
Flexible and Extensible Runtime Verification for Java

Chengcheng Xiang1, Zhengwei Qi1, and Walter Binder2

1Shanghai Jiao Tong University, Shanghai, China

Email:{xiangchengcheng,qizhwei}@sjtu.edu.cn
2Università della Svizzera italiana (USI), Switzerland

Email:{walter.binder}@usi.ch

Abstract—Runtime verification validates the correctness of
a program’s execution trace. Much work has been done on
improving the expressiveness and efficiency of runtime verifi-
cation. However, current approaches require static deployment
of the verification logic and are often restricted to a limited
set of events that can be captured and analyzed, hindering the
adoption of runtime verification in production systems. A popular
system for runtime verification in Java, JavaMOP (Monitor-
Oriented Programming in Java), suffers from the aforementioned
limitations due to its dependence on AspectJ, which supports
neither dynamic weaving nor an extensible join-point model. In
this paper, we extend the JavaMOP framework with a dynamic
deployment API and a new MOP specification translator, which
targets the domain-specific aspect language DiSL instead of
AspectJ; DiSL offers an open join-point model that allows for
extensions. A case study on lambda expressions in Java8 demon-
strates the extensibility of our approach. Moreover, in comparison
with JavaMOP using load-time weaving, our implementation
reduces runtime overhead by 21%, and heap memory usage by
16%, on average.

Keywords—Runtime verification; Monitor-Oriented Program-
ming (MOP); dynamic program analysis; dynamic deployment

I. INTRODUCTION

Runtime verification [1], [2] is a method that dynamically
checks specific properties of an executing system both in
testing and production environments. Compared with tradi-
tional verification approaches, such as model checking [3] and
automated theorem proving [4], runtime verification reduces
the state space by concentrating on the actual execution trace
and eliminates the fallibility of formally modeling a system.
In recent years, a lot of research has aimed at making runtime
verification a practical way to improve program reliability [1],
[5], [6].

A lot of techniques and tools have been developed for run-
time verification of Java programs. Early research, including
Java-MaC [7] and Hawk/Eagle [5], is focused on developing
expressive logics for property description. Recently, Java-
MOP [6] effectively reduces the runtime overhead thanks to
an efficient management of monitors. Moreover, static program
analysis techniques are used to reduce the amount of inserted
instrumentation code [8].

However, a lack of flexibility and extensibility has pre-
vented these techniques from becoming widely used in prac-
tice. Flexibility is important for two reasons. On the one hand,
runtime verification systems may introduce a significant over-
head of more than 100% when monitoring multiple properties

DOI reference number: 10.18293/SEKE2015-117

simultaneously [9]. In some cases, such overhead may be in-
evitable, because checking multiple properties simultaneously
may need to monitor a large number of events. Hence, it is
necessary to verify properties sequentially, implying that code
for event capture needs to be deployed and undeployed dynam-
ically. On the other hand, as dynamic code evolution has been
a timesaving way for development, property checkers should
also be able to get updated dynamically. Moreover, since most
runtime verification tools for Java, such as Tracematches [10]
and JavaMOP [6], use AspectJ [11] as their instrumentation
back-end, the categories of events are restricted to the AspectJ
pointcuts, which can only be extended by modifying the
AspectJ compiler. As shown e.g. in cite[12], the AspectJ join-
point model is not well suited for dynamic program analysis.

In this paper, we present a flexible and extensible runtime
verification framework for Java, MOP-DiSL. Our approach is
based on JavaMOP [6], a framework for Monitoring-Oriented
Programming for Java, and on DiSL [12], a domain-specific
language for dynamic program analysis based on bytecode
instrumentation. Our framework translates the MOP specifi-
cation into DiSL code, and a new deployment API allows for
flexible (un)deployment of instrumentation code at runtime.
Extensibility of event categories is achieved through DiSL’s
open join-point model, which we demonstrate with a case
study on Java8 lambda expressions.

This paper makes the following contributions:

• We present MOP-DiSL, a novel runtime verifica-
tion framework for Java that offers flexible dynamic
(un)deployment and extensibility in terms of event
types that can be captured.

• We conduct a case study on lambda expression-related
properties in Java8 programs, and we add several new
pointcuts to show the extensibility of MOP-DiSL.

• We evaluate MOP-DiSL by verifying four proper-
ties with the DaCapo benchmarks [13], showing that
MOP-DiSL introduces significantly less runtime over-
head and consumes less heap memory than JavaMOP
with load-time weaving.

