
Generating various contexts from permissions for
testing Android applications

Kwangsik Song, Ah-Rim Han, Sehun Jeong, Sungdeok Cha
Department of Computer Science and Engineering

Korea University
Seoul, South Korea

{kwangsik song, arhan, gifaranga, scha}@korea.ac.kr

Abstract—Context-awareness of mobile applications yields
several issues for testing, since the mobile applications should
be testable in any environment and with any contextual input.
In previous studies of testing for Android applications as event-
driven systems, many researchers have focused on using the
generated test cases considering only GUI events. However, it is
difficult to detect failures in the changes in the context in which
applications run. It is important to consider various contexts
since the mobile applications adapt and use novel features and
sensors of mobile devices. In this paper, we provide the method
of systematically generating various executing contexts from
permissions. By referring the lists of permissions, the resources
that the applications use for running Android applications can
be inferred easily. The various contexts of an application can
be generated by permuting resource conditions, and the permu-
tations of the contexts are prioritized. We have evaluated the
usefulness and effectiveness of our method by showing that our
method contributes to detect faults.

Keywords—Android application testing, permissions, various
contexts, context-aware application, mobile application testing

I. INTRODUCTION

The proliferation of the novel features and sensors of
mobile devices (i.e., operating systems, hardware platforms,
and device sensors) has enabled the development of mobile
applications that can provide rich, highly-localized, context-
aware content to users [1]. In particular, the market for disease
diagnostic systems is growing fast due to the development
of mobile applications that log personal health data (e.g.,
blood glucose, blood pressure, and heart rate) by using the
sensors, cameras, additional simple adapters (or accessories)
in mobile devices and sending the results to the system in
real-time. For instance, in the mobile application called Peek
Vision [2], medical images can be captured by using a clip-on
camera adapter that gives high quality images of the back of
the eye and can be sent to the system so diagnosis can be
done remotely. The mobile application has been designed to
be aware of the computing context in which it runs and to
adapt and react according to its findings; therefore, it belongs
to the category of context-aware applications [3].

The context-awareness of mobile applications yields sev-
eral issues for testing [4] because the mobile applications
should be testable in any environment and with any contextual
input [5]. These applications are notified of a change to their
context by means of events, and the variability in the running

DOI reference number: 10.18293/SEKE2015-118

conditions of a mobile application depends on the possibility
of using it in variable contexts. A context represents the
overall environment that the application is able to perceive
[6]. More precisely, Abowd et al. [7] define a context as: “any
information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is including
the user and applications themselves.”

In previous studies of testing of Android applications as
event-driven systems, many researchers focused on using the
generated test cases considering only GUI events. However,
it is difficult to detect failures in the changes in the contexts,
which can be influenced by context events, in which appli-
cations run. Even in studies that considered context events,
the specific event sequences generated based on a limited
number of scenarios were considered. This has limitations in
terms of finding bugs that occur in various complex contexts.
It is important to discover the unacceptable behaviors of an
app (such as crashes or freezes) that are often reported in
the bug reports of mobile apps and appear when the app is
impulsively solicited by contextual events, such as the alerts
for the connection/disconnection of a plug (e.g., USB and
headphone), an incoming phone call, GPS signal loss, etc.
Therefore, for testing mobile applications, we need a system-
atic testing method to take into account the various conditions
in context-aware systems. This is increasingly needed given
trends in mobile applications due to the advancement in the
novel features and sensors of mobile devices, which reveal new
types of bugs [8].

To access resources from Android devices,
each Android application includes a manifest file,
AndroidManifest.xml, which lists the permissions
[9] that the application requires for its execution and requests
permissions for the resources. By referring to the lists of
permissions, the resources that the applications use for
running Android applications can be inferred easily. The
context events occurred from/by those identified resources,
and the state for each condition can be changed by those
context events. Thus, we use the permissions to generate the
various contexts used for testing Android applications.

To test mobile applications in various contexts, we provide
a method for systematically generating various executing
contexts from permissions. In our paper, an executing context
represents a permutation of resource conditions that have
variable states, and Graphical User Interface (GUI) event based
generated test cases [10] can be run in those contexts. The state
of each condition can be changed/sensed/perceived according

to several types of context events, such as:

• events coming from the external environment and
sensed by device sensors (e.g., Wi-Fi and GPS);

• events generated by the device hardware platform
(e.g., battery and other external peripheral port, such
as USB, headphone, and network receiver/sender); and

• events typical of mobile phones (e.g., the arrival of a
phone call or a SMS message).

