
Improving the Accuracy of Integer Signedness Error
Detection Using Data Flow Analysis

Hao Sun, Chao Su, Yue Wang, Qingkai Zeng
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Department of Computer Science and Technology, Nanjing University, Nanjing 210023, China
Email: {shqking, suchao1991}@gmail.com, wxywang89@163.com, zqk@nju.edu.cn

Abstract—Integer signedness error can be exploited by at-
tackers to cause severe damages to computer systems. Despite
of the significant advances in automating the detection of inte-
ger signedness errors, accurately differentiating exploitable and
harmful signedness errors from unharmful ones still remains
an open problem. In this paper, we present the design and
implementation of SignFlow, an instrumentation-based integer
signedness error detector to reduce the reports for unharmful
signedness errors without sacrificing the completeness (i.e. no
false negatives). SignFlow utilizes static data flow analysis to
identify unharmful integer signedness conversions from the view
of where the operands originate and whether the data after
conversions can propagate to security-related operations, and
then inserts security checks for the remaining conversions so
as to accomplish runtime protection. We evaluated SignFlow
on 7 real-world harmful integer signedness bugs, SPECint 2006
benchmarks together with 5 real-world applications. Experimen-
tal results show that SignFlow successfully detected all harmful
integer signedness bugs and achieved a reduction of 41% in
false positives over IntFlow, the state-of-the-art signedness error
detector.

Keywords—integer signedness error, data flow analysis, instru-
mentation, sanitization

I. INTRODUCTION

The C/C++ programming language implements the signed-
ness of integer types, including signed and unsigned. An
integer signedness error occurs when a signed integer is
interpreted as unsigned, or vice-versa. In two-complement
representation, such conversions cause the sign bit to be
interpreted as the most significant bit (MSB) or conversely,
hence −1 and 232 − 1 are misinterpreted to each other on
32-bit machines. Because such misinterpretation cannot over-
write memory directly, adversaries usually leverage security-
related operations (e.g., bound checks, memory allocations
and loops) to exploit integer signedness errors indirectly. For
instance, Listing 1 shows a typical signedness error in Mumble
[1]. Lines 4 to 5 are the patch for this bug. In the original
buggy code, variable decodedSamples is used to denote
the amount of decoded samples, and it would be assigned
with small negative values when opus_decode_float()
encounters an error. Note that such small negative integers
indicate the error condition. Then decodedSamples is con-
verted to unsigned integer, i.e. inlen, which becomes close
to UINT MAX. Later inlen is used as the buffer length in
speex_resample_process_float() and buffer over-
flow occurs due to such inadvertently large buffer length.

(DOI reference number: 10.18293/SEKE2015-123)

Listing 1. Patched code for CVE-2014-0045 in Mumble
1 int decodedSamples = opus_decode_float(opusState

,NULL, ...);
2 ...
3 spx_uint32_t inlen = decodedSamples;

4+ if(inlen > 0x7fffffff)
5+ return error;

6 if (srs && bLastAlive)
7 speex_resampler_process_float(srs, 0,

fResamplerBuffer, &inlen, ...);

During the past years, researchers have developed various
techniques to address this problem. A classic approach is to
insert security checks around integer signedness conversions to
catch signedness errors at runtime. Instrumented programs can
react to a signedness error by logging the event or terminating
the execution. Many existing techniques, such as RICH [2],
IOC [3], AIR [4] and RA [5], consider all integer signedness
conversions in a subject program as potential signedness error
sites and instrument all of them. The instrument-all techniques
guarantee to detect all the runtime signedness errors; however,
this safety has a price: they might report unharmful signedness
errors as critical ones in real-world scenarios, i.e. producing
false positives.

IntFlow [6] aims to eliminate the instrumentation for some
integer signedness conversions if they originate from trusted
source. The intuition is that such trusted integer signedness
conversion cannot be controlled by attackers even if signedness
error occurs. Hence, IntFlow could reduce a number of false
positives produced by instrument-all techniques. However,
IntFlow only considers where a signedness error originates, but
doesn’t track how it would be used afterward. IntFlow would
produce false positives inevitably in the following cases: 1) the
integer data after conversion is unused afterward, or propagates
to uncritical program locations; 2) experienced developers of-
ten anticipate the possibility of signedness errors such that they
add sanitization routines after these sites; 3) programmers use
signedness errors intentionally for performance optimization
or code compactness in many situations.