This paper is structured as follows. Section II provides
background information on JavaMOP, AspectJ, and DiSL.
Section III gives a motivating example. Section IV presents
the design and some implementation details of our framework.
Section VI evaluates our framework in comparison with Java-
MOP. Finally, Section VII concludes.

List<Integer> l1 = new ArrayList<>();
List<Integer> l2 = new ArrayList<>();
...
Iterator<Integer> itr = l1.iterator();
while (itr.hasNext()){

l2.add(itr.next()*2);
}

Listing 1: Iterator example

l1.parallelStream()
.map(e -> e*2)
.forEach(e -> l2.add(e));

Listing 2: Stream example

II. BACKGROUND

A. JavaMOP

JavaMOP is an implementation of Monitor-Oriented Pro-
gramming (MOP) that enables runtime verification on the Java
platform. The implementation consists of two parts: a translator
and a set of runtime libraries. The translator parses specifica-
tions of properties in the form of finite state machines (FSM),
context-free grammars (CFG), extended regular expressions
(ERE), and other logical formalism, and generates AspectJ
code to monitor events. Using AspectJ to weave code restricts
the flexibility of JavaMOP and the categories of events it can
get. However, adding new event types to MOP specifications
requires both extensions to the JavaMOP translator and to the
AspectJ compiler.

Many optimization techniques have been proposed to im-
prove the efficiency of the runtime libraries of JavaMOP. [6]
adopts centralized and decentralized indexing algorithms to
optimize the lookup process of monitors. In order to efficiently
reclaim monitor instances that are bound to parameter objects,
[14] proposes a lazy garbage-collection (GC) strategy. Other
than the aforementioned generic techniques, optimizations are
also performed for specific property patterns [15]. According
to [16], the verification code only causes an average runtime
overhead of 15% on the DaCapo benchmark. However, the
overhead for simultaneously monitoring multiple properties
remains prohibitive in practice [9], indicating that there is need
for a more flexible approach to runtime verification.

B. AspectJ

Used by JavaMOP for event definition and instrumenta-
tion, AspectJ [11] is an aspect-oriented programming (AOP)
extension to the Java programming language. AspectJ adopts
pointcuts to select join points, which are execution points in a
program flow, and advice to define the actions to be executed
before, after, or around each join point. Common AspectJ
implementations weave advice in two ways: pre-load weaving
and load-time weaving. Dynamic AOP, supported by tools such
as AspectWerkz [17], Prose [18], and HotWave [19], [20], also
enables runtime weaving and runtime adaption of the aspect
code. Such techniques may endow runtime verification with
more flexibility; however, there are still restrictions on the
extensibility of event categories.

JVM

DiSL

Application

JVMTI

MOP
Code

Deployment Controller

Translator MOP
Spec

RV
Monitor

Figure 1: Framework Overview.

C. DiSL

As a tool for Java bytecode instrumentation, DiSL [12]
is distinguished with several features. First, unlike AspectJ,
DiSL supports an open join-point model, which means that
any code region can be marked as a join point to trigger an
event. Second, DiSL offers comprehensive bytecode coverage
when weaving, including the Java core class library and dy-
namically generated code. Moreover, DiSL has been enhanced
with the ability of dynamically deploying and undeploying
analysis code [21]. Although DiSL possesses the necessary
flexibility and extensibility for runtime verification, it lacks
expressiveness to describe properties and efficient management
of monitor instances.

III. MOTIVATING EXAMPLE

In this section, we present an example to show the ne-
cessity for flexibility and extensibility in runtime verification
frameworks.

Listing 1 and Listing 2 demonstrate two code segments
with the same function: doubling the integers in l1 and append-
ing the outcome to l2. The difference resides in the way they
realize it. In Listing 1, an iterator is used to traverse l1, while
the code in Listing 2 utilizes a parallel stream (introduced in
Java8) to eventually accelerate the process.

When runtime verification is applied to these two code
segments, different properties are of concern. For Listing 1, as
an iterator is created, we may be concerned about the HasNext
property, which means hasNext() should always be called
before the execution of next() on an iterator. For Listing 2, it is
pointless to check the HasNext property, because the parallel
stream internally traverses the list. Instead, since the state-
ments in the lambda expressions are executed concurrently,
it becomes necessary to verify whether they are thread-safe.
In this example, the method call l2.add() is not safe.

