
An Automated Testing Framework for Statistical Testing of GUI Applications

Lan Lin, Jia He, Yufeng Xue
Ball State University

Department of Computer Science
Muncie, IN 47396, USA

{llin4, jhe, yxue2}@bsu.edu

Abstract

It is known to be inherently more difficult and labor-
intensive to functionally test software applications that em-
ploy a graphical user interface front-end, due to the vast
GUI input space. We propose an automated testing frame-
work for functional and statistical testing of GUI-driven ap-
plications, using a combination of two rigorous software
specification and testing methods and integrating them with
an automated testing tool suitable for testing GUI appli-
cations. With this framework we are able to achieve fully
automated statistical testing and software certification. We
report an elaborate case study that demonstrates a pathway
towards lowered cost of testing and improved product qual-
ity for this type of applications.

1 Introduction

Software applications that employ a graphical user in-
terface (GUI) front-end are ubiquitous nowadays, yet they
present additional challenges to software testing. It is inher-
ently more difficult and labor-intensive to functionally test
a GUI-driven application than a traditional application with
a command line interface, due to the vast GUI input space
and the prohibitively large number of possible sequences of
user input events (each event sequence being a potential test
case) [13, 10, 11, 20]. Testing therefore needs to be auto-
mated in order to run a large sample of test cases to verify
correct functionality.

In this paper we propose an automated testing framework
for functional and statistical testing of GUI-driven applica-
tions, using two rigorous software specification and testing
methods in combination, namelysequence-based software
specification[12, 18, 19, 17] andMarkov chain usage-based
statistical testing[14, 16, 22, 21], and integrating them with
an automated testing tool suitable for testing GUI applica-
tions, that provides fully automated statistical testing and
software certification as a means to achieve high product

quality. Both methods and the supporting tools [1, 2, 3]
were developed by the University of Tennessee Software
Quality Research Laboratory (UTK SQRL). Although work
has been done in the past to combine these methods together
[8, 7, 9], it remains application and problem specific to work
out a seamless integration from original requirements to
fully automated statistical testing and software certification.
We present in this paper our efforts and experiences along
this path in solving a real world problem.

Sequence-based specification is a method for systemati-
cally deriving a system model from informal requirements
through asequence enumerationprocess [12, 18, 19, 17].
Under this process stimulus (input) sequences are consid-
ered in a breadth-first manner (length-lexicographically),
with the expected system response to each input sequence
given. Not all sequences of stimuli are considered since a
sequence need not be extended if either it is illegal (it can-
not be applied in practice) or it can be reduced to another
sequence previously considered (the sequences take the sys-
tem to the same state). Sequence enumeration leads to a
model that can be used as the basis for both implementation
and testing [8, 7, 9].

Markov chain usage-based statistical testing [14, 16, 22,
21] is statistical testing based on aMarkov chain usage
model. It is a comprehensive application of statistical sci-
ence to the testing of software, with the population of all
uses of the software (all use cases) modeled as a Markov
chain. States of the Markov chain usage model represent
states of system use. Arcs between states represent possible
transitions between states of use. Each arc has an associ-
ated probability of making that particular transition based
on a usage profile. The outgoing arcs from each state have
probabilities that sum to one. The directed graph structure,
together with the probability distributions over the exit arcs
of each state, represents the expected use of the software in
its intended operational environment. There are both infor-
mal and formal methods of building the usage model struc-
ture (sequence-based specification can be used as a formal
method). The transition probabilities among states come

(DOI reference number: 10.18293/SEKE2015-119)

Figure 1. The BlackBoard Quiz Editor

from historical or projected usage data for the application.
The paper is structured as follows. The next section in-

troduces our case study. Sections 3 and 4 illustrate how we
constructed a usage model for statistical testing and present
the model analysis results. Section 5 presents an automated
testing framework we have developed for fully automated
statistical testing of GUI applications, using the case study
as a running example. Section 6 discusses our test and cer-
tification plan. Section 7 illustrates how testing was per-
formed and presents results following a test case analysis.
Section 8 concludes the paper.

2 The case study: The BlackBoard Quiz Edi-
tor (BBQE)

Our chosen case study is a Java GUI application, the
BlackBoard Quiz Editor (BBQE, see Figure 1), that can au-
thor quizzes and save them in a format that can be imported
in BlackBoard [4] - a learning management system used by
Ball State University and many other institutions across the
country for course delivery and management. The applica-
tion was delivered in 2013 as a completed Ball State Com-
puter Science major capstone project, considered of good
quality by the client, and is being used by many faculty at
Ball State. We were interested in automated statistical test-
ing of this application to find bugs and to get a quantitative
measure of its projected reliability.

