
Optimization of an Object–Oriented File System

Ling–Hua Chang

Department of Information Management

Kun Shan University, No.195, Kunda Rd., YongKang

Dist., Tainan City 710–03, Taiwan (R.O.C.)

changlh@mail.ksu.edu.tw

Sanjiv Behl

Thomas Edison State College

101 W. State St, Trenton, NJ 08608–1176
sanbehl@yahoo.com

Abstract—Our research provides a unified and coherent

presentation of the essential concepts and techniques of object–

oriented file systems. It consolidates the results of research and

development in the semantics and implementation of a full

spectrum of information system facilities for object–oriented

systems, including data modeling, querying, storage structures,

composite objects and integration of a programming language.

This approach presents a tool for building an object–oriented file

system called object–oriented file system tool (or OOFS for short)

for completing the development of a large object–oriented

information system, and its associated applications development

framework. First we present the technological objectives

underlying the project. Then we present the process of

developing the information system and detail its architecture and

construction, concentrating on the areas in which object–oriented

technology has had a significant role.

Keywords-object serialization; object data modelling; object–

oriented database; information system generator; web system

generator

I. INTRODUCTION

A data model organizes data elements and standardizes how
the data elements relate to one another. Object–oriented data
modeling has achieved great popularity in recent years. The
major factor contributing to its success is that object–oriented
data modeling offers its users a high level of abstraction for the
representation of information in a manner close to users’
conceptual view of that information. We present a tool called
OOFS to build an object–oriented file system. This can be used
in the development of a large object–oriented information
system, and its associated applications development framework.
The primary focus for OOFS development is the
implementation of a large object–oriented information system.

In our earlier work, we developed a customized software
tool for automatically generating a complete Java program
based on the values or parameters inputted by the user, called
ISG [1] [2] [3]. ISG offers users interface screens for
generating an information system and has six transformational
functions – building object–oriented file system (OOFS), linking
to the next window, building data processing window,
displaying data, previewing a designed window and printing
data. The advantage of ISG is that it uses object serialization
mechanism to fill objects with data, which saves CPU
execution time. The attributes of an object and its path need to
be specified for ISG to translate it to Java code. Thus the
program can store and retrieve data efficiently. It can also
saves time in coding, debugging, testing and implementing an
information system.

II. RELATED WORK

Some of the papers regarding how to store Java objects are
“Reading Large Volumes of Java Objects from Database” [4],
“A Framework for Object–Oriented Data Mining” [5], “A
Composite Data Model in Object–Oriented Data Warehousing”
[6], “Efficient object serialization in Java” [7], “Object
Serialization Support for Object Oriented Java Processor” [8],
etc.

In 2000, Raimund K. Ege [4] explores issues in his paper
that arise when Java programs access objects stored in
databases. They report on their experience with designing and
implementing an approach that allows a Java program to
pretend that all objects are in main memory, and relieving the
Java program from most database housekeeping chores. The
architecture is supported by APIs to an actual database: the API
can map to an object–oriented database, a relational database
via JDBC, or to files using object serialization.

In 2008, Linna Li et al. [5] proposed a system called Escher
that is very suitable for describing knowledge for object–
oriented data mining. Escher supports a variety of data types
and can describe complex data. They also presented a
framework for object–oriented data mining, where type
information of data and semantic information of data model
could be used to guide the data mining process. A specific data
mining task, the frequent pattern discovery, is investigated
under this framework.

In 1999, Wei–Chou Chen et al. [6] introduced a composite
data model in which they proposed to store data in an object–
oriented data warehouse. The data warehouse is an information
provider that collects necessary data from individual source
databases to support the analytical processing of decision–
support functions. The data model forms new classes consisting
of the attributes listed in the definitions of views and copies
necessary class structure from the data source. The query
performance of the data warehouse can thus be improved. The
corresponding view creation and deletion algorithms were also
proposed.

