
Similarity-based regression test case prioritization
Rongcun Wang

School of Computer Science
and Technology

China University of Mining and
Technology

Xuzhou, 221116, China
Email:rcwang@hust.edu.cn

Shujuan Jiang
School of Computer Science

and Technology
China University of Mining and

Technology
Xuzhou, 221116, China

Email:shjjiang@cumt.edu.cn

Deng Chen
Hubei Provincial Key Laboratory of

Intelligent Robot
Wuhan Institute of Technology

Wuhan, 430073, China
Email:chendeng8899@hust.edu.cn

Abstract—With the continuous evolution of software systems,
test suites often grow very large. Rerunning all test cases may
be impractical in regression testing under limited resources.
Coverage-based test case prioritization techniques have been pro-
posed to improve the effectiveness of regression testing. The origi-
nal test suite often contains some test cases which are designed for
exercising production features or exceptional behaviors, rather
than for code coverage. Therefore, coverage-based prioritization
techniques do not always generate satisfactory results. In this
context, we propose a global similarity-based regression test case
prioritization approach. The approach reschedules the execution
order of test cases based on the distances between pair-wise
test cases. We designed and conducted empirical studies on
four C programs to validate the effectiveness of our proposed
approach. Moreover, we also empirically compared the effects
of six similarity measures on the global similarity-based test
case prioritization approach. Experimental results illustrate that
the global similarity-based regression test case prioritization
approach using Euclidean distance is the most effective. This
study aims at providing practical guidelines for picking the
appropriate similarity measures.

Keywords—regression testing, test case prioritization, similar-
ity measures

I. INTRODUCTION

Regression testing is a very time-consuming and expensive
activity. It accounts for more than 50% of the cost of software
maintenance [1]. With the continuous evolution of software
systems, test suites grow very large. The execution of the
whole test suite consumes more time and resources. The high
testing cost conflicts with constrained time and resources.
Many test case prioritization techniques have been proposed
to solve the contradiction [2], [3]. They aim at rescheduling
the execution order of test cases to detect faults as early as
possible.

Coverage-based prioritization techniques have gained wide
attention. Most of these techniques resort to use greedy or
metaheuristic search algorithms [5] to maximize the possible
coverage. The original test suite often contains some test
cases which are designed for exercising production features
or exceptional behaviors, rather than for code coverage [6].
Therefore, coverage-based prioritization techniques do not
always generate satisfactory results.

More recently, similarity-based test case prioritization tech-
niques, incorporating clustering-based [7], ART-based [8] and

other similarity-based prioritization [9], have been developed.
Similarity-based test case prioritization techniques assume
that test case diversity aids to detect more faults[15], [13].
Clustering-based prioritization techniques assume that the test
cases within the same cluster have the same fault detection
capability. Clustering-based prioritization techniques signifi-
cantly depend on the number of clusters. Similarly, ART-based
prioritization technique selects a test case to be prioritized
from a subset of all remaining test cases. In other words, the
method does not assure global test case diversity. Therefore,
we propose a global similarity-based test case prioritization
approach. Our approach rearranges the execution order of
test cases from the global perspective. More importantly, our
proposed approach is nonparametric.

We empirically evaluate the effects of six similarity mea-
sures, including Jaccard Index (JI), Gower-Legendre (GL),
Soka-Sneath (SS), Euclidean distance (ED), Cosine similar-
ity (CS) [10], and Proportional distance (PD) [11]metric,
on the global similarity-based prioritization algorithm over
4 programs written in the C language. One way variance
analysis (ANOVAs) [12] is used to analyze the statistical
difference between different similarity measures. The results
illustrate that Euclidean distance is superior to other similarity
measures in terms of fault detection rate and standard devia-
tion. The global similarity-based prioritization algorithm using
Euclidean distance outperforms random prioritization and the
additional function coverage prioritization. Our proposed ap-
proach is comparable to the best coverage-based prioritization
techniques, i.e., the additional branch coverage prioritization
technique. This study provides a practical guide for picking
the optimal similarity measures.

The rest of this paper is organized as follows: Section
II describes our approach. Experimental design and results
analysis are presented in Section III and Section IV. The threats
to validity are discussed in Section V. Section VI summarizes
related works. The conclusions are described in Section VII.