To further improve the accuracy of integer signedness
error detection, we develop a novel runtime signedness error
detector, named SignFlow, which features the capacities of
detecting all harmful signedness errors (complete) and by-
passing as many unharmful ones as possible (precise) with

acceptable performance loss (practical). In SignFlow, we not
only consider where integer signedness conversions originate
(as IntFlow does), but further track how they would be used
afterward. The main intuition behind our approach is that
integer signedness errors become unharmful if they are unused
afterward, or used at uncritical program locations such as
printf(), or get sanitized before flowing into security-related
operations. As such, SignFlow could avoid the reports for more
unharmful signedness errors, compared to IntFlow.

Our contributions are highlighted as follows.

• We define unharmful integer signedness errors from
the perspective of where they originate and how they
are used afterward;

• We propose and implement a novel instrumentation-
based integer signedness error detector, SignFlow, as
an extension of the GCC compiler [7], aiming to
improve the accuracy of integer signedness error de-
tection. SignFlow first exploits static data flow analysis
to identify unharmful integer signedness conversions
and then inserts security checks for the remaining
potentially harmful sites;

• To demonstrate the effectiveness, we applied SignFlow
to 7 harmful signedness bugs, SPECint 2006 bench-
marks and 5 real-world applications. Experimental re-
sults show that SignFlow detected all 7 harmful errors
and bypassed about 41% (46 out of 111) unharmful
ones that the state-of-the-art integer signedness error
detector, i.e. IntFlow, produced. Besides, as about
7.73% more integer signedness conversions were iden-
tified as unharmful at static analysis phase, SignFlow
reduced the runtime overhead by 49.62% over IntFlow.

II. APPROACH

One key consensus in existing techniques is that an integer
signedness error becomes harmful (or critical) if it satisfies
both the following two conditions: T1: the right-hand operand
in signedness conversion originates from un-trusted source, i.e.
controlled by users; T2: the misinterpreted data may propagate
to security-related operations, i.e. sinks.

T1 allows attackers to control this signedness error and
determine the misinterpretation according to their own in-
tentions, and T2 provides attackers an interface to exploit
this signedness error so as to conduct malicious operations.
Conversely speaking, we argue that an integer signedness error
can be treated as unharmful if it violates either T1 or T2. In
the following, we first present data flow patterns of unharmful
signedness errors from the perspective of violating T1 or T2,
and then introduce our approach briefly.

A. Unharmful Integer Signedess Errors

Definition 1: An integer signedness error is unharmful if
it satisfies one of the following three conditions:

1. the right-hand operand in signedness conversion is
constant or originates from constant values;

2. the integer data after conversion is unused afterward,
or propagates to uncritical program locations;

TABLE I. POST-CONDITION TEST FOR SIGNEDNESS CONVERSIONS

Signedness Conversion Post-condition Test
int x; unsigned int y; x = (int) y; x < 0
unsigned int x; int y; x = (unsigned int) y; x > 0x7fffffff

TABLE II. SANITIZATION OPERATOR FOR SIGNEDNESS ERRORS

Op Type Basic Form Influence
bitwise-and res = a & b, and b < 0x80000000 Erased

modulo res = a % b, and b < 0x80000000 Erased
left-shift res = a ≪ b Replaced

right-shift res = a ≫ b Replaced
bitwise-xor res = a ⊕ b Erased
bitwise-not res = ∼ a Erased

3. the integer data after conversion gets sanitized before
it propagates to security-related operations.

1) Trusted Source: The integer signedness error under con-
dition 1.1 means that, the concrete value of source operand can
be determined at compile-time. Hence, attackers cannot control
this signedness error via providing crafted inputs. In other
words, attackers have no chance to exploit such signedness
errors. We call this data flow pattern of unharmful signedness
errors as Pcst for short.