The authors in [7] state that object serialization is the ability
to write the complete state of an object to an output stream, so
that it can be recreated from the serialized representation at a
later time. They also present a number of improvements to the
serialization mechanism aimed at decreasing pickle sizes
without visible degradation in the serialization performance.
Through performance results, they show that it produces

(DOI Reference Number: 10.18293/SEKE2015-108)

pickles up to 50% smaller without degrading the serialization
performance.

Another paper “Object Serialization Support for Object
Oriented Java Processor” [8] introduces a functional unit which
consists of a serialization and de–serialization unit along with
the descriptors and pool to describe the stored serialized objects.
This design can enhance the performance of Java based mobile
devices which run applications that communicate with other
similar applications very often. This design makes use of
architectural features of processors.

Java is one of the stable object oriented programming
languages which is widely used. In the papers mentioned above,
the proposed methods do an efficient serialization in object
oriented Java processor or applications. Many of the major
projects in industry are developed using Java. A suggestion has
also been made to enhance the Java serialization package to
reflect this hardware enhancement on the overall performance.

III. OOFS SYSTEM ARCHITECTURE

Let’s focus on aspects of OOFS that are particularly
appropriate for its use in an e–Business system.

A. OOFS Standard Model

Figure 1. A file structure of OOFS standard model.

OOFS stores data using object streams rather than regular
streams because Java has persistence in object–oriented circles
[9], which means the object layout on disk will be exactly like
the object layout in memory. So when an object (the first
created object) is saved to disk, the memory addresses of
objects that are created subsequently are stored in their
associated array and are stored to the disk automatically. Since
OOFS introduces this mechanism we design an OOFS standard
data model in Fig. 1 to help users to design their file systems.

Fig. 1 shows a file structure of OOFS standard model.
Since OOFS builds a file as a n object stream file and uses

arrays to manage their associated objects of the same class,
a subsequent class is created whose objects are stored in an
array of the previous class. Therefore if there are a number of
object-oriented arrays in a class diagram, a number of
subsequent class diagrams are shown as in Fig. 1 (see two oval
marks).

A class diagram with an OOFS design has a class name at
the top, its attributes are in the middle and methods which the
class can execute are at the bottom. Attributes of OOFS
contain variables and arrays.

A variable in OOFS is defined as VARIABLE_NAME:
DATA_TYPE. A variable named VARIABLE_NAME can
reserve memory locations to store a value. Data type
DATA_TYPE of the variable decides what can be stored in the
reserved memory. There are 9 data types supported by OOFS
including byte, short, int, long, float, double, boolean, char and
String.

OOFS provides two types of arrays are
ARRAY_NAME1:DATA_TYPE[]* and ARRAY_NAME2:
CLASS_NAME_OF_OBJECT[]* (See the first oval mark in
Fig. 1). []* means the number of dimensional array. Currently
OOFS only works for arrays that have up to three dimensions.

ARRAY_NAME1:DATA_TYPE[]* stores a fixed–size
sequential collection of elements of the same data type
(DATA_TYPE mentioned has 9 data types) and the array is
named ARRAY_NAME1.

 ARRAY_NAME2:CLASS_NAME_OF_OBJECT[]*
describes array ARRAY_NAME2 created uses defined the
constructor of the class named CLASS_NAME_OF_OBJECT
which is used to access objects.

For a variable VARIABLE_NAME: DATA_TYPE, OOFS
offers two methods to manage variable VARIABLE_NAME
and whose methods are getVARIABLE_NAME() and
setVARIABLE_NAME(DATA_TYPE element).
getVARIABLE_NAME() returns the element stored in this
variable VARIABLE_NAME and
setVARAIBLE_NAME(DATA_TYPE element) sets the
element stored in this variable VARIABLE_NAME (See the
third rectangular mark in Fig. 1).

