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Abstract—The development of Self-adaptive Software (SaS)
presents specific innovative features compared to traditional
ones since this type of software constantly deals with structural
and/or behavioral changes at runtime. Capabilities of human
administration are showing a decrease in relative effectiveness,
since some tasks have been difficult to manage introducing
potential problems, such as change management and simple
human error. Self-healing systems, a system class of SaS, have
emerged as a feasible solution in contrast to management
complexity, since such system often combines machine learning
techniques with control loops to reduce the number of situations
requiring human intervention. This paper presents a framework
based on learning techniques and the control loop (MAPE-K)
to support the decision-making activity for SaS. In addition, it
is noteworthy that this framework is part of a wider project
developed by the authors of this paper in previous work (i.e.,
reference architecture for SaS [1]). Aiming to present the viability
of our framework, we have conducted a case study using a
flight plan module for Unmanned Aerial Vehicles. The results
have shown an environment accuracy of about 80%, enabling
us to project good perspectives of contribution to the SaS area
and other domains of software systems, and enabling knowledge
sharing and technology transfer from academia to industry.
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I. INTRODUCTION

Over recent years, one has observed a significant increase
in the complexity of software systems and their computa-
tional environments. In general, such systems share functional,
nonfunctional, physical, and virtual requirements. The human
ability to manage systems has shown as inadequate when their
complexity increases. Moreover, involuntary injection of faults
has often configured as one of the major causes of system
failures (especially in the context of Self-adaptive Software –
SaS). In SaS, the design decisions are moved towards runtime
to control dynamic behavior and individual reasons of such
systems about their states and environments.

Reference Architectures (RAs) refer to a special class of
software architecture that have become an important ele-
ment to systematically reuse architectural knowledge [2], [3].
Thus, in previous work [1], [4] we have proposed Reference
Architecture for SaS (RA4SaS) – an architecture that provides
a guideline set for SaS development and an automated ap-
proach for self-adaptation of the software entities1 at runtime

1 From this point onwards, SaS may be also referred to as software entities
or simply entities.

without human intervention.
Based on the presented context aimed at improving the

quality of development processes for SaS, this paper presents
a framework based on learning techniques (classifiers and
association rules) [5] and the MAPE-K (Monitor, Analyze,
Plan, Execute over Knowledge base) [6], [7] control loop for
decision-making in SaS. The main purpose of this framework
is to classify and analyze sensory data to autonomously detect
and mitigate faults at runtime. Thus, we believe that the needs
for systems to interface with human administrators may be
reduced, alleviating operational-human costs and, ideally, im-
proving upon existing mitigation techniques. Moreover, based
on the preliminary results, we believe that our framework may
be used in the knowledge management of other types of soft-
ware systems. For instance, we have applied this framework
in the monitoring and eventual corrections of flight plan for
Unmanned Aerial Vehicles (UAVs).

In this context, the primary propose of this paper is to
supply the industry with supporting strategies to systematize
and automate the functionalities of SaS, contributions from
Software Engineering (SE) and Knowledge Engineering (KE)
are necessary. Other contributions are: (1) the evaluation of
a solution for the problem of classifying and recommending
solutions at runtime; (2) a flexible strategy for SaS modeling;
and (3) regarding the adaptive module, a feasible strategy to
rebuild classifiers and rules from specific points where they
were interrupted.

Following the introduction, this paper is organized as fol-
lows: Section II presents the background and some related
work associated to our study; Section III provides a description
of RA4SaS and the framework for decision-making for SaS;
a case study designed to validate our approach is presented in
Section IV; and finally, Section V summarizes our findings,
conclusions, and perspectives for further research.

II. BACKGROUND AND RELATED WORK

This section presents the background (i.e., standard concepts
and definitions on SaS and RA) and related work on our study.
SaS has specific features in comparison to traditional systems
since this type of software system constantly deals with
adaptations at runtime, fixing new needs of both users and/or
execution environment. Moreover, the SaS development has
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boosted self-? properties in general-purpose software systems,
such as self-managing, self-configuring, self-organizing, self-
protecting, self-healing, and so on. These properties allow
systems to automatically react against users’ needs or to
respond as soon as these systems meet execution environment
changes [3], [8], [9], [10].