II. METHODOLOGY

A. Overview

Figure 1 summarizes similarity-based test case prioritization
techniques, which mainly include four steps:

(1) Instrumentation

DOI reference number: 10.18293/SEKE2015-115

Distance matrix

Fault detection matrix

3

Modified programs

Test case pool

Results 1

Results 2

Instrumentation Profile
information

1

4

...tmtn

Prioritized test cases

Normalized APFD

Cosine similarity

Euclidean
distance

Proportional
distance

Jaccard Index and
its variants 2

Original programs

Candidate set

Fig. 1. Overview of similarity-based test case prioritization

With the dynamic instrumentation tool gcov, we collect
execution profiles and construct branch coverage vectors.

(2) Distance calculation
The distance between pair-wise test cases is calculated by

a certain distance measure.
(3) Test case prioritization
Test cases are prioritized based on the distance between

pair-wise test cases.
(4) Evaluation
The fault detection effectiveness of a prioritized test suite is

evaluated based on the relation between faults and test cases.

B. Similarity measures

All branches covered by a test case, can be represented as a
binary branch coverage vector V : < v1, v2, . . . , vn >, where
vi is 0 if the ith branch is covered, otherwise 1. Similarly, the
vector can also be implemented with numeric entries, i.e., vi
represents the number of times that ith branch is executed.

1) Cosine similarity: The binary branch coverage vec-
tors generated by executing test case t1 and t2 are X :<
x1, x2, . . . , xn > and Y :< y1, y2, . . . , yn >, respectively.
The similarity between t1 and t2 is defined as follows:

s(t1, t2) =
Xt · Y
∥X∥∥Y ∥

, (1)

where Xt is a transposition of vector X , and ∥X∥ is the
Euclidean norm of vector X . Similarly, ∥Y ∥ is the Euclidean
norm of vector Y . In essence, s is the cosine of the angle
between X and Y . For Cosine similarity, the corresponding
dissimilarity is defined as d(t1, t2)=1−s(t1, t2).

2) Euclidean distance: The Euclidean distance between test
case t1 and t2 is defined as follows:

d(t1, t2) =

√√√√ n∑
i=1

(xi − yi)2. (2)

3) Proportional distance: Let P :< p1, p2, . . . , pn >
and Q :< q1, q2, . . . , qn > stand for two coverage vectors
implemented with numeric entries by executing t1 and t2. The
proportional distance between t1 and t2 is defined as follows:

d(t1, t2) =

√√√√ n∑
i=1

(
|pi − qi|

maxi −mini
)2, (3)

where maxi and mini represent the maximum and minimum
number of times that the ith branch is executed over all tests
in the test suite, respectively. When the difference between
maxi and mini is equal to 0, the corresponding term is also
equal to 0.

4) Jaccard Index and its variants: The similarity between
t1 and t2 based on Jaccard Index and its variants is defined
as follows:

s(t1, t2) =
X · Y

X · Y + w(∥X∥2 + ∥Y ∥2 − 2(X · Y))
, (4)

where X ·Y is the inner product of X and Y . When w is equal
to 1, the above formula is called Jaccard Index. If w=2 and
1/2, this formula is called Soka-Sneath measure and Gower-
Legendre measure, respectively. For Jaccard Index and its
variants, the corresponding distance is d(t1, t2) = 1−s(t1, t2).

C. Prioritization Algorithm

The global similarity-based test case prioritization algorithm
(GSTCP) selects a test case from all not yet prioritized test
cases, rather than a candidate set of them [8]. Its pseudo-code
is described in Algorithm 1.

This algorithm randomly selects a test case tk from the
original test suite T , deletes it from T , and adds it to the tail
of a prioritized sequence P . The distance from test case t in
T to tk is viewed as the minimal set distance from t to P .
Function dist is responsible for the calculation of the distance
between two test cases. The process of test case prioritization
mainly includes two steps. The first step is to seek a test case
ti in T that has the maximum distance from the last test case
in P (Line 9-Line 13). Test case ti is added to the tail of P and
deleted from T . The second step is to update the minimal set
distance from test case t in T to P by comparing the distance
from t to ti and the set distance from t to P before adding ti
to P (Line 15-Line 19).

In the process of prioritizing test cases, this algorithm needs
to calculate the distance between remaining test cases in T
and the last test case in P . The number of times that this
algorithm calculates the distance gradually decreases from n−
1 to 1. The time complexity and space complexity of GSTCP
are O(n2) and O(n), respectively. Compared with the ART-
based prioritization algorithm, GSTCP significantly reduces
time complexity.