The BBQE interface contains three main areas: a main
toolbar, a quiz panel, and a question editor panel. It supports
eleven question types, including the essay question type, the
fill in the blank question type, the matching question type,
the multiple choice question type, the true or false question
type, the short answer question type, etc. Quizzes created
in BBQE can be saved as a text file and easily imported into
BBQE and BlackBoard.

To limit the testing problem to a manageable size, we
defined our testing scope such that the System Under Test
(SUT) contains only one question type: the essay question

Table 1. Stimuli for the BBQE under test
Stimulus Long Name Description Interface Trace
A Add button Click the add question button Main window req1
C Create button Click the create question but-

ton
Question creation window req2

CO Copy question Copy the question Mouse req4
CQ Cancel button Click the cancel question

button
Question creation window req2

D Down button Click the question down but-
ton

Main window req1

DQ Delete button Click the delete question but-
ton

Main window req1

E Essay question Select the essay question
type

Question creation window req2

F Favorite button Click the favorite question
button

Main window req1

FS Favorite checkbox Click (Check/Uncheck) the
favorite check box

Question creation window req2

H Help button Click the help button Main window req1
HC Help cancel button Click the help cancel button Help window req3
P Paste question Paste the question Mouse req4
QF Question fill Fill in the question edit box Question editorpanel req6
U Up button Click the question up button Main window req1

type, but includes all GUI features. Other models can be
constructed similarly addressing other question types.

3 Usage modeling

In order to develop a usage model for statistical testing,
we adopted a formal approach and first developed a rig-
orous specification (that encodes a formal system model)
based on the requirements. As detailed requirements for the
BBQE could not be found, we re-engineered requirements
based on the user manual and the delivered application. We
applied sequence-based specification [12, 18, 19, 17] and
the supporting tool, the REAL [2], to developing a rigorous
specification of the SUT.

The resulting specification contains14 stimuli (inputs),
14 responses (outputs),48 distinct states,673 enumerated
stimulus sequences,9 original requirements, and13 derived
requirements. Figure 2 shows all the original (the top 9) and
derived requirements for the SUT. Table 1 and Table 2 list
all the stimuli and responses, respectively, across the sys-
tem boundary. Each stimulus (input) and response (output)
is given a short name (see the first columns) to facilitate
sequence enumeration, tied to an interface in the system
boundary, and traced to the requirements. Excerpts of an
enumeration for the SUT are shown in Table 3. Stimulus
sequences are enumerated in length-lexicographical order
(based on the alphabetical order of stimuli as shown in Ta-
ble 1) following the enumeration rules. Stimulus sequences
are represented by concatenating stimuli to string prefixes
with periods in the Sequence and the Equivalence columns.
Each row shows for an enumerated stimulus sequence what
should be the software’s response, if the sequence could be
reduced to a prior sequence (based on whether they take the
system to the same state), and traces to the requirements
that justify these decisions.

From the completed sequence enumeration we obtained
a state machine for the SUT. We further added a source state
together with an arc from the source to the state represented
by the empty sequence (λ), and a sink state together with an

Figure 2. Requirements for the BBQE under test

Table 2. Responses for the BBQE under test
Response Long Name Description Interface Trace
EQC Essay question created Create an essay question Question creation win-

dow
req2

EQFS Essay question type set
as

Set the essay question
type as the favorite

Question creation win-
dow

req2

favorite question type question type
EQS Essay question favorite

checkbox
Check the checkbox to
set the essay question

Question creation win-
dow

req2

checked type as the favorite ques-
tion type

FSC Favorite set checkbox
unchecked

Uncheck the check box
for favorite question set

Question creation win-
dow

req2

HW Help window opened Open the help window Help window req3
HWQ Help window closed Close the help window Help window req3
MD Current question moved

down
Move the current ques-
tion down by one ques-
tion

Main window req1

MU Current question moved
up

Move the current ques-
tion up by one question

Main window req1

QC Question copied Copy the question Right click menu req4
QD Question deleted Delete the question Right click menu req4
QIP Question input Input the question Question editor panel req6
QP Question pasted Paste the question Right click menu req4
QW Question window opened Open the question win-

dow
Question creation win-
dow

req2

QWG Question window closed Close the question win-
dow

Question creation win-
dow

req2

arc from each state (except the source) leading to the sink.
For the lack of compelling information to the contrary re-
garding the usage profile, we took the mathematically neu-
tral position and assigned uniform probabilities to transi-
tions in the usage model. The constructed usage model is
diagrammed in Figure 3 using a graph editor (with 50 nodes
and 619 arcs the visualization becomes very cluttered). Al-
though not readable unless one zooms in, it illustrates the
size of our testing problem.