RA is a special type of architecture that provides major
guidelines for the specification of concrete architectures of a
class of systems [11]. Some studies [12], [13], [14], [15] have
established different investigations to systematize the design
of such architectures, guidelines, and processes. Moreover,
the effective knowledge reuse of RA depends not only on
raising the domain knowledge, but also documenting and
communicating this knowledge efficiently through an adequate
architectural description. Commonly, architectural views have
been used, together with UML (Unified Modeling Language)
techniques, to describe RAs. Considering their relevance as
the basis of the software development, a diversity of RAs has
been proposed and used, including for (self-?) software.

As related work, Schneider et al. [16] presented a survey
on self-healing systems frameworks. According to these au-
thors, these systems can combine machine learning techniques
and control loops to reduce human intervention, since such
systems are costly to develop and they can autonomously
detect and recover themselves from faulty states. The study
presented a classification of self-healing frameworks per three
categories (techniques): (i) learning methodology (supervised,
semi-supervised, and unsupervised); (ii) management style
(bottom-up and top-down); and (iii) computing environment
(n-tier traditional, cloud, virtualized, and grid/p2p). In Psaier &
Dustdar [7], a survey on self-healing systems was conducted.
This survey showed that the number of approaches for the
research on self-healing has been very active. Moreover, a
selection of current and past self-healing approaches was
addressed, as well as explanations for the origins, principles,
and theories of self-healing for such approaches. These two
studies provided the theoretical basis for the design of our
framework.

Qun et al. [17] stated that architecture-based self-healing
approaches were used in the architectural model as basis for
system adaptation. Such approaches were based on architec-
tural reflection, and their software architectures are observ-
able and controllable. Cheng et al. [18] purposed a software
architecture-based adaptation for grid computing. Technically,
the study designed a framework based on a software architec-
tural model. This model allows the analysis of the necessity
of adaption in an application, enabling repairs to be written
in the context of the architectural model and propagated
(applied/designated) to the running system. Zadeh & Seyyedi
[19] suggested an architecture based on failure-prediction in
architectures based on web services. The main goal of this
study is to repair the execution process after detection of a
failure. In a similar context, Psaier et. al [20] developed a self-
healing approach that enables recovering mechanisms to avoid
degraded or stalled systems. Thus, the study designed VieCure
– a framework to support self-healing principles in mixed

service-oriented systems. In this context, one can highlight that
the literature has revealed important initiatives for the context
of this paper.

III. REFERENCE ARCHITECTURE AND FRAMEWORK FOR
DECISION-MAKING

This section presents a brief description of our RA to
support the development of SaS [1]. Moreover, our approach
addresses a framework based on learning techniques and con-
trol loop for decision-making in such systems. This framework
is part of the aforementioned architecture, whose main purpose
is to support the identification of anomalies (symptoms), and
propose solutions (treatments) for SaS at runtime.

A. Reference Architecture: RA4SaS

Figure 1 shows the general representation of our RA4SaS
[1]. This architecture is composed of four external modules
and a core for potential adaptation (dotted line), which repre-
sents an “adaptation bus” of the software entities at runtime in
an automated approach. In short, our RA works with a con-
trolled adaptation approach, i.e., the software engineer must
insert annotations in each software entity so that the automatic
mechanisms in the environment execution can identify the
adaptability level of each entity. These levels contain param-
eters that determine where the new changes may be applied.
Thus, when an entity is developed, an automatic mechanism
performs a scan process, to inspect if such annotations were
correctly inserted. After a validation process, such entities can
be stored in the entities repositories (execution environment)
so that they may be invoked in future adaptations. Next, a brief
description of this architecture is addressed.

Fig. 1. Reference architecture for self-adaptive software [1]

The Development Module provides a guideline set for the
development of software entities (SaS). Such guidelines act on
requirement analysis, design, implementation, and evolution
(i.e., adaptation of the software entities at runtime). The
Action Plan Module aims at assisting in the adaptation
activity of software entities. This module must be able to
control:(i) dynamic behavior, (ii) individual reasons, and (iii)
execution state in relation to the environment. To do so,



a framework based on learning techniques (classifiers and
association rules) [5] and the MAPE-K control loop [6], [21] to
support the decision-making of SaS is also part of this module.
Section III presents details on the design and implementation
of this framework. The Adaptation Rules Module provides
a rule set (metrics) for adaptation of the software entities.
Such rules are stored in the repositories (rule base) and reused
when a search for adaptation is performed. The Infrastructure
Module provides support for software entities adaptation at
runtime, i.e., a mechanism set for the dynamic compiling
and dynamic loading of software entities. Finally, the core of
adaptation represents a logic sequence of well-defined steps so
that the adaptation of the software entities is conducted with
no human intervention, i.e., all activities of this process are
conducted by an automated process as an “assembly line”.