The brief procedure for generating various executing contexts
using permissions is as follows. First, the related resources and
their possible states are identified from the permissions. Then,
the various executing contexts are generated by permuting the
resource conditions that have variable states. Finally, the exe-
cuting contexts are prioritized and the part of those executing
contexts are selected. We applied our testing method to two
open-source projects, Open Camera [11] and Subsonic [12].
Experiments reveal that the proposed method is significantly
effective in detecting faults.

The rest of this paper is organized as follows: Section II
contains a discussion of related studies. Section III explains the
definition and the need to use permissions when testing An-
droid applications, and the related resources that can inferred
from the permissions are identified. Section IV explains the
procedure to generate various contexts from the permissions. In
Section V, we present an experiment to evaluate the proposed
approach and discuss the results. We conclude and discuss
future research in Section VI.

II. RELATED WORK

Mobile applications are event-driven systems, but, unlike
other traditional event-driven software systems, GUI [10],
[13]–[15] or web applications [16], they are able to sense and
react to a wide range of events. In the following subsections,
we discuss the related studies that provide methods for testing
Android applications as event-driven systems.

A. GUI Testing

Random testing. The UI/Application Exerciser Monkey [13]
is part of the Android SDK and generates random user input.
Originally designed for stress-testing Android applications,
it randomly generates pseudo-random streams of user events
such as clicks, touches, or gestures, as well as a number of
system-level events. Monkey testing is a random and auto-
mated unit test. The test is not scripted and is run mainly to
check whether a system or an application will crash. It is easy
to set up and can be used in any application. The cost of using
the testing is relatively small. However, detection of only a few
bugs is possible.

Model-based testing. AndroidRipper [14] is an automated
technique implemented in a tool that tests Android applica-
tions using a GUI model. AndroidRipper is based on a user
interface-driven ripper that automatically explores the applica-
tion’s GUI to exercise the application in a structured manner.
More specifically, it dynamically analyses the application’s
GUI for obtaining sequences of events that are fireable through
the GUI widgets. Each sequence provides an executable test
case. During its operation, AndroidRipper maintains a state

machine model of the GUI (called a GUI Tree). The GUI Tree
contains the set of GUI states and state transitions encountered
during the ripping process. However, by using generated test
cases that consider only GUI events, it is difficult to find
failures that could otherwise be detected by considering the
changes in the context, which can be influenced by context
events, in which applications run.

B. Context-aware Testing

Amalfitano et al. [6] took into account both context events
and GUI events for testing Android applications. They man-
ually define reusable event patterns—representations of event
sequences that abstract meaningful test scenarios. These event-
patterns are manually defined after a preliminary analysis is
conducted on the bug reports of open source applications.
Based on the defined event patterns, test cases are generated
using the three scenario-based mobile testing approaches that
(1) manually generate test cases, (2) mutate existing test cases,
and (3) support the systematic exploration of the behavior of
an application (an extension of the GUI ripping technique is
presented in [14]). For dynamically recognizing the context
events that the application is able to sense and react at a given
time, events can be deduced from event handlers. In this work,
they also use a set of Intent Messages to figure out the events
that are managed by other application components. This set
can be obtained by means of static analysis of the a Android
manifest file of the application.

The methodology proposed by Amalfitano et al. has some
limitations. The number of scenarios that define relevant ways
of exercising an application is limited because specific event
sequences are considered. By manual analysis by experts, the
events possibly trigger a faulty behavior may not be properly
identified. By analyzing bug history, a sequence of events that
has never occurred might not be chosen, but they may cause
catastrophic failures. These event patterns may need to be
redefined when testing other types of applications. From the
perspective of triggering the context events, the source codes
also need to be analyzed and altered. Moreover, the effective-
ness of the testing approach is evaluated only by measuring
the code coverage. Statement coverage may not be effective
and sufficient enough on fault detection capability [17]. In our
paper, we provide a systematic method of generating various
executing contexts. Since this method may cause to produce
many test cases to be run, we provide a prioritization technique
to rank the test cases in the order of the likelihood of detecting
faults.