Algorithm 1: GSTCP
Input : A test suite T : {t0, t1, · · · , tn−1}
Output: A prioritized sequence P : ⟨p0, p1, · · · , pn−1⟩

1 P ← ∅; double dist min[n];
2 randomly select test case tk from T ;
3 max← k; T ← T\{tmax}; P ← ⟨tmax⟩;
4 for i← 0 to n− 1 do
5 dist min[i] = dist(tj , tmax);
6 end
7 repeat
8 max dist = 0.0;
9 for i← 0 to n− 1 do

10 if dist min[i] > max dist and ti ∈ T then
11 max dist = dist min[i]; max← i;
12 end
13 end
14 add tmax to the tail of P ; T ← T\{tmax};
15 for i← 0 to n− 1 do
16 if dist min[i] > dist(ti, tmax) and ti ∈ T then
17 dist min[i] = dist(ti, tmax);
18 end
19 end
20 until T is empty;
21 return P

III. EMPIRICAL STUDY

A. Research Questions

In the empirical study, we address the following two specific
research questions.

RQ1:Do different similarity measures have significant ef-
fects on the global similarity-based test case prioritization
algorithm?

RQ2:Can the most effective global similarity-based prior-
itization technique be as effective as coverage-based prioriti-
zation techniques?

B. Subject Program

Our experiments were conducted over four subject pro-
grams 1, incorporating 2 small-sized Siemens programs and
2 medium-sized UNIX utilities. Descriptive information about
the selected programs is presented in Table I, where the lines
of codes are calculated by the tool “SLOCCount” 2.

TABLE I
DESCRIPTIVE INFORMATION FOR SUBJECT PROGRAMS

Program Fault Lines of Test Suite
Name Versions Code Size

print tokens 7 341-343 4130
print tokens2 10 350-355 4115

make 33 12609-17153 1043
sed 18 4711-9204 370

1http://sir.unl.edu/php/showfiles.php
2http://www.dwheeler.com/sloccount

We eliminated the fault versions whose faults cannot be
detected by any test case. Likewise, if a fault can be detected
by more than 20% of test cases, the fault is also excluded.

C. Evaluation Metric

The average percentage of faults detected (APFD) [18] is
commonly used to evaluate the effectiveness of a prioritization
technique implemented on a whole test suite. Let T be a test
suite containing n test cases and let F be a set of m faults
exposed by T . APFD is defined as follows:

APFD = 1− TF1 + TF2 + . . .+ TFm

nm
+

1

2n
, (5)

where TFi is the first test case in a prioritized test suite that
detects fault i.

The application of APFD assumes that the whole test suite
can be run and find all of the faults. Only a part of test
suite is often executed in regression testing [14], [19]. In this
sense, APFD is unsuitable to measure the effectiveness of a
prioritization technique implemented on a part of test suite.
Therefore, we use a metric, called Normalized APFD [20],
which utilizes information on both fault finding and time of
detection. Let TFi be the first test case in the prioritized and
reduced test suite T ′ of T that detects fault i. Let n′ be the
size of T ′. Normalized APFD is defined as follows:

NAPFD = p− TF1 + TF2 + . . .+ TFm

n′m
+

p

2n′ , (6)

where p represents the quotient of the number of faults
detected by the prioritized and reduced test suite divided by
the number of faults detected in the whole test suite. If a fault
i is never detected by T ′, TFi is set 0.

Since all prioritization algorithms in this study have the
nature of randomness, we repeated 100 times for every pri-
oritization algorithm with different random seeds. The mean
NAPFD values of every sample were calculated.

IV. EXPERIMENTAL RESULTS

We took 10 samples starting from 2% to 20% with the
increment of 2% for every program so as to look deeper into
the statistical difference between different similarity measures.

A. Experiment 1

1) Experimental Results: The experimental results are
shown in Figure 2, where the x-axis of each graph indicates
the number of tests selected; while the y-axis shows the mean
NAPFD of each similarity measure.

From Figure 2, Cosine similarity performed better or as
good as Jaccard Index in terms of NAPFD. Likewise, Eu-
clidean distance also performed consistently better than Jac-
card Index for smaller samples. Particularly, Euclidean dis-
tance outperformed other similarity measures for all samples
over the program print tokens and print tokens2. The results
of Jaccard Index were very close to those of its variants.