B. Framework for Decision-making
This section presents details of a framework for decision-

making in SaS. In short, this framework acts as a non-intrusive
supervision modality, i.e., a supervisor system (meta-level)
can be coupled to a software entity (base-level) to monitor
its internal state of operation or the execution environment in
which it is inserted. Besides such supervision modality, this
framework incorporates an extension of the MAPE-K control
loop and three modules were designed: (i) classification of
problems; (ii) recommendation of solutions; and (iii) test of so-
lutions. In addition, sensors and effectors are also components
of this framework, since they represent a means of interaction
between supervisor system and supervised entities. Sensors
are responsible for capturing parameters from the execution
environment for the supervised system. Next, the classification
module classifies these parameters to identify the changes
occurred in each software entity from within the execution
environment. Based on this classification and the collected
data, an adaptation plan is prepared by the recommendation
module to establish a solution for the identified problem.
Before it becomes an effective solution, such recommendation
must be tested in order to ensure that no “collateral effects”
will be propagated to the software system (i.e., other software
entities). Effectors deal with the “selected solution” after its
testing activities are performed, applying it to the system.
Figure 2 shows the control loop utilized in our framework.

Fig. 2. MAPE-K control loop (Adapted from [6])

Section III-B1 and Section III-B2 present operational details

of the classification and recommendation modules. Due to
space limitations, details on the framework testing module
are not widely detailed in this paper. However, in short, it
is possible to mention that the framework testing module
involves a test case selection based on information provided
by logs during the system adaption. Section III-B3 provides
details on the framework design.

1) Classification module: Figure 3 shows the classification
module of our framework, whose main purpose is to present
a classification for a set of data collected from sensors at
runtime. Preliminarily, software engineers must specify the
application domain, mapping the “main points” of a software
entity (i.e., software system or software architecture) that will
be monitored. This specification details the number of at-
tributes of an instance and values that can be assigned to them.
Such specification must be stored in a “.arff” file in the
“Specification” component and mapped to a database aiming
to store all interactions occurred during the execution cycle of
our framework. Based on this specification and a set of labeled
initial data (Step 1), an incremental classifier is generated (Step
2) in the “Incremental Classifier” component. Next, new data
can be collected from the execution environment and sent to
this classifier for identification of symptoms (Step 3). Finally,
these data are stored in the database as collected and classified
(Step 4) after the validation by the recommendation module.

Fig. 3. General representation of the classification module

In the following, we present a brief description of the
classification core: (i) Start: aims to initialize this module by
means of the “Engine” component. As result, an incremental
classifier is generated (“Incremental Classifier” component)
based on the specification and initial knowledge provided by
the specialist; (ii) Load: attempts to load data stored in the
database, which is organized in two types: (i) specification, i.e.,
initial knowledge provided by the specialist; and (ii) acquired
knowledge, i.e., data obtained during the execution cycle; (iii)
Engine: represents an abstraction of the incremental classifier
algorithm that performs the data classification collected from
the execution environment, or from the initial knowledge
provided by the specialist; and (iv) Update: updates the
database after new data has classified. Such update is per-
formed when a message from the recommendation module is
received indicating that both data and classification can be
stored.



2) Recommendation module: The recommendation module
supports the selection of an effective treatment for the problem
reported in the previous step (classification module). This
module has similar operations in comparison to the previous
one. In Step 1, an assumption is required: the specification
of the domain/problem must be provided by the specialist. To
do so, both database of symptoms and domain specification
(“Specification” component) must be reused from classifica-
tion module. Moreover, a treatment database must be created,
since it will store the solutions to the problems identified by
the previous module. From these databases (symptoms and
treatment) and specifications are generated a rule set (Step 2),
which intends to map the problems (symptoms) and solutions
(treatment). The main purpose for the use of association rule
[22] in this module is to detect more significant statistically
correlations, via support and confidence, among the symptoms
and treatments in order to operate the recommendation of
treatments for a symptom set [23]. Why? It is worth noting
that there is no interest in a specific attribute (i.e., in a
specific treatment), since a symptom set may present some
alternatives of treatments. After creation of the rule set, new
data (classification module) can be inserted (Step 3) in this
module so that one or more treatments may be identified (Step
4). At the end, this module may recommend one or more
treatments for the symptom identified. Whether there is more
than one treatment, the approach presents a list that must be
ordered by the support and confidence criteria of the rules.
Thus, one can select these rules one-by-one (i.e., from highest
to lowest criterion). After that, the cycle tests the solution as
a feasible solving for the identified problem (symptom).