Given a dynamic software update substituting Listing 1
with Listing 2 in a running system that should not be restarted,
the properties for runtime verification should also be replaced
dynamically. The lambda expressions pose an additional chal-
lenge, because there is no pointcut in current AspectJ to

event updatesource after(Collection c) :
(call(* Collection+.remove*(..))
|| call(* Collection+.add*(..))) &&

target(c) {}

Listing 3: Event example

@After(marker = CollectionRemoveMarker.class)
public void Updatesource0 (DynamicContext dc,

ArgumentProcessorContext apc) {
Collection c =

(Collection)apc.getReceiver();
RuntimeMonitor.updatesourceEvent(c);

}

@After(marker = CollectionAddMarker.class)
public void Updatesource1 (DynamicContext dc,

ArgumentProcessorContext apc) {
Collection c =

(Collection)apc.getReceiver();
RuntimeMonitor.updatesourceEvent(c);

}

Listing 4: DiSL example

capture the event that a lambda expression is called in a stream
stage. More details about lambda expressions are discussed
in Section V. These challenges demonstrate the need for
flexibility and extensibility of runtime verification systems.

IV. FRAMEWORK DESIGN AND IMPLEMENTATION

In this section, we first give an overview of the framework
architecture, and then present the design and implementation
details of each part.

A. Overview

Figure 1 depicts an overview of MOP-DiSL. In the be-
ginning, the translator generates MOP code in Java, with
inputs of MOP specifications. Then the deployment controller
deploys the MOP code dynamically (i.e., instruments an ap-
plication with the MOP code). The MOP code will capture
sensitive events and generate corresponding monitors, which
are managed by RV-Monitor, a runtime library from JavaMOP.
The whole framework is based on DiSL, which relies on the
JVMTI, a standard tool interface for the JVM. Hence, a high
degree of portability of MOP-DiSL is achieved.

Flexibility and extensibility are achieved through the de-
ployment controller and the translator separately. On the one
hand, the deployment controller instruments, updates, and
removes bytecode for event capture without pausing or restart-
ing the target application. On the other hand, the translator
generates DiSL code as instrumentation back-end, gaining
extensibility from DiSL’s open join-point model.

B. Translator

The translator extends the original JavaMOP translator to
generate DiSL code for instrumentation (instead of AspectJ).
The JavaMOP translator parses event descriptions with the
definition syntax of AspectJ advice, as shown in Listing 3, and
the advice definitions are copied to the final aspect for event
capture. Our translator takes the same input, but generates

Table I: Deployment Controller API

Interface Description

deploy(property, scope) Deploy MOP code of a property in a specific scope

undeploy(property, scope) Undeploy MOP code of a property from a specific
scope

redeploy(property, scope) Update MOP code of a property in a specific scope

DiSL code for instrumentation. Listing 4 demonstrates DiSL
code generated from the event definition in Listing 3, with an
annotation to define the event, and a method to express the
reactions to the event.

The main challenge for translating advice to DiSL lies in
the composition of pointcuts. AspectJ offers a set of primitive
pointcuts, which can be combined by “&&” and “||” to
describe complex events. DiSL also offer a group of basic
markers to mark code regions as join points. However, there
is no easy way to combine these markers, except extend-
ing the marker class. Our translator combines basic markers
by generating new markers, e.g., CollectionRemoveMarker
and CollectionAddMarker, which inherit from a basic MOP
marker. To shorten the generated code, the base MOP marker
is modeled as a pipeline of filters, each for one basic pointcut.
An extended marker overrides several filters to express “&&”
of these filters, while “||” will be translated into different
markers. In order to generate markers for “||”, the translator
first transforms the pointcut composition into a disjunctive
normal form, and each clause will be converted to a marker.

New pointcuts can be easily added to define events by
extending the translator and the base marker class. Since
the marker class manipulates bytecode through ASM1, a
lightweight framework, it is very convenient to expand it with
more filters, corresponding to more primitive pointcuts. We
have added two pointcuts, .i.e., lambdaDef and thisLambda,
to capture events about lambda expressions. More details are
presented in Section V.

C. Deployment Controller

The deployment controller provides several interfaces to at-
tain flexibility, which are listed in Table I. The three interfaces
are declared with identical parameters, two string variables:
property refers to a property name, such as hasNext, and scope
refers to its deploying scope. The scope can be either a package
name or a class name with wildcards support.