III. INFERRING RESOURCES FROM PERMISSIONS

A. Permissions in Android Application

Android uses a system of permissions [9] to control how
applications access sensitive devices and data stores. More
specifically, to ensure security and privacy, Android uses a
permission-based security model to mediate access to sensitive
data (e.g., location, phone call logs, contacts, emails, or photos)
and potentially dangerous device functionalities (e.g., Internet,
GPS, and camera) [18].

To access resources from Android devices, each Android
app requests permissions for resources by listing the per-
missions. Each Android application includes a manifest file,

TABLE I: List of permissions and related resources with their possible states.

Permission Allows an App to Related Resources[Possible States] Android Version
ACCESS FINE LOCATION Access precise location from location sources Wi-Fi[on|off], GPS[on|off], Radio[on|off] Android 1.0 ~

INTERNET Open network sockets Wi-Fi[on|off], Radio[on|off] Android 1.0 ~
CAMERA Be able to access the camera device Camera [on|off], SD card[free|full] Android 1.0 ~

BLUETOOTH Connect to paired bluetooth devices Bluetooth[on|off] Android 1.0 ~
WRITE CALL LOG Write (but not read) the user’s contacts data Radio[on|off] Android 4.0.3 ~

WRITE EXTERNAL STORAGE Write to external storage SD card[on|off] Android 1.5 ~
BIND DEVICE ADMIN Ensure that only the system can interact with device Camera [on|off], Flash[on|off], SD card[free|full], Wi-Fi[on|off] Android 2.2.x ~

VIBRATE Access to the vibrator Vibrator[on|off] Android 1.0 ~
NFC Perform I/O operations over NFC NFC[on|off] Android 2.3 ~

FLASHLIGHT Access to the flashlight Flash[on|off] Android 1.0 ~
CHANGE NETWORK STATE Change network connectivity state Wi-Fi[on|off], GPS[on|off], Radio[on|off] Android 1.0 ~
CAPTURE VIDEO OUTPUT Capture video output LCD[on|off], Camera [on|off] Android 1.0 ~

AndroidManifest.xml [19], which lists the permissions
that the application requires for its execution. When the user
wants to install an app, this list of permissions is presented
and confirmation is requested. When the user confirms the
access, the app will have the requested permissions at all times
(until the app is uninstalled). If an application requests the
resource without having the appropriate permission, then the
Android OS may throw a Security Exception or simply not
grant the requested resource [20]. These permission-protected
resources are accessed through the Android API and other
classes resident on the phone. For example, having the AC-
CESS FINE LOCATION permission will give the application
access to a number of Android API calls that use resources
such as GPS, Wi-Fi, and Radio.

B. Identification of Related Resources from Permissions

We have used the permissions in an app’s manifest file for
generating various context used for testing Android applica-
tions. By referring to the lists of permissions, the resources
that the applications would (potentially) use for running An-
droid applications can be inferred easily. without analyzing
source codes of the applications. The context events occur
from/by those identified resources, and the state for each
condition can be changed by those context events. Thus, by
using permissions, we can generate various executing contexts
that represent permutations of resource conditions that have
variable states.

The latest Android platform release contains a list of
152 permissions. Among them, we focus on the permissions
related to communicating with the environments, because they
are more critical for making context-aware apps. For each
permission, the related resources with their possible states
are identified in Table I. It is intuitive to identify the related
resources in the permissions of BLUETOOTH or CAMERA.
Meanwhile, in the permission of ACCESS FINE LOCATION,
it covers multiple resources such as GPS, Wi-Fi, and Radio. To
consider the variable states of resource conditions, the possible
states are defined in terms of an availability (i.e., on or off).
It is also worth to note that the table is independent to the
features of an app and thus it is reusable.

IV. TESTING ANDROID APPLICATIONS IN VARIOUS
CONTEXTS

Fig. 1 represents the overall procedure for generating
various executing contexts using permissions.