Table II summarizes the standard deviations for all similarity
measures. The minimal standard deviations are reported high-
lighting cells in gray shade. From Table II, Euclidean distance

0% 4% 8% 12% 16% 20%
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Test cases selected

N
A

PF
D

CS

ED

GL

JI

PD

SS

(a) print tokens

0% 4% 8% 12% 16% 20%
0.7

0.75

0.8

0.85

0.9

0.95

1.0

Test cases selected

N
A

PF
D

CS

ED

GL

JI

PD

SS

(b) print tokens2

0% 4% 8% 12% 16% 20%
0.6

0.7

0.8

0.9

1.0

Test cases selected

N
A

PF
D

CS

ED

GL

JI

PD

SS

(c) schedule

0% 4% 8% 12% 16% 20%
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Test cases selected

N
A

PF
D

CS

ED

GL

JI

PD

SS

(d) schedule2

Fig. 2. NAPFDs of six similarity measures using the global similarity-based test case prioritization algorithm

TABLE II
THE STANDARD DEVIATIONS OF DIFFERENT SIMILARITY MEASURES BASED ON THE GLOBAL SIMILARITY PRIORITIZATION ALGORITHM

Program SM Sampling proportion
2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

CS 0.145 0.125 0.100 0.116 0.084 0.086 0.065 0.070 0.070 0.079
ED 0.098 0.085 0.083 0.062 0.055 0.045 0.043 0.037 0.039 0.035

print tokens PD 0.121 0.109 0.113 0.109 0.110 0.109 0.125 0.106 0.108 0.109
JI 0.136 0.112 0.108 0.093 0.099 0.086 0.068 0.067 0.078 0.074

GL 0.117 0.137 0.105 0.108 0.094 0.083 0.085 0.077 0.075 0.065
SS 0.145 0.122 0.111 0.094 0.099 0.087 0.089 0.077 0.073 0.069
CS 0.099 0.065 0.050 0.050 0.036 0.034 0.029 0.020 0.024 0.019
ED 0.066 0.036 0.027 0.025 0.015 0.013 0.012 0.009 0.008 0.007

print tokens2 PD 0.139 0.079 0.059 0.060 0.051 0.032 0.039 0.039 0.029 0.031
JI 0.109 0.070 0.050 0.040 0.030 0.035 0.023 0.023 0.022 0.023

GL 0.094 0.058 0.059 0.051 0.039 0.029 0.030 0.021 0.016 0.015
SS 0.097 0.080 0.048 0.044 0.044 0.033 0.028 0.026 0.024 0.017
CS 0.277 0.180 0.099 0.084 0.057 0.055 0.045 0.033 0.031 0.024
ED 0.167 0.133 0.079 0.058 0.046 0.051 0.036 0.035 0.046 0.025

make PD 0.280 0.265 0.220 0.241 0.233 0.177 0.158 0.196 0.156 0.116
JI 0.285 0.239 0.240 0.132 0.172 0.122 0.118 0.145 0.049 0.074

GL 0.213 0.204 0.178 0.137 0.138 0.193 0.053 0.096 0.049 0.068
SS 0.269 0.253 0.189 0.124 0.131 0.152 0.136 0.113 0.076 0.070
CS 0.055 0.064 0.056 0.055 0.053 0.054 0.048 0.040 0.038 0.042
ED 0.038 0.042 0.040 0.031 0.042 0.033 0.031 0.035 0.026 0.032

sed PD 0.062 0.540 0.054 0.041 0.043 0.048 0.039 0.406 0.034 0.043
JI 0.062 0.052 0.055 0.053 0.041 0.045 0.048 0.051 0.043 0.041

GL 0.058 0.056 0.043 0.060 0.042 0.052 0.051 0.052 0.047 0.041
SS 0.051 0.061 0.050 0.053 0.051 0.058 0.038 0.043 0.044 0.040

generated smaller standard deviations than other similarity
measures with the same sampling proportion. This means
that the application of Euclidean distance reduces the risk of
missing faults in practice.

2) Experimental Analysis: We conducted ANOVAs to ver-
ify whether different similarity measures generate the signifi-
cant effects on the global similarity-based prioritization algo-
rithm at 5% significance level. Having executed ANOVAs, we
find that the p-value was less than 0.05 for every sample across
every subject program. In other words, different measures have
significant effects on the global similarity-based prioritization
algorithm. We further conducted multiple comparisons so as to
seek which similarity measures can produce higher NAPFDs.