As shown below we adopt the code snippet from [6] to
present an example, in which developers intentionally rely on
signedness error mainly for performance reasons. It casts −1
into unsigned type to obtain the largest number that unsigned
type can represent. Since the source operand is constant,
satisfying Pcst, this signedness error is unharmful.

UINT_MAX = (unsigned int) -1;

2) Uncritical Program Location: The integer signedness
error under condition 1.2 denotes that, the integer data after
conversion is relatively not as critical as other integers. This
shuts off the interface for attackers to jeopardize the whole
program even if attackers can control this misinterpreted data.
We call this data flow pattern of unharmful signedness errors
as Puncrit for short. Note that library function calls such as
printf() and fprintf(), are typical uncritical locations.

3) Sanitization: According to our Definition 1, the paths of
misinterpreted data to sinks can be cut off or stopped if there
exist so-called sanitizations. Here, we give the following two
kinds of sanitizations.

Experienced developers often anticipate the possibility of
integer signedness errors such that they add sanitization rou-
tines after potential signedness error sites to prevent misin-
terpreted data from affecting further program execution. As
shown in Table I, post-condition test [3][8] is the widely used
sanitization routines for signedness errors. The patch for CVE-
2014-0045, i.e. lines 4 to 5 in Listing 1, gives an example.
Once signedness error occurs at line 3, the security check at
line 4 would catch this misinterpretation, cutting off the flow to
sink (i.e. line 7). As post-condition test is of fixed patterns, they
can be identified statically. Furthermore, post-condition test is
sound enough to catch signedness errors. Hence, we adopt
post-condition test as one kind of sanitizations for signedness
errors, and we call such data flow pattern as Ppost for short.

Besides, many operators can remove or clean up the sign
bit for signed type or the MSB for unsigned type. In these

C/C++

Constant Type

Propagaton Analysis

Reachability

Analysis

Complie,

Link

SignFlow

Binary

GCC-IR

gimple

Instrumentation

Post-condition Test

Identification

Fig. 1. Overall architecture of SignFlow

cases, the misinterpreted data gets sanitized since the bit, that
signedness error matters, is replaced by another benign bit or
erased after such operators. We call these operators SantzOp
for short. Table II shows a serial of SantzOp, including the
type, the basic form and the influence on the sign bit/MSB.
Note that a denotes the misinterpreted integer. Here, we argue
that after going through SantzOp, misinterpreted data is less
likely to be used in exploitation attempts by attackers, as the
crucial bit, i.e. the sign bit/MSB, is replaced with another
benign bit or erased by SantzOp. We call such data flow pattern
as Pop for short.

Take the following code snippet as an example. It is from
pp.c, 400.perlbench in SPECint 2006. Implicit signedness con-
version occurs at line 2332; however, the bitwise-and operators
at line 2335 can erase the sign bit. Hence, such signedness
error is unharmful. In fact the SantzOp at line 2335 is used
here to achieve the effect of selecting specific bits of flags.

struct STRUCT_SV{
void * sv_any;
U32 sv_refcnt;
U32 sv_flags;

}
#define SVf_IOK 0x00100000
#define SVp_IOK 0x01000000
#define SVp_NOK 0x02000000

2332 int flags = sv->sv_flags;
2333 ...
2335 if((flags & SVf_IOK) ||

((flags & (SVp_IOK | SVp_NOK)) == SVp_IOK)){
2336 ...