Context 1 Wi-Fi ON/GPS OFF…

Context 2 Wi-Fi OFF/GPS OFF…

Rank 1: Context 3

Rank 2: Context 1

A. Inferring Resources

from Permissions

B. Generating Various

Executing Contexts

C. Prioritizing Contexts

Rank 3: …

GPS

WIFI

Permission A

AndroidMenifest.xml

Context 3 Wi-Fi ON/GPS ON…

Context 4 …

Possible combinations of

conditions having variable states

Permission B

Permission C

Bluetooth

Resources of

mobile phones

Camera

Permissions of

an application

Fig. 1: An overview for generating various contexts after
analyzing permissions.

A. Generating Various Executing Contexts

The executing contexts of an app can be generated by
permuting resource conditions. For instance, if the resources
that an app uses are r1, r2, ..., rn, and the number of
possible states for those corresponding resource conditions are
N(r1), N(r2), ..., N(rn), then the total number of generated
executing contexts is N(r1) × N(r2) × ... × N(rn). For
example, if an app’s permission has links with Bluetooth,
GPS, and Wi-Fi, then net executing contexts include eight
different permutations because each resource condition has two
candidate states.

B. Prioritizing Contexts

While the generation of executing contexts is straightfor-
ward and easy to automate, the number of generated executing
contexts increases as the number of considered resources
increase. An app is executed on every test case for all the

generated various contexts, and the test runs increase expo-
nentially. Thus, we need to prioritize the executing contexts to
select the contexts to be tested first.

We suggest the two-level prioritizing strategies to rank
the generated executing contexts. The first step is weighting
each resource condition according to the testing objectives
(e.g., testing normal or unacceptable behaviors). To test normal
behaviors of the apps, the executing contexts, in which more
resources are used, should be more highly ranked. Thus,
for example, weights can be assigned to resource conditions
as follows: Wi-Fi[on]=1, GPS[on]=1, Camera[on]=1, and SD
card[free]=1. If the objective of the testing is to detect unac-
ceptable behaviors of an app, then executing contexts related to
the exceptional scenarios should be more highly ranked; thus,
the resource conditions constituting those executing contexts
need to be weighted, such as Wi-Fi[off]=1, GPS[off]=1, Cam-
era[off]=1, and SD card[full]=1. To obtain the score of each
generated executing context, the weights of resource conditions
of the executing context are summed.

In the second step, to distinguish the executing contexts
that have the same scores, we provide the method to assign
weights to individual or combinatorial resources residing in an
executing context. We suggest three criteria—frequency, user
controllability, and minimum required resource conditions—as
follows.

• Frequency. It represents how much a resource is
required via permissions and is to be used in an app. It
counts the identified number of each resource over the
lists of permissions. For example, let an app have the
permissions in Table I, then the frequency of the Radio
resource is four. Thus, frequently identified resources
need can be weighted to test more used resource-
related behaviors of an app first.

• User controllability. It indicates how easily a user
can control a resource. For example, users can en-
able or disable GPS or Wi-Fi but do not control
hardware-related sensors directly. Thus, resources that
are more user controllable can be weighted to test
usable resource-related behaviors of an app first.

• Minimum required resource conditions. The cer-
tain combinations of resource conditions need to be
weighted to test permission-related behaviors first.
The rational of the idea comes from the observa-
tions that several permissions are related to multiple
resources and require minimum resource conditions
to provide expected services to an app. For exam-
ple, the ACCESS FINE LOCATION permission uses
three resources, GPS, Wi-Fi, and Radio; and among
the three resources, GPS[on] and Wi-Fi[on] are the
necessary and sufficient resource conditions to provide
the service which is to access precise location from
location sources. On the other hand, if we focus
on detecting faults, the combination of states that
could trigger a faulty behavior (e.g., GPS[on] and Wi-
Fi[off]) could be more highly weighted.

V. EVALUATION

We investigated the two research questions in our experi-
ment.

TABLE II: Characteristics for each experimental subject.

Name Open Camera (Ver. 1.21) [11] Subsonic for Android (Ver. 4.4) [12]

Description

Taking pictures and providing
various features (e.g., zooming,

focusing, flashing, and
coloring effects)

Playing music and video by receiving
media files from the stream server
(e.g., personal PC) and supports

offline mode and bitrates
Class # 61 265

Method # 399 1038
LOC # 3,790 16,064

TABLE IV: Bugs that can be detected using our approach.