Table III shows the results of multiple comparisons between
pair-wise similarity measures, where each element (m,n)
denotes the “win/tie/loss” (win: the number of times that the
m-th row measure performs significantly better than the n-
th column measure; tie: the number of times that there is no
significant difference between the m-th row measure and the

n-th column measure; loss: the number of times that the m-
th row measure performs significantly worse than the n-th
column measure) value.

TABLE III
THE SUMMARIZED RESULTS OF MULTIPLE COMPARISONS BETWEEN

PAIR-WISE SIMILARITY MEASURES OVER 40 DIFFERENT EXPERIMENTAL
SETTINGS (4 PROGRAMS × 10 SAMPLING RATES)

CS ED GL JI PD
ED (27/12/1) - - - -
GL (1/31/8) (1/9/30) - - -
JI (1/32/7) (1/8/31) (2/34/4) - -
PD (6/20/14) (2/9/29) (8/19/13) (9/19/12) -
SS (0/32/8) (0/8/32) (1/36/3) (3/35/2) (12/20/8)

From Table III, Euclidean distance performed better than
other similarity measures. In the best case, Euclidean distance
outperformed Soka-Sneath on 32 settings, while Soka-Sneath
did not outperformed it on any setting. In the worst case, Eu-
clidean distance outperformed Cosine similarity on 27 settings,

while Cosine similarity outperformed it only on 1 settings. The
results generated by Jaccard Index were very close to those of
its variants. The plausible explanation is that the topologies of
Jaccard Index and its variants are very similar.

B. Experiment 2

1) Experimental Results: We mainly compared the global
similarity-based prioritization using Euclidean distance with
random prioritization (RP), the additional function coverage
prioritization (AF), the additional statement coverage prioriti-
zation (AS), and the additional branch coverage prioritization
(AB) [4]. Figure 3 shows the NAPFDs of different prioritiza-
tion techniques. Table IV summarizes the standard deviations
for different prioritization techniques.

TABLE V
THE SUMMARIZED RESULTS OF MULTIPLE COMPARISONS BETWEEN

DIFFERENT PRIORITIZATION TECHNIQUES OVER 40 DIFFERENT
EXPERIMENTAL SETTINGS (4 PROGRAMS × 10 SAMPLING RATES)

RP AF AS AB
AF (24/16/0) - - -
AS (40/0/0) (22/13/5) - -
AB (40/1/0) (25/9/6) (14/26/0) -
ED (39/1/0) (23/14/3) (10/22/8) (10/18/12)

2) Experimental Analysis: Table V shows the results of
multiple comparisons between different prioritization algo-
rithms. Our approach performed significantly better than RP,
and AF in terms of NAPFD. In general, the global similarity-
based prioritization algorithm using Euclidean distance was
equal to AS. ED outperformed AS on 10 settings, while
AS outperformed it on 8 settings. Particularly, our proposed
approach was comparable to the best coverage-based prior-
itization algorithm, i.e., AB. ED outperformed AB on 10
settings, while AB outperformed it on 12 settings.

Additionally, our proposed approach is superior to other
prioritization techniques with respect to the standard deviation
of NAPFD. This means that it can yield more reliable
results. In summary, the global similarity-based prioritization
algorithm using Euclidean distance is very promising as a
candidate for regression test case prioritization.

V. THREATS TO VALIDITY

This section discusses the potential threats to validity.
Threats to internal validity are from the effects of instrumen-

tation and the sampling rates. Therefore, we collected profile
information using a professional tool gcov. Additionally, we
took 10 samples for every subject program and reported the
mean value of every sample.

Threats to external validity for this study concern the
representativeness of the programs utilized. Although the four
programs are from different domains with different character-
istics, they may not be representative of all other programs.
The threat can be addressed by selecting larger scale and more
representative industrial programs in future work.

Threats to construct validity may be affected by the evalu-
ation metric. As previous studies, NAPFD is used to evaluate

the effectiveness of different prioritization techniques. This
may be insufficient for evaluating the effectiveness of different
combinations. There may be other metrics which are more
relevant to this study.