4 Model analysis

We performed a model analysis using the JUMBL [3].
Table 4 shows the model statistics, including the number of
nodes, arcs, and stimuli in the usage model, the expected
test case length (the mean value, i.e., the average number of
steps in a randomly generated test case) and variance.

Table 3. Excerpts of an enumeration for the
BBQE under test

Sequence Response Equivalence Trace
λ 0 Method
A QW req1, req2
C ω req20
CO 0 λ req11
CQ ω req20
D 0 λ req12
DQ 0 λ req13
E ω req20
F 0 λ req14
FS ω req20
H HW req3
HC ω req20
P 0 λ req15
QF ω req20
U 0 λ req12
A.A 0 A req7
A.C EQC req2
A.CO 0 A req9

· · ·

A.FS.C.CO.A.FS.H.A 0 A.FS.C.CO.A.FS.H req7, req9
A.FS.C.CO.A.FS.H.C EQFS, EQC A.FS.C.CO.H req2, req21
A.FS.C.CO.A.FS.H.CO 0 A.FS.C.CO.A.FS.H req9

· · ·

The following statistics are computed for every node, ev-
ery arc, and every stimulus of the usage model:

- Occupancy. The amount of time in the long run that
one will spend testing a node/arc/stimulus.

- Probability of Occurrence. The probability of a
node/arc/stimulus appearing in a random test case.

- Mean Occurrence. The average number of times a
node/arc/stimulus will appear in a random test case.

- Mean First Passage. The number of random test
cases one will need to run on average before testing
a node/arc/stimulus for the first time.

Figure 3. A state machine for the BBQE under
test (with the source and the sink marked in
green and red respectively)

Table 4. Model statistics
Node Count 50 nodes
Arc Count 619 arcs
Stimulus Count 18 stimuli
Expected Test Case Length 11.573 events
Test Case Length Variance 47.776 events
Transition Matrix Density (Nonzeros) 0.1056 (264 nonzeros)
Undirected Graph Cyclomatic Number 215

These statistics are validated against what is known or be-
lieved about the application domain and the environment of
use.

5 An automated testing framework

Following the model analysis we developed an auto-
mated testing framework for fully automated, statistical
testing of BBQE. This required (1) finding an automated
testing tool suitable for our chosen application, and (2) in-
tegrating it with our statistical testing tool, the JUMBL, for
automated test case generation, automated test case execu-
tion, and automated test case evaluation.

After some research we chose HP’s Quick Test Profes-
sional (QTP) [5] as an automated testing tool for BBQE be-
cause it is HP’s successor to its WinRunner and X-Runner
software supporting functional and automated GUI testing
and it also works for 32-bit machines. We created an object
repository in QTP that registers all the static GUI objects of
the SUT, and used QTP’s Test Scripting Language (TSL) (a
subset of VBScript) to write test cases that can run automat-
ically in QTP.

Our constructed usage model was written in The

Figure 4. An Excerpt of the usage model for
the BBQE under test before annotation (writ-
ten in TML)

Modeling Language (TML) [6] (Figure 4 shows a tiny
piece). State names (representing usage states) are en-
closed in square brackets and arc names (representing us-
age events/expected software’s responses) are enclosed in
quotation marks. For each state the list of event/expected
response - next state pairs is given following the sate name.
For instance in Figure 4 there is an arc from state [A] trig-
gered by usage event “A” with expected response “null” go-
ing back to state [A].