Open Camera Subnonic
Fault No. Bug ID. (refer in [21]) Fault No. Bug ID. (refer in [22])

1 1 1 150
2 2 2 126
3 9 3 64
4 20 4 102
5 3 5 38
6 11 6 82
7 30 7 46
8 31 8 39
9 37 9 35
10 4 10 32
11 28 11 21
12 33 12 8

13 4
14 83

RQ1. Is our testing approach useful for detecting faults?

RQ2. Is our prioritization technique effective in detecting
faults?

A. Experimental Design

Two open source projects are chosen as experimental
subjects: Open Camera [11] and Subsonic [12]. We selected
these as subjects because they are open source projects and
their development histories (such as bug issues) are accessible.
They contain a relatively large number of classes and methods
(large size) as well. Table II summarizes characteristics of each
subject.

The testing is performed by running the test cases under
each context. In other words, the same test cases had run in a
iterative manner as much as the number of the (selected) con-
texts. We first execute test cases generated from the Android
GUI ripper tool [10]. They provide the sequences of events
associated with GUI tree paths that link the root node to the
leaves of the tree, but the results of statement code coverage
on the experimental subjects were low (i.e., average from 45%
to 47%). Since GUI-based approaches have limitations for
covering all components, we additionally performed testing by
focusing on the scenarios that users use more frequently and
faulty behaviors may be more occurred.

Table III shows the generated and used executing contexts
for Open Camera and Subsonic. As mentioned in Section IV-A,
the executing contexts to be tested first need to be prioritized
and selected because too many test runs are required, which is
computation-intensive. To test the normal scenario, we select
the context where all resources are on (active). On the other
hand, to test the exceptional scenario, we also select the context
where all resources are off (inactive). The contexts that might

TABLE III: Generated and used executing contexts from our approach.

Name Executing Contexts
Permission Resource[States] Total # Used #

Open Camera [11]

ACCESS FINE LOCATION Wi-Fi[on|off], GPS[on|off],
Radio[on|off]

32
= 25

Rank Wi-Fi GPS Radio SD card Camera
1 on on on free enable
2 off off off full disable
3 on on on full enable
4 off on off free enable

CAMERA Camera [on|off],
SD card[free|full]

WRITE EXTERNAL STORAGE SD card[free|full]

Subsonic [12]

INTERNET Wi-Fi[on|off], Radio[on|off]

128
= 27

Rank Wi-Fi Radio Bluetooth SD card Audio MIC CPU
1 on on on free enable on unlock
2 off off off full disable off lock
3 on on off free enable on unlock
4 on on on full enable on unlock
5 on on on free enable on lock
6 off on on free enable on unlock

BLUETOOTH Bluetooth [on|off]
RECORD AUDIO Audio[on|off], MIC[on|off]

READ PHONE STATE Radio[on|off]
WRITE EXTERNAL STORAGE SD card[free|full]

WAKE LOCK CPU[lock|unlock]
MODIFY AUDIO SETTINGS Audio[on|off]
ACCESS NETWORK STATE Wi-Fi[on|off], Radio[on|off]

READ EXTERNAL STORAGE SD card[free|full]

cause faulty behavior are also highly ranked. For example, the
faults may be more occurred on the situations when SD card is
full (it many cause a problem in file processing) and when GPS
is on while Wi-Fi is off (it may result in logging wrong location
information). When setting these contexts, other resources—
not involving these situations—are set to be inactivated. As a
result, we selected four among 32 and six among 128 executing
contexts in Open Camera and Subsonic, respectively.

Since the subjects are open source projects, we can access
the bug histories of Open Camera [21] and Subsonic [22].
We manually analyzed the issues in those repositories and
extracted the faults that could have been detected if our testing
technique had been used. Then, we execute the test cases
in the contexts generated using our approach and discover
unacceptable behaviors of the app (such as crashes or freezes).
These bugs are matched the corresponding faults extracted
from the repositories. For example, we found a crash (i.e.,
runtime exception: fail to connect camera service) by executing
test cases in the context where a camera is disabled. This
crash can be matched to the faults of camera malfunctions
or exceptions.