These interfaces are implemented based on the work
in [21], which implemented dynamic bytecode instrumentation
through the retransformClasses interface in JVMTI. In our
current implementation, the controller interfaces are exposed
through a network client, with which programmers can deploy
or undeploy property monitors to a running system. However,
these interfaces can also be called by optimized monitor pro-
grams which only enable property monitors when necessary.

V. CASE STUDY

In this section, we present a case study on checking
whether unsynchronized collections are modified in a parallel

1http://asm.ow2.org/

UnsafeForEach(Object capVar0, Consumer c){
event create after(Object capVar0)

returning(Consumer c) :
lambdaDef()&& args(capVar0)){}

event forEach before(Consumer c):
call(* ParallelStream.forEach(..))
&& args(c) {}

event update after(Consumer c, Object
capVar0):
(call(*

(!SynchronizedCollection+).remove*(..))
|| call(*

(!SynchronizedCollection+).add*(..)))
&& target(capVar0) && thisLambda(c){}

ere : create forEach update
@match {

...
}

}

Listing 5: UnsafeForEach

stream, of which a violation instance is shown in Listing 2 as
the motivation example.

Listing 5 demonstrates the property definition in the form
of MOP specification. The property is named as UnsafeForE-
ach with two parameters defined in the event definitions,
i.e., capVar0 and c. Three types of events are captured by
the verification process, and ERE is adopted to express the
targeting event trace. When a matching trace is detected, an
error message is printed.

The first event is about creating a lambda expression,
defined with a new pointcut, i.e. lambdaDef. In Oracle’s Java8
implementation, lambda expressions are translated using the
bytecode instruction invokedynamic. This instruction causes
the lambda metafactory to be invoked and generates a lambda
object implementing the Consumer functional interface. The
lambdaDef pointcut selects all invokedynamic instructions,
checks whether they call the lambda metafactory, exposes cap-
tured variables and the return value through the corresponding
pointcuts args and returning. In this case, there is only one
captured variable, i.e., the collection object. However, more
objects can be exposed by args(), if more variables are captured
by the lambda expression.

The second event is calling the forEach method of a parallel
stream instance. The forEach method takes a Consumer object
as its parameter, and registers the object to the stream. The
new ParallelStream pointcut is added for that a parallel stream
is also an instance of Stream, which means it is impossible to
pick out a parallel stream only with current type check.

The last event happens when an unsynchronized collection
is updated in a lambda expression. The new pointcut this-
Lambda ensures that the updating executes in a lambda con-
text, and exposes the lambda object c. It is worth noting that the
lambda object cannot be exposed by AspectJ with the pointcut
execution(“*lambda*”)&&this(c), since the lambda body is
implemented as a static method and this() will return null.
Another way is by the pointcut call(“*lambda*”)&&target(c),
which also selects nothing because the lambda expression is
called by the parallel stream, a class in the Java core library
that cannot be woven by AspectJ. MOP-DiSL takes advantage

public class LambdaDefMarker extends
MOPBaseMarker {
public List<MarkedRegion> mainFilterPipe(

AbstractInsnNode insn){
List<MarkedRegion>

regions=super.mainFilterPip(insn);
filterLambda(regions, insn);
return regions;

}
void filterLambda(regions,

AbstractInsnNode insn){
if (insn instanceof

InvokeDynamicInsnNode){
if (matchIndy(indy))

regions.add(new
MarkedRegion(insn, insn));

}
}
//This will be overridden by the generated

code
boolean matchIndy(AbstractInsnNode insn){

return false;
}

}

Listing 6: LambdaDefMarker

of DiSL’s ability to instrument the Java core library to capture
the call event and expose the target object.

Adding these pointcuts consists of two steps: implementing
new markers and extending the translator. Listing 6 shows the
marker code for implementing lambdaDef pointcut. The new
marker is introduced as a subclass of the base marker, adding a
new filter process, i.e. filterLambda, to the main filter pipeline.
What filterLambda does is simply checking the type of current
instruction and calling matchIndy() to decide whether the
instruction should be marked for weaving. The translator needs
to be extended to generate a subclass of LambdaDefMarker
with a proper overriding of the method matchIndy according
the pointcut definition, which is much simpler than modifying
the AspectJ weaver.

VI. EVALUATION

In this section, we evaluate the runtime overhead and heap
memory consumption of MOP-DiSL, and compare it with
JavaMOP.