Using labels the TML model can include test automa-
tion information, which can be extracted when JUMBL au-
tomatically generates test cases of all types from the usage
model using theGenTest command. The challenge was
how we should annotate the states and arcs of the usage
model with test scripts that could be understood by QTP
such that when these test scripts are extracted and concate-
nated into a generated test case they literally become a pro-
gram written in TSL that QTP could automatically execute.
To achieve this we accomplished the following steps:

- Stimulus generation with TSL. We wrote TSL scripts
that issue each possible stimulus (input) to the SUT.
For instance, to issue the stimulus “A” (for clicking the
add questions button in the main window), the follow-
ing function is called:

Function stim_A()
JavaWindow("Blackboard Quiz Editor") _
.JavaButton("add").Click

End Function

- Response checking with TSL. We wrote TSL scripts

that check each possible response (output) (including
the null response) is observed as expected. For in-
stance, the following function is called to verify the
response “EQC” (for having created an essay question
in the question panel):

Function check_EQC()
qnum = qnum + 1

Set props = JavaWindow("Blackboard Quiz Editor") _
.JavaStaticText("ESS(st)") _
.GetTOProperties

Set ChildObjects = JavaWindow(_
"Blackboard Quiz Editor") _
.JavaObject("JPanel_2") _
.ChildObjects(props)

ess = ChildObjects.Count

If qnum <> ess Then
returnValue = False

Else
returnValue = True

End If

qnum = ess

check_EQC = returnValue
End Function

- State verification with TSL. We wrote TSL scripts
that verify if the SUT is in any specific state as de-
scribed by the usage model, probing values from the
system’s state variables. For instance, the following
function is called to identify if the system is in the state
represented by the stimulus sequenceλ (each such se-
quence is a canonical sequence in the sequence enu-
meration):

Function verify_lambda()
If (check_var_EQ() = False) _

And (check_var_EQS() = False) _
And (check_var_HW() = 0) _
And (check_var_QW() = 0) Then

returnValue = True
Else

returnValue = False
End If

verify_lambda = returnValue
End Function

- Usage model annotation. We wrote Python code that
automates the usage model annotation with TSL. Each
state is annotated with a call to a state verification func-
tion. Each arc is annotated with a call to issue the
stimulus to the SUT followed by one or more calls to
check the observed responses. The rigorous specifica-
tion serves as the test oracle. Each state/arc after an-
notation is associated with testing commands that are
understood by QTP. When test cases are automatically
generated and exported using the JUMBL, each test
case literally becomes a TSL script that can automati-
cally execute in QTP.

- Result recording with TSL. We wrote Python code
that embeds TSL scripts in the annotated usage model
recording test results. A test case is considered suc-
cessful only if all its constituting steps are successful.

For any failed test case the test case number and all
failure step numbers are written to a text file, together
with information indicating whether each failure step
is a continue failure (the rest of the steps can still run to
completion after this failure step) or a stop failure (the
following test steps included in this test case cannot be
executed).

- Automated test case execution and evaluation. We
wrote a shell script that runs from command line, au-
tomatically executes a large sample of generated test
cases with our developed JUMBL-QTP interfaces, and
records test results in a text file.

- Reading failure data and recording it back in
JUMBL . We wrote a script that runs from command
line, reads the failure data after testing is completed
and records it back into the JUMBL for statistical anal-
ysis.

Figure 5 shows an excerpt of the usage model after anno-
tation. Test automation information is included with a label
(the text following a|$ up to and including the end of line)
in TML and an associated key (“a” in Figure 5 followed
with a colon (:) before the label). Test automation scripts
can be attached to a model (e.g., the lines following declar-
ing “model bbqmml” up to the next empty line; here we do
any needed test initialization and declare all stimulus gener-
ation/response checking/state verification functions), astate
(e.g., the lines following declaring state “[A]” up to the next
empty line; we verify if the SUT is in this state and if not
record the last step/event as a stop failure and exit the test),
or an arc (e.g., the lines following arc “A/null” up to declar-
ing the to-state “[A]”; we issue the stimulus and check the
response and if the observed and expected responses differ
record the current step as a failure step).

Figures 6 and 7 show excerpts of an automatically gen-
erated test case from the usage model. Before model an-
notation the exported test case is a sequence of events/steps
traversing the usage model starting from the source and end-
ing with the sink (see Figure 6). After annotation all the test
scripts associated with the states and arcs of the particular
path are extracted and concatenated into a TSL script that is
understood by QTP and automatically executable (see Fig-
ure 7).

6 A test and certification plan

We developed the following test and certification plan
for the SUT:

- Run48 minimum coveragetest cases that cover every
arc and every state of the usage model.

Figure 5. An Excerpt of the usage model for
the BBQE under test after annotation

Figure 6. An example test case that is au-
tomatically generated from the usage model
before model annotation

Figure 7. An excerpt of an example test case
that is automatically generated from the us-
age model after model annotation

- Run 200 weightedtest cases that represent the 200
most probable paths of the usage model.