B. Approach Overview

Based on the discussions above, we propose a novel ap-
proach to improve the integer signedness error detection using
static data flow analysis. We at first identify unharmful integer
signedness conversions based on the data flow characteristics,
and then exclude them from further instrumentations. Specif-
ically, we first assume that all integer signedness conversions
in program are un-trusted and each of them should be instru-
mented with security check to guarantee the runtime safety.
Then we conduct static data flow analysis to mark unharmful
integer conversions in three aspects. 1) One taint-like analysis
is employed to propagate the tag of ‘constant’ starting from
constant values and safe library function calls (e.g., uname(),
gettimeofday()). An integer conversion is marked as unharmful
if the source operand is tagged with ‘constant’; 2) An integer
signedness conversion is also marked as unharmful if it is
protected by post-condition test; 3) Another data flow tracking

is deployed to compute an integer signedness conversion’s
reachability to security-related operations. Note that this pro-
cess is accomplished through determining whether it will
encounter uncritical program locations or SantzOp before sinks
on each path of this signedness conversion. If so, we mark
this conversion as unharmful. At last, security checks are
inserted around the integer signedness conversions, which are
not identified as unharmful, so as to gain runtime protection,
as existing instrumentation-based detectors [2][3][8][6] do.

III. DESIGN AND IMPLEMENTATION

Figure 1 illustrates the overall architecture of SignFlow.
It performs static data flow analysis on the GCC interme-
diate representation—gimple—to identify unharmful integer
signedness conversions, and then instruments security checks
for the remainder. At last, the inputs get further compilation
and linking into binary. Specifically, SignFlow consists of four
main components: 1) constant type propagation analysis is
similar to taint-like analysis, aiming to identify all the integer
signedness conversions under Pcst; 2) post-condition test iden-
tification checks whether an integer signedness conversion is
followed by post-condition test; 3) reachability analysis aims
to compute the reachability of an integer signedness conversion
to security-related operations by determining whether there
exists uncritical program location or SantOp along each path;
4) instrumentation part inserts security checks for integer
signedness conversions except those, which have been iden-
tified as unharmful by previous analyses.

Similar to IntFlow [6], our constant type propagation
analysis is implemented via a taint-like analysis, i.e. setting
the trusted source as ‘constant’, propagating this tag along
the data flows, and marking the integer signedness conversion
as unharmful if the source operand is ‘constant’. Moreover,
the process of post-condition test identification can also be
easily implemented since the post-condition test particularly
for signedness errors is of fixed patterns, as shown in Table I.
Hence, in the following we will discuss more about reachabil-
ity analysis and instrumentation.

A. Reachability Analysis

In this section, we analyze the data flows out from an in-
teger signedness conversion to decide whether this conversion
satisfies condition 1.2 or condition 1.3 (in Definition 1). If so,
this integer signedness conversion is treated as unharmful.

Whether an integer signedness conversion would be used at
specific locations can be induced as a reachability problem. We

Algorithm 1 Reachability Analysis.
Input: Signedness conversion SC.
Output: Sink, Unharm;
1: Sink, Unharm are initialized with 0;
2: if SC is unused afterward then
3: set Unharm;
4: return ;
5: end if
6:
7: for each path of SC do
8: for each node of path do
9: if node is uncritical site or SantzOp then

10: set Unharm;
11: else if node is security-related operations then
12: set Sink; break;
13: else if node is assignment, unary and binary op then
14: continue;
15: else
16: set Sink; break;
17: end if
18: end for
19: if Sink then
20: clear Unharm; break;
21: end if
22: end for

compute the reachability of an integer signedness conversion
to uncritical program locations and SantzOp to decide whether
it satisfies condition 1.2, condition 1.3 or both. As shown in
Algorithm 1, an integer signedness conversion can be treated
as unharmful if 1) it is unused afterward (lines 2 to 5), 2) it
ends up with uncritical program locations, or 3) it encounters
SantzOp before security-related operations for each path. Note
that security-related operations include if -statement, while-
statement, array indexing and sensitive library routines such as
malloc() and memcpy(). Lines 15 to 16 mean that our analysis
is conservative for harmful signedness errors, i.e. an integer
signedness conversion cannot be marked as unharmful if we
are not certain of whether there will be sinks along some path.

B. Instrumentation

Through constant type propagation analysis, post-condition
test identification and reachability analysis, a number of integer
signedness conversions have been identified as unharmful. As
the last step of SignFlow, security checks are inserted at the
remaining signedness conversions for further runtime protec-
tion. We leverage pre-condition test [3][8], with the feature of
testing whether misinterpretation will occur without actually
performing the conversion. For instance, casting signed integer
to unsigned type, i.e. unsigned int a; signed b; a
= (unsigned) b, will cause signedness error if and only
if the following expression is true: (b < 0).