To evaluate the effectiveness of our method of prioritizing
contexts, we compare three different sequences of contexts in
which test cases run: the generated order T, the reversed order
Tr, and the prioritized order Tp (which is ranked according to
our prioritization method). The order T is the order generated
from our approach but not prioritized. The generated order
T and the reversed order Tr can be regarded as random
sequences.

To quantify the capability of the contexts on fault detection,
we use a metric called APFD (Average Percent Fault Detec-
tion) [23]. The APFD is calculated by taking the weighted
average of the percentage of faults detected over the life of the
suite. The higher numbers imply faster (better) fault detection
rate. Let T be a test suite containing n contexts in which test
cases run, and let F be a set of m faults revealed by T. Let
TFi be the fist context in ordering of T’ of T which reveals
fault i. The APFD for test suite T’ is given by the equation:

APFD = 1− TF1 + TF2 + ...+ TFm

nm
+

1

2n
.

We also measure the fault detection rate according to the order
of executing contexts.

B. Results

Number of detected bugs. We found 12 out of 38 bugs in
Open Camera, and 14 out of 151 bugs in Subsonic (see Table
IV). This results show that our testing is useful in detecting
faults.

APFD measure. For Open Camera, # of contexts running
with test cases (n) is 32, and # of faults (m) is 12. The APFD
for three orders (i.e., T (generated order), Tr (reversed order),
Tp (prioritized order using our approach)) are calculated as
follow:
T: 0.92 = 1-(6+1+1+1+1+9+9+3+1+1+1+1)/384,
Tr: 0.62 = 1-(3+9+17+17+17+1+1+1+32+17+17+17)/384,
Tp: 0.97 = 1-(4+1+1+1+1+2+2+2+1+1+1+1)/384.
For Subsonic, # of contexts running with test cases (n) is
128, and # of faults (m) is 14. The APFD for three orders are
calculated as follow:
T: 0.96 = 1-(2+1+1+1+1+2+1+1+6+6+1+1+1+1)/1536,
Tr: 0.92 = 1-(10 +1+1+1+1+10+1+1+5+5+1+1+1+1)/1536,
Tp: 0.98 = 1-(1+11+11+11+19+1+11+20+11+11+4+11+3+11)/1536.
In both projects, the APFDs for Tp represent the highest
scores. Note that, in Subsonic, the number of generated
executing contexts is large (i.e., 128) and many of the faults
are detected by small number of the executing contexts, thus,
the APFD measures are not much different in three orders.

Fault detection rate. We present the graphs of fault
detection rate for Open Camera and Subsonic in Fig. 2(a) and
in Fig. 2(b), respectively. The graphs show the percentages
of faults detected versus the fraction of the contexts used,
for each sequence of comparators. For Open Camera, we
(Tp) reached to 100% of fault detection rate after running
four executing contexts, while the generated order (T) and
the reversed order (Tr) required 9 and 32 executing contexts,
respectively. For Subsonic, our prioritized sequence (Tp)
reached to 100% of fault detection rate after running six
executing contexts, while the generated order (T) and the
reversed order (Tr) required 10 and 20 executing contexts,
respectively. From the results, we can conclude that the
order prioritized using our prioritization method results in the
earliest detection of the faults.

VI. CONCLUSION AND FUTURE WORK

In our paper, we provide a method for systematically
generating various executing contexts from permissions to

320 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

100

30

40

50

60

70

80

90

of Runned Executing Contexts with Test Cases (Total: 32)

F
a
u
lt

 D
e
te

c
ti

o
n
 R

a
te

 (
%

)

Generated Order (T)

Prioritized Sequence

using Our Approach

(Tp)

Reversed Order (Tr)

(a) Fault detection rate for Open Camera.

200 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

100

10

20

30

40

50

60

70

80

90

of Runned Executing Contexts with Test Cases (Total: 128)

F
a
u
lt

 D
e
te

c
ti

o
n
 R

a
te

 (
%

)

Generated Order (T)

Reversed Order (Tr)

Prioritized Sequence

using Our Approach

(Tp)

(b) Fault detection rate for Subsonic.

Fig. 2: Fault detection rate graphs.

test Android applications. To generate the various contexts,
the related resources and their possible states are identified
from the permissions. Then, the various executing contexts are
generated by permuting resource conditions, and the executing
contexts are prioritized and selected. We applied our testing
method to two open-source projects and showed the method
is effective in fault detection.