VI. RELATED WORK

Ledru et al. used string distances for test case prioritization
[9]. They empirically evaluated the effects of string edit
distances on test case prioritization. Test cases were ordered
before executing them. Similarly, Hemmati et al. introduced
a family of similarity-based test case selection techniques for
model-based testing [13], [15]. The above two methods were
applied to black-box testing. On the contrary, our approach
uses dynamic profile information generated by executing test
cases to reschedule the execution order.

Clustering algorithms have been also applied to test case
prioritization. Yoo et al. [7] combined clustering with expert
knowledge to achieve scalable prioritization. The process of
prioritization depended on human efforts, which is different
from ours. Dickinson et al. [11] presented distribution-based
filtering and prioritizing techniques incorporating sampling
methods. Clustering-based prioritization techniques signifi-
cantly depend on a parameter, i.e., the number of clusters.
On the contrary, our approach is nonparametric, i.e., it dose
not depend on the number of clusters.

More recently, similarity-based algorithms have been ap-
plied to regression test case prioritization. Krishna et al. [16]
used Levenshtein distance to similarity-based test prioritiza-
tion. Jiang et al. [8] proposed a new family of coverage-
based ART techniques and used Jaccard Index to measure
the distance between pair-wise test cases. Fang et al. [17]
introduced several similarity-based test case prioritization
techniques based on the edit distances of ordered sequences.
However, we represented the execution profile that a test case
exercised into a branch coverage vector, rather than an ordered
sequence [17]. Differently from Jiang et al. [8] and Krishna
et al. [16], where only one similarity measure was used, we
empirically evaluated six similarity measures.

VII. CONCLUSIONS

In this paper, we proposed a global similarity-based test case
prioritization algorithm based on the comparison of similarity
measures between test cases in a given test case suite. By
ANOVAs, we find that different measures have significant
effects on the global similarity-based test case prioritization
algorithm. Particularly, Euclidean distance perform better than
other five similarity measures in terms of NAPFD and stan-
dard deviation. Therefore, we recommend Euclidean distance.
Moreover, the global similarity-based prioritization algorithm
using Euclidean distance outperforms random prioritization
and the additional function coverage prioritization with respect
to NAPFD. It is comparable to the additional branch cover-
age. Since our proposed approach generates smaller standard
deviation, it can provide more reliable results.

For future work, much more similarity measures will be
empirically evaluated. Least but not last, we will collect more

0% 4% 8% 12% 16% 20%
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Test cases selected

N
A

PF
D

RP

AF

AS

AB

ED

(a) print tokens

0% 4% 8% 12% 16% 20%
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

Test cases selected

N
A

PF
D

RP

AF

AS

AB

ED

(b) print tokens2

0% 4% 8% 12% 16% 20%
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Test cases selected

N
A

PF
D

RP

AF

AS

AB

ED

(c) schedule

0% 4% 8% 12% 16% 20%
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Test cases selected

N
A

PF
D

RP

AF

AS

AB

ED

(d) schedule2

Fig. 3. NAPFDs of different test case prioritization techniques

TABLE IV
THE STANDARD DEVIATIONS OF DIFFERENT PRIORITIZATION ALGORITHMS

Program TCP Sampling proportion
2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

RP 0.155 0.149 0.135 0.126 0.113 0.105 0.095 0.089 0.087 0.084
AF 0.141 0.136 0.120 0.101 0.102 0.085 0.080 0.087 0.077 0.069

print tokens AS 0.128 0.114 0.097 0.084 0.092 0.085 0.074 0.076 0.077 0.062
AB 0.112 0.106 0.090 0.087 0.085 0.077 0.079 0.076 0.069 0.063
ED 0.098 0.085 0.083 0.062 0.055 0.045 0.043 0.037 0.039 0.035
RP 0.138 0.123 0.119 0.095 0.087 0.086 0.084 0.073 0.074 0.065
AF 0.130 0.107 0.098 0.083 0.074 0.077 0.052 0.048 0.044 0.039
AS 0.085 0.079 0.072 0.070 0.063 0.057 0.056 0.041 0.031 0.009

print tokens2 AB 0.075 0.068 0.054 0.057 0.049 0.036 0.030 0.021 0.020 0.008
ED 0.066 0.036 0.027 0.025 0.015 0.013 0.012 0.009 0.008 0.007
RP 0.260 0.225 0.194 0.156 0.121 0.116 0.105 0.096 0.073 0.082
AF 0.236 0.173 0.132 0.107 0.091 0.079 0.052 0.036 0.025 0.022
AS 0.190 0.141 0.093 0.080 0.055 0.035 0.049 0.026 0.013 0.011