C. Implementation Details

We have implemented SignFlow for C/C++ programs based
on GCC-4.5.0 [7]. Specifically, SignFlow is an optimization
pass written in ∼ 4, 000 lines of C on gimple. gimple provides
many interfaces for users to analyze the abstract syntax tree
(AST), control flow graph (CFG) and call graph. Our constant

TABLE III. 7 HARMFUL INTEGER SIGNEDNESS BUGS IN REAL WORLD

CVE Programs Version Sign Conv. Sink
2008-1803 Rdesktop 1.5.0 u→s bound check
2009-3743 GhostScript 8.70 s→u memmove
2011-1471 PHP 5.3.6* s→u bound check
2012-3368 Dtach 0.8 s→u bound check
2013-4927 Wireshark 1.10.0 u→s loop
2013-6489 Pidgin 2.10.11* s→u malloc
2014-0045 Mumble 1.2.4 s→u malloc

type propagation analysis is accomplished by binding one
tag ‘constant’ with each variable node and updating this tag
with the traversal of each statement in AST. Our reachability
analysis utilizes the propagation analysis engine in GCC,
which is widely used by optimizations such as the copy
propagation analysis and value range propagation analysis, to
traverse each potential path of an integer signedness conver-
sion. At last, security checks are inserted for those integer
signedness conversions which are not marked as unharmful.
The runtime handler is linked into the compilers’ output and
takes actions when signedness errors are caught. It is worth
noting that SignFlow works at gimple mainly because all
implicit signedness castings are presented explicitly at this
stage.

IV. EVALUATION

In this section, we present the results of our experimental
evaluation using our prototype implementation of SignFlow,
and compare the results with instrument-all techniques and
IntFlow. All experiments were performed on an Intel Dual
Core 2.4 GHz machine with 4GB memory. The OS is Linux-
3.5.0. GCC was ran under -O0 optimization level.

A. Detecting Harmful Integer Signedness Bugs

In order to evaluate the effectiveness of SignFlow in detect-
ing and preventing harmful integer signedness bugs, we select
7 real-world signedness bugs published by CVE [9] as our
test subjects, as shown in Table III1. Columns 1 to 3 describe
the CVE number, vulnerable software and version. Column 4
refers to signedness error site. That is the specific conversion,
where signedness error occurs. u→s denotes casting unsigned
integer to signed integer and s→u denotes casting signed
integer to unsigned. Column 5 describes the security-related
operation where the misinterpreted data is exploited.

The evaluation result is that SignFlow successfully instru-
mented all the signedness error sites, i.e. SignFlow didn’t
mark them as unharmful at the static data flow analysis
phase. To evaluate the runtime protection of SignFlow, we
face the challenge that the corresponding signedness-error-
inducing inputs are not available. We turn to extract the
vulnerable conversion sites and their propagation paths from
subject programs, and then execute the extracts with the
self-designed signedness-error-inducing inputs. The result is
SignFlow reported warnings for all harmful signedness bugs.

1Detailed information about these 7 bugs can be referred at CVE website
[9] via the corresponding CVE number. For CVE-2011-1471, the vulnerable
version should be 5.3.5 and below. However, these versions of PHP cannot
be compiled successfully under our experimental environment due to certain
reason. Therefore, we choose 5.3.6 version instead and remove the patch
manually. So it is with CVE-2013-6489.

TABLE IV. INTEGER SIGNEDNESS ERRORS REPORTED BY ALL,
SIGNFLOWcst AND SIGNFLOW

#A #Sc #S data flow pattern for each excluded error
Pcst Puncrit Ppost Pop

400.perlbench 48 48 24 18 6
401.bzip2 15 14 7 1 4 4
445.gobmk 17 15 12 2 1 2
458.sjeng 3 3 0 3
462.libquantum 4 4 3 1
464.h264ref 10 8 7 2 1
483.xalancbmk 9 7 6 2 1
Gzip 1 1 0 1
Dillo 5 5 4 1
SWFTools 6 6 2 1 3
Total 118 111 65 7 1 25 21

Hence we gain confidence that SignFlow is suitable as a
detection tool for real-world applications.