A. Experimental Settings

We set up the experimental environment on a Dell Optiplex
980 machine with 8GB memory and an Intel 3.20GHz i5
CPU. We use JDK 1.8 and AspectJ 1.8 for compilation on
a 64 bits Debian 7 system. For AspectJ, load-time weaving is
adopted, since DiSL uses dynamic weaving. DaCapo 9.12 [13],
a popular benchmark suite for Java, is utilized to evaluate the
runtime overhead and heap memory usage. The benchmark is
run for 10 iterations and the result of the first iteration is also
counted, as the code weaving only happens in the first iteration
when classes are first loaded. Four well-known properties are
verified in the evaluation:

1) HasNext: method hasNext() should be called before
calling next() for an iterator;

Table II: Execution time and overhead percentage for JavaMOP and MOP-DiSL with different properties

Benchmark
HasNext UnsafeIter UnsafeMapIter UnsafeFileWriter

origin JavaMOP-LW MOP-DiSL JavaMOP-LW MOP-DiSL JavaMOP-LW MOP-DiSL JavaMOP-LW MOP-DiSL
sec. sec. ovh.(%) sec. ovh.(%) sec. ovh.(%) sec. ovh.(%) sec. ovh.(%) sec. ovh.(%) sec. ovh.(%) sec. ovh.(%)

avrora 4.26 6.14 44.27 5.74 34.92 21.96 416.02 17.60 313.54 8.27 94.43 8.51 99.88 5.88 38.18 5.70 33.98
batik 2.25 2.75 22.19 2.59 15.08 2.96 31.64 3.35 48.82 2.87 27.46 2.92 29.78 3.90 73.36 3.50 55.80
fop 1.17 2.08 76.95 2.02 71.97 2.34 99.44 2.06 75.70 2.50 112.97 3.09 163.44 2.32 97.75 1.83 55.67
h2 6.94 7.84 13.01 7.45 7.38 7.86 13.33 7.10 2.38 8.53 22.91 10.13 46.00 8.80 26.89 8.62 24.29

jython 5.77 6.74 16.88 6.24 8.22 7.41 28.41 6.39 10.71 7.92 37.24 7.23 25.30 9.58 65.95 8.61 49.26
luindex 1.27 1.41 11.36 1.41 11.09 1.45 14.07 1.40 10.28 1.50 18.15 1.41 11.03 1.94 52.87 1.80 41.84
lusearch 2.35 2.62 11.27 2.65 12.49 3.04 29.16 2.82 19.79 2.60 10.39 2.79 18.49 3.41 44.94 3.14 33.52

pmd 4.11 5.95 44.83 5.66 37.81 8.64 110.28 7.79 89.67 10.27 149.89 8.25 100.87 6.12 48.94 5.48 33.27
sunflow 6.17 6.38 3.43 6.27 1.71 6.25 1.39 6.04 1.02 6.27 1.65 6.27 1.68 8.35 35.47 7.65 24.05
tomcat 3.83 5.27 37.63 4.17 8.93 5.48 43.20 4.89 27.65 5.66 47.77 4.79 25.02 6.41 67.52 4.81 25.77

tradebeans 6.84 18.53 171.18 17.77 160.06 14.83 117.02 13.55 98.28 21.13 209.12 20.22 195.83 9.51 39.10 9.14 33.67
tradesoap 12.31 18.19 47.81 17.99 46.17 24.25 97.00 23.59 91.62 25.32 105.69 26.35 114.07 14.88 20.87 14.98 21.71

xalan 2.91 3.12 7.15 3.06 5.17 3.59 23.47 3.55 21.97 3.18 9.42 3.40 16.81 3.55 22.25 3.94 35.56

geo.mean 23.63 16.55 38.11 26.38 34.95 36.21 44.20 34.41

 0

 200

 400

 600

 800

 1000

avrora
batik

fop h2 jython
luindex

lusearch

pmd
sunflow

tomcat

tradebeans

tradesoap

xalan

Pe
ak

 H
ea

p
M

em
or

y
U

sa
ge

 (M
B)

Orgin
JavaMOP

MOP-DiSL(Server)
MOP-DiSL(App)

(a) HasNext

 0

 200

 400

 600

 800

 1000

avrora
batik

fop h2 jython
luindex

lusearch

pmd
sunflow

tomcat

tradebeans

tradesoap

xalan

Pe
ak

 H
ea

p
M

em
or

y
U

sa
ge

 (M
B)

Orgin
JavaMOP

MOP-DiSL(Server)
MOP-DiSL(App)