Further, regarding the recommendation module, the internal
components of this module (Start, Load, and Update) have the
same functionalities as the classification module. Therefore,
such components are not presented in the same level of detail.
The “Engine” component represents an abstraction for the
rule algorithm. Similar to the classification module, other rule
algorithms can be coupled to this module as a strategy to
compare/evaluate results (i.e., statistical measures).

3) Framework Design: Figure 4 shows the main structure
of classes of our framework, which is organized in three layers:
(i) infrastructure for control loop, containing the core and
module packages; (ii) classification and rule algorithms, repre-
sented by the algorithms package; and (iii) external resources,
represented by the dotted line because they contain a package
set developed by third parties. Next, a brief description of these
packages in each layer is addressed.

The core package contains two interfaces (Observer
and Subject) and a class named AbstractObserver.
Such interfaces represent the observer and observed roles for
the classes of the module package (AbstractModule).
Finally, it is noteworthy that the AbstractObserver class
implements both interfaces of this package, i.e., implements
the methods of the Subject interface and delegates the im-
plementation of the Observer interface for classes inherited.

The module package is composed of a class set that
represents the MAPE-K implementation (Figure 2) for the

Fig. 4. Framework UML model

classification and recommendation modules. Such implemen-
tation is based on the Observer design pattern [24], i.e.,
all classes in this package are, at the same time, a sub-
ject and an observer. Thus, three configurations can be cre-
ated: (i) the MonitoringModule class is an observer
for the sensors of a software entity and a subject for
the AnalisysModule class; (ii) the AnalisysModule
class is an observer for the MonitoringModule class
and a subject for the PlanningModule class; and finally,
(iii) the PlanningModule class is an observer for the
AnalisysModule class and a subject for the test module.
This strategy enables the classes of this package to be decou-
pled, acting through event notification by the previous class
via a single interface (Module).

The algorithms package contains a class set that
represent the classification and recommendation algo-
rithms. Such classes implement the Adapter design pat-
tern [24] so that a common interface is available for
both algorithms. The classification module is composed
of an interface (ClassifierTarget) and a class
(ClassifierAdapter). This class is an abstraction for
the classification algorithm (HoeffdingTree class) imple-
mented in the trees package. Similarly, the recommendation
module was implemented using the aforementioned pattern.

Finally, the packages inside the dotted line represent the
concrete classes of our framework, which were developed
by third parties. According to Adapter design pattern [24],



the ClassifierTarget class is a Target class in
the pattern, ClassifierAdapter is an Adpter, and
HoeffdingTree is an Adaptee. Thus, other algorithms
can be coupled to our framework without additional implemen-
tation in our system; only the ClassifierAdapter and
RuleAdapter classes will be subtly modified. Moreover,
the new packages and classes should be represented in the
same format as the current ones (dotted lines).

IV. CASE STUDY

To evaluate the applicability, strengths, and weaknesses of
our framework this section presents a case study we have
conducted. As subject application for our empirical analysis,
we have selected an application addressed to the management
of an UAV in a simulated environment, as shown in Figure
5. In short, the UAV architecture is organized in three layers:
UAV, Communication, and Client. The UAV layer is composed
of a UAV set that contains the following components: 3D
glasses with radio frequency transmitter; autopilot; navigation
camera; day and night vision camera; parachute; solar board;
thermal sensor camera and so on. The communication layer
contains the servers for communication between UAVs and
clients, and time synchronization (NTP – Network Time
Protocol). The client layer represents the UAV controllers in
different operating systems.

Fig. 5. General architecture for UAV

Operationally, we have instantiated our framework into
server (Figure 5), enabling us to collect data from the environ-
ment via sensors, and transferring it for classification. In this
context, when a problem is detected, a set of useful solutions
is presented for correcting the flight plan. In extreme cases, the
system may exhibit a recommendation to abort the operation.
This last case is recommended when the UAV integrity may
be compromised. Then, the UAV location is provided for our
system, enabling the vehicle to be rescued. Modifications are
made in the flight plan when the collected data tell us that
something unplanned is changing in the environment. Thus,
even if no decision is taken, the mission of the UAV may be
compromised.