B. Reduction of False Positives

Reducing the number of false positives is the major goal
of SignFlow, and this section quantifies how good SignFlow
is in omitting unharmful signedness errors from the reported
results by instrument-all techniques and IntFlow respectively.
Here we implemented a prototype, named ALL, for instrument-
all techniques by disabling our static data flow analysis, and a
prototype, named SignFlowcst, for IntFlow by only validating
the constant type propagation analysis (i.e. disabling the post-
condition test identification and reachability analysis).

We use SPECint 2006 benchmarks and 5 real-world appli-
cations as our testbed. We ran SPECint 2006 with the ‘ref ’
input set. For SWFTools-0.9.1, we used the pdf2swf utility
with the call-for-paper of SEKE’2015 as input; for Dillo-
3.0.4.1, we visited its homepage and downloaded the source
code; for Pidgin-2.10.11, we registered a new account, logged
in and out; for Gzip-1.4, we compressed the archive gcc-
4.5.0.tar; and for wget-1.6, we downloaded a 70MB file from
a remote server. As each program is run with benign inputs,
the reported integer signedness errors are all unharmful, i.e.
false positives. We applied ALL, SignFlowcst and SignFlow
respectively on the testbed and calculated the reduction of
false positives by SignFlow over ALL and SignFlowcst. In
addition, for each unharmful signedness error that SignFlow
bypassed, we manually examined our static analysis results
to find out which data flow pattern (as discussed in Section
II) this signedness error belongs to. We report our findings in
Table IV. For brevity, we only displayed the result of programs
which have signedness errors.

Columns 2 to 4 show the number of integer signedness
errors reported by ALL, SignFlowcst and SignFlow respec-
tively. Overall, SignFlow was able to suppress about 45% (53
out of 118) integer signedness errors reported by ALL, and
this reduction is about 41% (46 out of 111) over SignFlowcst.
These were achieved due to the data flow characteristics of
unharmful signedness errors used by SignFlow.

Columns 5 to 8 show the distributions of different data
flow patterns, to which each excluded unharmful signedness
errors belong. From the result we can observe that 7 out
of 53 unharmful signedness errors identified by SignFlow
are under Pcst while the other 47 are under Puncrit, Ppost

or Pop. Hence as SignFlow considers whether the data after
conversions could propagate to security-related operations or

TABLE V. CHECK DENSITY OF SIGNFLOW

#SC #U data flow pattern for each conv. in #U
Pcst Puncrit Ppost Pop

400.perlbench 5955 2173 287 20 199 1684
401.bzip2 1105 110 67 4 4 35
429.mcf 72 8 8 0 0 0
445.gobmk 2374 706 639 9 1 57
456.hmmer 5589 2991 2927 8 1 53
458.esjeng 332 116 94 5 0 19
462.libquantum 312 185 148 7 0 29
464.h264ref 8274 2907 2808 0 5 84
471.omnetpp 1715 1151 1144 2 1 2
473.astar 372 16 16 0 0 0
483.xalancbmk 6163 681 387 1 28 236
Total 32263 10998 8525 56 239 2199

not, it can identify more unharmful signedness errors than
SignFlowcst, i.e. SignFlow improved the accuracy of detecting
integer signedness errors a lot over IntFlow. Besides, the
distributions of data flow patterns vary over different programs.
This is mainly because the effectiveness in the reduction of
reporting unharmful signedness errors is highly dependent on
the nature of each program as well as on the level of the
execution’s source coverage.