(b) UnsafeIter

 0

 200

 400

 600

 800

 1000

 1200

avrora
batik

fop h2 jython
luindex

lusearch

pmd
sunflow

tomcat

tradebeans

tradesoap

xalan

Pe
ak

 H
ea

p
M

em
or

y
U

sa
ge

 (M
B) Orgin

JavaMOP
MOP-DiSL(Server)

MOP-DiSL(App)

(c) UnsafeMapIter

 0

 200

 400

 600

 800

 1000

avrora
batik

fop h2 jython
luindex

lusearch

pmd
sunflow

tomcat

tradebeans

tradesoap

xalan

Pe
ak

 H
ea

p
M

em
or

y
U

sa
ge

 (M
B)

Orgin
JavaMOP

MOP-DiSL(Server)
MOP-DiSL(App)

(d) UnsafeFileWriter

Figure 2: Peak heap memory usage. MOP-DiSL (Server) refers to the memory consumption in the DiSL instrumentation server, which runs in
another Java process. The actual runtime memory for application + analysis is noted as MOP-DiSL (App).

2) UnsafeIter: a Collection should not be updated when
its iterator is accessed;

3) UnsafeMapIter: a Map should not be updated when
its iterator is accessed;

4) UnsafeFileWriters: no writing is allowed after a file
is closed.

The results are presented with JavaMOP-LW referring to
JavaMOP using AspectJ load-time weaver. The results of
eclipse benchmark in DaCapo are not presented because there

is a bug when it is run on Java82. We do not evaluate the
performance of the lambda property for there is currently no
standard benchmark with much use of the Java8 stream API.

B. Runtime Overhead

Table II displays the execution time and percent over-
head of JavaMOP-LW and MOP-DiSL. On average (geomet-
ric mean), MOP-DiSL incurs less overhead than JavaMOP-

2http://mail.openjdk.java.net/pipermail/aarch64-port-dev/2014-
February/000844.html

LW for property HasNext, UnsafeIter, and UnsafeFileWriter.
MOP-DiSL achieves more overhead reduction for applications
with higher overhead, which have more instrumented code
executed, and the reason is that code instrumented by DiSL
is more efficient than AspectJ. However, weaving code in an
isolated instrumentation server, DiSL spends more time on
communicating with the server so that more time on weaving.
For UnsafeMapIter, there are more event types, which means
more code needs to be instrumented, resulting that more com-
munication with the sever is needed for DiSL. Consequently,
MOP-DiSL causes similar overhead with JavaMOP-LW and
more overhead for some benchmarks, i.e., avrora, batik, fop,
h2, lusearch, tradesoap, and xalan. Overall, MOP-DiSL causes
21% less runtime overhead than JavaMOP-LW.

C. Memory Consumption

Figure 2 illustrates the peak Java heap usage when the
four properties are verified. The memory consumption of
MOP-DiSL consists of the server part and the application part.
The instrumentation server, which does code weaving, is run
in a separated process and in theory can be run in another
physical machine. We accumulate the memory usage mainly to
show that even combining both application and instrumentation
server, our approach still outperforms JavaMOP by 16% in
terms of heap consumption (evaluated by geometric mean).
The application part of MOP-DiSL consumes 54% lower Java
heap than JavaMOP on average. This feature benefits the
application process with less GC time. For some benchmarks,
such as lusearch, JavaMOP and MOP-DiSL even cause lower
peak heap consumption than the original application. This
is mainly due to different GC behavior—with more memory
usage in the runtime analysis, GC may be triggered more often
and hence keep the memory consumption at a lower level.

VII. CONCLUSION

In this paper, we present a novel framework, MOP-DiSL, to
achieve flexibility and extensibility in runtime verification for
Java. A deployment API is designed for flexibility and a new
MOP translator is devised with extensibility. We demonstrate a
case study on adding event types to check properties associated
with lambda expressions in Java8, which requires extensibil-
ity. Evaluation results show that our framework causes less
runtime overhead and lower peak heap usage than JavaMOP
with AspectJ load-time weaving. As a result, our framework
achieves flexibility and extensibility with no more runtime and
memory overhead, making runtime verification more practical
in real-world settings.

ACKNOWLEDGMENT

This work is supported by NSFC (No. 61272101), National
R&D Infrastructure and Facility Development Program (No.
2013FY111900), NRF Singapore CREATE Program E2S2,
Sino-Swiss Science and Technology Cooperation (SSSTC),
and Shanghai Key Laboratory of Scalable Computing and
Systems.