For future work, we plan to consider more permissions and
identify the relations between the resources and those permis-
sions. We also plan to perform the more detailed experiment
for showing the capability of using various contexts. Finally,
we plan to devise the method of considering sequences in our
contexts for simulating dynamically changing environment.

ACKNOWLEDGMENT

This research was supported by Basic Science Research Program
through the National Research Foundation of Korea(NRF) funded by
the Ministry of Education(NRF-2014R1A1A2054098). This research
was supported by the MSIP(Ministry of Science, ICT and Future
Planning), Korea, under the ITRC(Information Technology Research
Center) support program (IITP-2015-H8501-15-1012) supervised by
the IITP(Institute for Information & communications Technology
Promotion).

REFERENCES

[1] J. Dehlinger and J. Dixon, “Mobile application software engineering:
Challenges and research directions,” in Workshop on Mobile Software
Engineering, 2011.

[2] Peak Vision, http://www.peekvision.org/.
[3] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware

systems,” International Journal of Ad Hoc and Ubiquitous Computing,
vol. 2, no. 4, pp. 263–277, 2007.

[4] D. Amalfitano, A. R. Fasolino, P. Tramontana, and B. Robbins, “Testing
android mobile applications: Challenges, strategies, and approaches.”
Advances in Computers, vol. 89, pp. 1–52, 2013.

[5] H. Muccini, A. Di Francesco, and P. Esposito, “Software testing of
mobile applications: Challenges and future research directions,” in
Automation of Software Test (AST), 2012 7th International Workshop
on. IEEE, 2012, pp. 29–35.

[6] D. Amalfitano, A. R. Fasolino, P. Tramontana, and N. Amatucci, “Con-
sidering context events in event-based testing of mobile applications,” in
Software Testing, Verification and Validation Workshops (ICSTW), 2013
IEEE Sixth International Conference on. IEEE, 2013, pp. 126–133.

[7] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in Handheld and ubiquitous computing. Springer, 1999,
pp. 304–307.

[8] A. Kumar Maji, K. Hao, S. Sultana, and S. Bagchi, “Characterizing
failures in mobile oses: A case study with android and symbian,” in
Software Reliability Engineering (ISSRE), 2010 IEEE 21st International
Symposium on. IEEE, 2010, pp. 249–258.

[9] System Permissions,
http://developer.android.com/intl/ko/guide/topics/security/permissions.html.

[10] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
G. Imparato, “A toolset for gui testing of android applications,” in Soft-
ware Maintenance (ICSM), 2012 28th IEEE International Conference
on. IEEE, 2012, pp. 650–653.

[11] Open Camera, http://opencamera.sourceforge.net.
[12] Subsonic, http://subsonic.org/pages/apps.jsp#android.
[13] UI/Application Exerciser Monkey,

http://developer.android.com/tools/help/monkey.html.
[14] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and

A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. ACM, 2012, pp.
258–261.

[15] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “A gui crawling-
based technique for android mobile application testing,” in Software
Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE
Fourth International Conference on. IEEE, 2011, pp. 252–261.

[16] M. Wang, J. Yuan, H. Miao, and G. Tan, “A static analysis approach
for automatic generating test cases for web applications,” in Computer
Science and Software Engineering, 2008 International Conference on,
vol. 2. IEEE, 2008, pp. 751–754.

[17] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014, pp. 435–445.

[18] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission evolution
in the android ecosystem,” in Proceedings of the 28th Annual Computer
Security Applications Conference. ACM, 2012, pp. 31–40.

[19] Menifest Permissions,
http://developer.android.com/reference/android/Manifest.permission.html.

[20] R. Johnson, Z. Wang, C. Gagnon, and A. Stavrou, “Analysis of
android applications’ permissions,” in Software Security and Reliability
Companion (SERE-C), 2012 IEEE Sixth International Conference on.
IEEE, 2012, pp. 45–46.

[21] Open Camera Bug Issues, http://sourceforge.net/p/opencamera/tickets/.
[22] Subsonic Bug Issues, http://sourceforge.net/p/subsonic/bugs.
[23] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test

cases for regression testing,” Software Engineering, IEEE Transactions
on, vol. 27, no. 10, pp. 929–948, 2001.