- Run2, 000 randomtest cases that are generated from
the usage model based on the arc probabilities.

- Total testing consists of25, 577 transitions for the
above2, 248 test cases.

- If all tests run successfully, this will demonstrate em-
pirical evidence to support a claim of reliability> 0.90

given the defined protocol (of our usage model for the
SUT, our selection of test cases, the actual result of
testing, and the reliability model implemented in the
JUMBL).

7 Automated statistical testing and test case
analysis

Using the automated testing framework we had devel-
oped and the JUMBL, we were able to automatically gen-
erate, automatically execute, and automatically evaluatethe
sample of2, 248 test cases. Our testing was done on a lap-
top with Intel CoreTM i-7-3630QM CPU with4 cores,2.40
GHz clock speed, and8 GB memory. It took 2 days, 15
hours, 8 minutes and 4 seconds to run the2, 248 test cases,
of which710 were successful and1, 538 were failed.

We did a test case analysis using the JUMBL based on
our testing experience. Excerpts of the test case analysis are
shown in Table 5. Some important statistics include:

- Nodes/Arcs/Stimuli Generated. The number of
states/arcs/stimuli covered in the generated test cases.

- Nodes/Arcs/Stimuli Executed. The number of
states/arcs/stimuli covered in the executed test cases.

- Arc/Stimulus Reliability . The estimated probability
of executing an arc / a stimulus in a test case success-
fully.

- Single Event Reliability. The estimated probability
that a randomly selected arc can be executed success-
fully in a test case.

- Single Use Reliability. The estimated probability of
executing a randomly selected test case successfully.

- Optimum Reliability . The estimated reliability if all
generated test cases were executed successfully.

- Relative Kullback Discriminant . A measure of how
close the performed testing matches the software use
as described by the usage model.

Table 5. Excerpts of the test case analysis:
Reliabilities

Single Event Reliability 0.726169681
Single Event Variance 2.72195572E-6
Single Event Optimum Reliability 0.985152717
Single Event Optimum Variance 394.383426E-9
Single Use Reliability 0.270545355
Single Use Variance 0.120506877
Single Use Optimum Reliability 0.907720385
Single Use Optimum Variance 38.7376831E-3
Arc Source Entropy 2.88 bits
Kullback Discrimination 0.6012524 bits
Relative Kullback Discrimination 20.879%
Optimum Kullback Discrimination 10.3936509E-3 bits
Optimum Relative Kullback Discrimination 0.360920256%

Of which the most important statistic, thesingle use relia-
bility, estimates “the probability of the software executing a
randomly selected use without a failure relative to a speci-
fication of correct behavior.” [15] The low single use reli-
ability observed in this example (0.270545355) was due to
the high number of failed test cases (1, 538 out of2, 248).

Tracing through some failed test cases we identified12

discrepancies between the specification and the code (see
Figure 8). This record of specification-implementation dis-
crepancies will be helpful in locating and fixing bugs in the
released code.

Figure 8. BBQE specification-code discrep-
ancies

8 Conclusion

In this paper we demonstrated an automated testing
framework for fully automated statistical testing of GUI ap-
plications. We applied two rigorous software specification
and testing methods and the supporting tools, and integrated
them with an automated testing tool suitable for GUI appli-
cations, and reported an elaborate case study. As the read-
ers might find out, working on any non-trivial real world
problem requires considerable efforts be made to work out
all the details needed for fully automated testing with no
human intervention, however, by the end of the process
we have the ability of running large numbers of tests, as
well as an automated testing facility for low-cost, quick-
turnaround testing and re-testing. All the artifacts we have
produced in this process, including the usage model, test
oracle, JUMBL-QTP interfaces, testing records, test plans,
test scripts, test cases, product measures and evaluation cri-
teria, all become reusable testing assets. Our experiences
demonstrated a pathway towards lowered cost of testing and
improved product quality for this type of applications.

Acknowledgements

This work was generously funded by Lockheed Martin
Corporation and Northrop Grumman Corporation through
the NSF Security and Software Engineering Research Cen-
ter (S2ERC).

References

[1] 2015. Prototype Sequence Enumeration (ProtoSeq). Soft-
ware Quality Research Laboratory, The University of Ten-
nessee. http://sqrl.eecs.utk.edu.