C. Performance

Check density refers to the ratio of the number of instru-
mented integer signedness conversions over all. Table V shows
the experimental results of applying SignFlow to SPECint
2006 benchmarks. Column 2 shows the number of integer
signedness conversions in gimple, and Column 3 indicates
the number of integer signedness conversions identified as
unharmful by SignFlow. In total, about 34% (10, 998 out
of 32, 263) integer signedness conversions are marked as
unharmful and excluded from instrumentation by SignFlow.
In another word, the rest 66% signedness conversions are
instrumented for runtime protection, i.e. the check density of
SignFlow.

Columns 4 to 7 present the distributions of different data
flow patterns, to which each unharmful integer signedness
conversion belongs. Note that as some signedness conversion
can be under several different data flow patterns, the value
of Column 3 might be less than the sum of Columns 4
to 7. Form the result, we can see Pcst is the main type
of unharmful integer signedness conversions. About 26.42%
(8, 528 out of 32, 263) belongs to this pattern. It also denotes
the number of signedness conversions excluded by IntFlow.
Since SignFlow considers Puncrit, Ppost and Pop in addition,
2, 494 more signedness conversions are identified as unharmful
and excluded from instrumentation, compared to IntFlow.

Then We executed the instrumented program with the ‘ref ’
input sets to test the overhead imposed by SignFlow. We
ran each program 5 times and took the average value as the
execution time. Note that the runtime handler is set as nop
instruction when an integer signedness error is caught. We also
have tested ALL and SignFlowcst in the same way so as to
illustrate the reduction of performance overhead that SignFlow
gained. Compared to original benchmarks, the runtime over-
head of ALL, SignFlowcst and SignFlow are 6.19%, 5.35%
and 2.70% respectively, which indicates that the performance
loss of instrumentation-based techniques is quite low. On
the other hand, SignFlow reduced the runtime overhead by

56.41% over ALL and 49.62% over SignFlowcst respectively.
Such reduction is achieved by our static data flow analysis,
especially for that about 26.42% all signedness conversions are
excluded from instrumentation as they originate from trusted
source (i.e. under Pcst), and another 7.73% are excluded in
the view of how they are used afterward (i.e. under Puncrit,
Ppost or Pop).

D. Limitations

We propose to improve the accuracy of integer signedness
error detection using the data flow characteristics. As an initial
step along this direction, SignFlow has a number of limitations.
First, SignFlow in current implementation identifies bitwise-
and and modulo operation as SantzOp by only checking
whether b is a constant less than 0x80000000. Precise inte-
ger range analysis is in need to identify more SantzOp. Second,
SignFlow might fail to identify some data flow patterns due
to the common challenges, such as pointer analysis and field-
sensitiveness problem, faced by the static data flow analysis.
Third, the scope of our static data flow analysis is limited to
one single object file, as it is implemented as a compile-time
optimization pass and not as a link-time optimization pass.
This would also affect the detection accuracy of SignFlow.
We are working on addressing these problems.

V. RELATED WORK

During the past years, great focus was placed upon dealing
with integer signedness errors. Safe library functions are used
to wrap integer signedness conversions by adding check code,
such as IntegerLib [10] and Ranged Integer [11]. SmartFuzz
[12] utilizes symbolic execution to generate test cases to invoke
integer errors. The key challenges are to construct test cases
of high code coverage and to deal with the path explosion
problem when applied to large scale software.

Instrument-all techniques, such as RICH [2], IOC [3],
RA [5] and AIR [4] inserts security checks for all integer
signedness conversions for runtime protection. RICH provides
formal specifications for integer semantics in C, and applies
sub-type theory from type safe languages into C language. IOC
has been integrated into LLVM compiler. The main drawback
of instrument-all techniques is that they produce many false
positives as they instrument security checks blindly. As shown
in Section IV-B, SignFlow reduced about 45% false positives
produced by ALL, a prototype of instrument-all technique.