The UAVs used in the scope of this empirical study are
equipped with seven sensors: (i) altitude and direction, (ii)
barometer, (iii) battery level, (iv) humidity, (v) latitude and

longitude, (vi) speed, and (vii) temperature. Some of these sen-
sors provide numerical information that must be discretized,
since both algorithms (classification and recommendation) of
our framework require data in the form of categorical attributes
[5]. Due to space reasons, only one of the sensors was used
to show the discretization process. Thus, we have chosen the
battery level as our target sensor since it is the power source
for all components of an UAV. In addition, the information
provided by this sensor represents an estimation of the flight
range of the UAVs. Flight range is the time that an UAV can
remain flying and, consequently, through this trip autonomy,
one can get an estimate on feasible distance of flight. Table
I presents the categories for the battery level sensor. The first
column shows the range to classify the battery level (second
column) on a scale of six to seven percentage points (i.e., A
with six points and B and C with seven points). The third
column presents a classification in a scale of 20 percentage
points. However, it is noteworthy that a classification has three
levels, i.e., the A level is the best state of a classification, the
B level can be considered as a stability region, and the C level
represents a transition stage. Since the discretization process
requires a nominal category, we combine the first letter of each
classification with respective battery charge levels, as shown
in column 4. Finally, it is important to highlight that we have
applied the same strategy for the remaining sensors,

TABLE I
CLASSIFICATION FOR THE BATTERY LEVEL SENSOR

Interval Level Classification Class
95 - 100 A

Excellent
E.A

88 - 94 B E.B
81 - 87 C E.C
75 - 80 A

Good
G.A

68 - 74 B G.B
61 - 67 C G.C
55 - 60 A

Regular
R.A

48 - 54 B R.B
41 - 47 C R.C
35 - 40 A

Bad
B.A

28 - 34 B B.B
21 - 27 C B.C
14 - 20 A

Critical
C.A

7 - 13 B C.B
0 - 6 C C.C

After discretization of the variables, the modeling activity is
started. Thus, each sensor will be transformed into an attribute
and its respective class in values for this attribute. Next, an
initial knowledge must be provided to the databases of symp-
toms and treatment (i.e., classification and recommendation
modules), setting a limitation for our approach. When new
data were collected from the environment to be classified by
our framework, an environment accuracy rate of 80% was
obtained. However, it is noteworthy that although the number
may be expressive, this rate can be optimized depending on
the initial knowledge provided, since in previous studies this
rate ranged from 87 to 94%.

Although no validation process has been used to obtain
the results presented in this section, such percentages pro-



vide evidence that the imbalanced data may negatively af-
fect the behavior of both modules (i.e., classification and
recommendation). According to our expertise, the following
activities must be conducted to overcome such adversity:
(i) the domain specialist should conduct the modeling of
the problem, i.e., the selection of attributes and values as
shown in the discretization process for the battery level at-
tribute; (ii) next, an initial knowledge should be provided so
that both modules can be started. It is noteworthy that this
knowledge is closely related to the problem and must not
be generalized; and (iii) finally, a calibration process of such
data must be performed by the specialist, since each problem
has specific features and behaviors that should be considered
in the execution of both modules. According to [5], [7], [20]
this process can optimize the performance of the algorithms
of both modules. Finally, we consider the particularity of our
subject application as a threat to the validity of our results.
Practitioners have been exploring different adaptation rules
and creating SaS with different features, limiting the wider
generalization of empirical analysis.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a framework for decision-making in
SaS. The main contributions of this paper are: (i) SaS area
for providing a feasible solution for classification of problems
and recommendation of solution at runtime. Our study uses
learning techniques as a means to implement the MAPE-
K control loop [6], [21]. Moreover, the extension of this
loop must be highlighted, since all solutions must be tested
before being inserted into the execution environment to avoid
that collateral effects regarding to adaptation activity are
propagated; (ii) Development facilities with this framework,
since an application can be modeled and instantiated without
a high level of knowledge by the developers; (iii) Algorithm
coupling flexibility, since some applications may require other
information or measure for treatment of a problem; and (iv)
From operational view point, the reconstruction of classifier
and rules for the same point they were interrupted, since
all data are labeled as Initial Knowledge (IK) and Acquired
Knowledge (AK). Moreover, the databases (symptoms and
treatment) are updated when a solution is confirmed as feasi-
ble, otherwise the data must be evaluated by the specialist.

As future work, three goals are intended: (i) conduction
of more case studies intending to completely evaluate our
framework; (ii) evaluation of this framework with other algo-
rithms for both modules classification and recommendation;
and (iii) use of this framework in the industry, since it is
intended to evaluate its behavior when it is applied in larger
real environment of development and execution. Therefore, it
is expected that a positive scenario of research, intending to
have this framework become an effective contribution to the
software development community.
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