Valente, J. Wenkstern, R.Z. 
“DIVAs 4.0: A Multi-Agent Based Simulation Framework,” 
Distributed Simulation and Real Time Applications (DS-RT), 
2013 IEEE/ACM 17th International Symposium on, pp.105-
114, Oct. 30 2013-Nov. 1 2013. 

[8] http://en.wikipedia.org/wiki/Representational_state_transfer 