IntFlow [6] aims to improve the accuracy of integer arith-
metic errors. The difference from SignFlow lies in: 1) IntFlow
focuses on excluding the false positives for developer-intended
undefined behavior, including not only signedness errors, but
also signed integer overflows, oversized shift and division by
zero error; 2) IntFlow identifies unharmful undefined behaviors
by checking whether they originate from trusted source, i.e.
IntFlow only consider Pcst. In total, IntFlow achieves a reduc-
tion of 89% in false positives for all these undefined behavior;
however it doesnt provide detailed statistics on its effectiveness
particularly for integer signedness error. Therefore in order to
compare IntFlow and SignFlow, we implemented SignFlowcst

as a prototype of IntFlow, and conducted a set of experiments
on it. As SignFlow further considers how misinterpreted data
is used afterward, i.e. the other three types of data flow

patterns for unharmful signedness errors, not limited to Pcst,
it describes richer features of unharmful signedness error than
IntFlow. Experimental results showed that SignFlow excluded
7.73% more integer signedness conversions from instrumen-
tation than IntFlow (Section IV-C) and reduced 41% false
positives that IntFlow produced (Section IV-B).

VI. CONCLUSION

To improve the accuracy of integer signedness error detec-
tion, in this paper we first defined the data flow patterns for un-
harmful signedness error from the view of where they originate
and whether they can propagate to security-related operations,
and further proposed and designed an instrumentation-based
runtime integer signedness error detector, which could improve
the precision a lot without sacrificing the completeness. A
prototype, SignFlow is implemented as an extension of GCC.
Experiments demonstrated that our tool can detect all harmful
signedness bugs from our testbed while reducing 41% reports
for unharmful ones. In our future work, we will study more fea-
tures of unharmful signedness errors so as to further improve
the detection accuracy. In addition, we will extend SignFlow
to handle other types of vulnerabilities.

ACKNOWLEDGMENT

This work has been partly supported by National NSF
of China under Grant No. 61170070, 61431008, 61321491;
National Key Technology R&D Program of China under Grant
No. 2012BAK26B01; the Program B for Outstanding PhD
candidate of Nanjing University.

REFERENCES

[1] National Vulnerability Database, “Mumble Opus
Voice Packet Handling Remote Buffer Overflow,”
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0045.

[2] D. Brumley, D. X. Song, T. cker Chiueh, R. Johnson, and H. Lin,
“Rich: Automatically protecting against integer-based vulnerabilities,”
in NDSS’07, 2007.

[3] W. Dietz, P. Li, J. Regehr, and V. S. Adve, “Understanding integer
overflow in c/c++,” in ICSE’12, 2012, pp. 760–770.

[4] R. B. Dannenberg, W. Dormann, D. Keaton, R. C. Seacord, D. Svoboda,
A. Volkovitsky, T. Wilson, and T. Plum, “As-if infinitely ranged integer
model,” in ISSRE’10, 2010, pp. 91–100.

[5] R. E. Rodrigues, V. H. S. Campos, and F. M. Q. Pereira, “A fast and
low-overhead technique to secure programs against integer overflows,”
in CGO’13, 2013, pp. 1–11.

[6] M. Pomonis, T. Petsios, K. Jee, M. Polychronakis, and A. D. Keromytis,
“Intflow: improving the accuracy of arithmetic error detection using
information flow tracking,” in Proceedings of the 30th Annual Computer
Security Applications Conference. ACM, 2014, pp. 416–425.

[7] “GCC, the GNU Compiler Collection,” https://gcc.gnu.org/.
[8] H. Sun, X. Zhang, C. Su, and Q. Zeng, “Efficient dynamic tracking

technique for detecting integer-overflow-to-buffer-overflow vulnerabili-
ty,” in AsiaCCS’2015, 2015.

[9] MITRE Corporation, “Common vulnerabilities and exposures,”
http://cve.mitre.org/.

[10] CERT, “Integerlib, a secure integer library,” 2006,
http://www.cert.org/secure-coding/IntegerLib.zip.

[11] J. Gennari, S. Hedrick, F. Long, J. Pincar, and R. C. Seacord, “Ranged
integers for the c programming language,” Carnegie Mellon University,
Technical Note CMU/SEI-2007-TN-027, 2007.

[12] D. Molnar, X. C. Li, and D. Wagner, “Dynamic test generation to
find integer bugs in x86 binary linux programs,” in USENIX Security
Symposium’09, 2009, pp. 67–82.