REFERENCES

[1] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
The Journal of Logic and Algebraic Programming, vol. 78, no. 5,
pp. 293–303, 2009.

[2] C. Kloukinas, G. Spanoudakis, and K. Mahbub, “Estimating event
lifetimes for distributed runtime verification,” in SEKE, pp. 117–122,
2008.

[3] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT press,
1999.

[4] M. Fitting, First-order logic and automated theorem proving. Springer
Science & Business Media, 1996.

[5] M. d’Amorim and K. Havelund, “Event-based runtime verification of
Java programs,” in ACM SIGSOFT Software Engineering Notes, vol. 30,
pp. 1–7, ACM, 2005.

[6] F. Chen and G. Roşu, “Mop: an efficient and generic runtime verification
framework,” in ACM SIGPLAN Notices, vol. 42, pp. 569–588, ACM,
2007.

[7] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan, “Java-
MaC: a run-time assurance tool for Java programs,” Electronic Notes
in Theoretical Computer Science, vol. 55, no. 2, pp. 218–235, 2001.

[8] E. Bodden, P. Lam, and L. Hendren, “Clara: A framework for partially
evaluating finite-state runtime monitors ahead of time,” in Runtime
Verification, pp. 183–197, Springer, 2010.

[9] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. Serbanuta,
and G. Rosu, “RV-Monitor: Efficient parametric runtime verification
with simultaneous properties,” in Proceedings of the 14th International
Conference on Runtime Verification (RV’14), LNCS, September 2014.

[10] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
O. Lhoták, O. De Moor, D. Sereni, G. Sittampalam, and J. Tibble,
“Adding trace matching with free variables to AspectJ,” in ACM
SIGPLAN Notices, vol. 40, pp. 345–364, ACM, 2005.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of AspectJ,” in ECOOP 2001, pp. 327–354,
Springer, 2001.

[12] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder, and Z. Qi,
“DiSL: a domain-specific language for bytecode instrumentation,” in
Proceedings of the 11th annual international conference on Aspect-
oriented Software Development, pp. 239–250, ACM, 2012.

[13] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
et al., “The DaCapo benchmarks: Java benchmarking development and
analysis,” in ACM Sigplan Notices, vol. 41, pp. 169–190, ACM, 2006.

[14] D. Jin, P. O. Meredith, D. Griffith, and G. Rosu, “Garbage collection for
monitoring parametric properties,” in ACM SIGPLAN Notices, vol. 46,
pp. 415–424, ACM, 2011.

[15] P. Meredith and G. Rosu, “Efficient parametric runtime verification
with deterministic string rewriting,” in Proceedings of 28th IEEE/ACM
International Conference. Automated Software Engineering (ASE’13),
p. NA, IEEE/ACM, May 2013.

[16] D. Jin, P. O. Meredith, C. Lee, and G. Roşu, “JavaMOP: Efficient para-
metric runtime monitoring framework,” in Proceeding of the 34th In-
ternational Conference on Software Engineering (ICSE’12), pp. 1427–
1430, IEEE, 2012.

[17] J. Bonér, “Aspectwerkz: Dynamic AOP for Java,” in Invited talk at
3rd International Conference on Aspect-Oriented Software Development
(AOSD), Citeseer, 2004.

[18] A. Nicoară and G. Alonso, “Dynamic AOP with Prose,” in 1st
International Workshop on Adaptive and Self-Managing Enterprise
Applications, pp. 125–138, 2005.

[19] A. Villazón, W. Binder, D. Ansaloni, and P. Moret, “Advanced runtime
adaptation for Java,” in Proceedings of the Eighth International Confer-
ence on Generative Programming and Component Engineering, GPCE
’09, pp. 85–94, ACM, Oct. 2009.

[20] A. Villazón, W. Binder, D. Ansaloni, and P. Moret, “HotWave: creating
adaptive tools with dynamic aspect-oriented programming in Java,” in
ACM Sigplan Notices, vol. 45, pp. 95–98, ACM, 2009.

[21] Y. Zheng, L. Bulej, C. Zhang, S. Kell, D. Ansaloni, and W. Binder,
“Dynamic optimization of bytecode instrumentation,” in Proceedings of
the 7th ACM workshop on Virtual machines and intermediate languages,
pp. 21–30, ACM, 2013.