make AB 0.172 0.152 0.095 0.072 0.053 0.034 0.038 0.039 0.012 0.015
ED 0.167 0.133 0.079 0.058 0.046 0.051 0.036 0.032 0.046 0.025
RP 0.126 0.113 0.095 0.097 0.073 0.052 0.061 0.045 0.038 0.029
AF 0.126 0.090 0.072 0.063 0.044 0.040 0.032 0.030 0.021 0.020
AS 0.086 0.073 0.069 0.043 0.024 0.022 0.035 0.017 0.025 0.021

sed AB 0.072 0.065 0.052 0.030 0.027 0.021 0.022 0.018 0.015 0.017
ED 0.038 0.042 0.043 0.040 0.031 0.042 0.033 0.031 0.026 0.032

coverage information test cases exercised and construct differ-
ently structural profiles. The effects of differently structural
profiles on test case prioritization will also be empirically
evaluated.

REFERENCES

[1] M. J. Harrold and A. Orso. Retesting software during development and
maintenance. In FOSM’08, pp. 99-108, 2008.

[2] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A stduy of
effective regression testing in practice. In ISSRE’97, pp. 230-238, 1997.

[3] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. Test case
prioritization: an empirical study. In ICSM’99, pp. 179-188, 1999.

[4] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioritiza-
tion: a family of empirical stdudies. IEEE Trans. Softw. Eng., 28(2):159-
182, 2002.

[5] Z. Li, M. Harman, R. M. Hierons. Search algorithms for regresion test
prioritization. IEEE Trans. Softw. Eng., 33(4):225-237, 2003.

[6] G. Rothermel, M. J. Harrold, J. V. Ronne, and C. Hong. Empirical
studies of test suite reduction. Softw. Test. Verif. Rel., 12: 219-249,
2002.

[7] S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases
to achieve effective and scalable prioritisation incorporating expert
knowledge. In ISSTA’09, pp. 201-212, 2009.

[8] B. Jiang, Z. Y. Zhang, W. K. Chan, and T. H. Tse. Adaptive random
test case prioritization. In ASE’09, pp. 233-244, 2009.

[9] Y. Ledru, A. Petrenko, and S. Borody. Prioritizing test cases with string
distances. Automat. Softw. Eng., 19(1):65-95, 2012.

[10] R. Xu and D. Wunsch. A surven of clustering algorithms. IEEE Trans.
Neural Networ., 16(3):645-678, 2005.

[11] W. Dickinson, D. Leon, and A. Podgurski. Finding failures by cluster
analysis of execution profiles. In ICSE’01, pp. 339-348, 2001.

[12] H. Scheffe. The Analysis of Varianc. John Wiley and Sons, New York,
1993.

[13] H. Hemmati, A. Arcuri, and L. Briand. Achieving scalable model-based
testing through test case diversity. ACM Trans. Softw. Eng. Methodol.,
22(1):1-42, 2013.

[14] J. Jones, and M. Harrold. Test suite reduction and prioritization for mod-
ified condition/decision coverage. IEEE Trans. Softw. Eng., 29(3):193-
209, 2003.

[15] H. Hemmati and L. Briand. An industrial investigation of similarity
measures for model-based test case selection. In ISSRE’10, pp. 141-
150, 2010.

[16] M. Krishna, M. Koyuturk, A. Grama, and S. Jagannathan. PHALANX:
A graph-theoretic framework for test case prioritization. In SAC’08, pp.
667-673, 2008.

[17] C. Fang, Z. Chen, K. Wu, Z. Zhao. Similarity-based test case prioriti-
zation using ordered sequences of program entities. Softw. Quality J.,
22(2):335-361, 2014.

[18] G. Rothermel, R. Untchm, C. Chu, and M. J. Harrold. Prioritizing test
cases for regression testing. IEEE Trans. Softw. Eng., 27(10):929-948,
2001.

[19] A. Smith, J. Geiger, G. Kapfhammer, and M. Soffa. Test suite reduction
and prioritization with call trees. In ASE’07, pp. 539-540, 2007.

[20] X. Qu, M. B. Cohen, and K. M. Woolf. Combinatorial interaction
regression testing: a study of test case generation and prioritization. In
ICSM’07, pp. 255-264, 2007.