[2] 2015. Requirements Elicitation and Analysis with
Sequence-Based Specification (REALSBS). Software Qual-
ity Research Laboratory, The University of Tennessee.
http://sqrl.eecs.utk.edu.

[3] 2015. J Usage Model Builder Library (JUMBL). Software
Quality Research Laboratory, The University of Tennessee.
http://sqrl.eecs.utk.edu.

[4] 2015. http://www.blackboard.com.
[5] 2015. Quick Test Professional. Hewlett-Packard.

http://www8.hp.com/us/en/software-solutions/unified-
functional-testing-automation/.

[6] 2015. The Modeling Language (TML). Software Qual-
ity Research Laboratory, The University of Tennessee.
http://http://sqrl.eecs.utk.edu/esp/tml.html.

[7] T. Bauer, T. Beletski, F. Boehr, R. Eschbach, D. Landmann,
and J. Poore. From requirements to statistical testing of em-
bedded systems. InProceedings of the 4th International
Workshop on Software Engineering for Automotive Systems,
pages 3–9, Minneapolis, MN, 2007.

[8] L. Bouwmeester, G. H. Broadfoot, and P. J. Hopcroft. Com-
pliance test framework. InProceedings of the Second Work-
shop on Model-Based Testing in Practice, pages 97–106,
Enscede, The Netherlands, 2009.

[9] G. H. Broadfoot and P. J. Broadfoot. Academia and industry
meet: Some experiences of formal methods in practice. In
Proceedings of the 10th Asia-Pacific Software Engineering
Conference, pages 49–59, Chiang Mai, Thailand, 2003.

[10] T.-H. Chang, T. Yeh, and R. C. Miller. Gui testing using
computer vision. InProceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, pages 1535–
1544, Atlanta, GA, 2010.

[11] V. Chinnapongse, I. Lee, O. Sokolsky, S. Wang, and P. L.
Jones. Model-based testing of gui-driven applications. In
Lecture Notes in Computer Science: Software Technologies
for Embedded and Ubiquitous Systems, volume 5860, pages
203–214, 2009.

[12] L. Lin, S. J. Prowell, and J. H. Poore. An axiom system
for sequence-based specification.Theoretical Computer Sci-
ence, 411(2):360–376, 2010.

[13] A. M. Memon and B. N. Ngyuen. Advances in automated
model-based system testing of software applications with a
gui front-end.Advances in Computers, 80:121–162, 2010.

[14] J. H. Poore, L. Lin, R. Eschbach, and T. Bauer. Auto-
mated statistical testing for embedded systems. In J. Zan-
der, I. Schieferdecker, and P. J. Mosterman, editors,Model-
Based Testing for Embedded Systems in the Series on Com-
putational Analysis and Synthesis, and Design of Dynamic
Systems. CRC Press-Taylor & Francis, 2011.

[15] J. H. Poore, H. D. Mills, and D. Mutchler. Planning
and certifying software system reliability.IEEE Software,
10(1):88–99, 1993.

[16] J. H. Poore and C. J. Trammell. Application of statistical sci-
ence to testing and evaluating software intensive systems.In
M. L. Cohen, D. L. Steffey, and J. E. Rolph, editors,Statis-
tics, Testing, and Defense Acquisition: Background Papers.
National Academies Press, 1999.

[17] S. J. Prowell and J. H. Poore. Sequence-based software spec-
ification of deterministic systems.Software: Practice and
Experience, 28(3):329–344, 1998.

[18] S. J. Prowell and J. H. Poore. Foundations of sequence-
based software specification.IEEE Transactions on Soft-
ware Engineering, 29(5):417–429, 2003.

[19] S. J. Prowell, C. J. Trammell, R. C. Linger, and J. H. Poore.
Cleanroom Software Engineering: Technology and Process.
Addison-Wesley, Reading, MA, 1999.

[20] Z. U. Singhera, E. Horowitz, and A. A. Shah. A graphi-
cal user interface (gui) testing methodology.International
Journal of Information Technology and Web Engineering,
3(2):1–18, 2008.

[21] J. A. Whittaker and J. H. Poore. Markov analysis of software
specifications.ACM Transactions on Software Engineering
and Methodology, 2(1):93–106, 1993.

[22] J. A. Whittaker and M. G. Thomason. A Markov chain
model for statistical software testing.IEEE Transactions on
Software Engineering, 30(10):812–824, 1994.