For an array ARRAY_NAME1: DATA_TYPE[]*, OOFS
offers 7 methods to manage this array and which are
ARRAY_NAME1_add(DATA_TYPE element),
ARRAY_NAME1_expandCapacity(),
remove_ARRAY_NAME1(), remove_ARRAY_NAME1(int
n), get_ARRAY_NAME1_size():int,
get_ARRAY_NAME1(int n):DATA_TYPE,
ARRAY_NAME1_isEmpty() (see the first rectangular mark in
Fig. 1).

For an array ARRAY_NAME2: CLASS_NAME_OF_OBJECT[]*,
OOFS also offers 7 methods to manage the array and which are
ARRAY_NAME2_add(CLASS_NAME_OF_OBJECT element),
ARRAY_NAME2_expandCapacity(), remove_ARRAY_NAME2(),
remove_ARRAY_NAME2(int n), get_ARRAY_NAME2_size():int,
get_ARRAY_NAME2_CLASS_NAME_OF_OBJECT(int n):
CLASS_NAME_OF_OBJECT, ARRAY_NAME2_isEmpty()
[10] (see the second rectangular mark in Fig. 1). We take array

ARRAY_NAME2 for example and describe how these
methods manage array ARRAY_NAME2.

 ARRAY_NAME2_add(CLASS_NAME_OF_OBJECT element)
adds the specified object element whose class name
CLASS_NAME_OF_OBJECT to array ARRAY_NAME2.

ARRAY_NAME2_expandCapacity () creates a new array
to store the contents of array ARRAY_NAME2 with twice the
capacity of the old one.

remove_ARRAY_NAME2() removes all of objects from
the array.

remove_ARRAY_NAME2(int n) operation consists of
making sure the array is not empty and removes the specified
object from the array using index n.

get_ARRAY_NAME2_size():int returns the number of
objects in the array.

get_ARRAY_NAME2_CLASS_NAME_OF_OBJECT(int
n): CLASS_NAME_OF_OBJECT returns an object whose
class name CLASS_NAME_OF_OBJECT using index n.

The following uses as an example the e-Business system of
the Eastland Company to describe these 7 methods in detail.

B. Applying OOFS Standard Model on Eastland e–Business

System

Since OOFS is to build the file system of an information
system and for linking to the next window and for building data
processing window of ISG are to generate graphic user
interface screens which are to input data and then store data.
Now take Eastland e–Business for example to describe how we
implement the file system of Eastland e–Business.

Figure 2. Class diagrams of six groups of classes from Eastland e–Business.

Consider Eastland e–Business that computes the monthly
shipping amount, generates reports on their monthly earnings,
profit, orders, etc. Let’s focus on building the file system of
Eastland e–Business and there are 17 groups of classes (classes
that are related to each other through composition) in this system
such as classes for foreign bank data, local bank data, invoice
(including pro forma invoice, shipping notice), company data,
product description, vendor purchase orders, products, single

inventory statistics, goods expenses, types of expenses, monthly
earning, profit etc. Then use OOFS standard model in Fig. 1 to
illustrate the file structure of these 17 groups of classes. Now we
document these designs using OOFS standard model to examine
three of these groups, for invoice, goods expenses and goods
shown in Fig. 2. It shows class diagrams of file INVOICE, file
PAYOUT, file GOODS_PAYOUT_KIND. Each of files has its
associated classes such as class INVOICE, class
PROFORMA_INVOICE_DATA and class PI_DATA in file
INVOICE, class PAYOUT and class PAYOUT_DATA in file
PAYOUT, class GOODS_PAYOUT_KIND and class
GOODS_PAYOUT_KIND_DATA in file
GOODS_PAYOUT_KIND.

Taking file INVOICE for example (see the first oval mark
in Fig. 2), there are two arrays in object of class INVOICE;
array PI_PROFORMA_INVOICE is to store pro forma invoice
and array SI_SHIPPING_INVOICE is to store shipping notice
and both store objects of class PROFORMA_INVOICE_DATA.
Class PROFORMA_INVOICE_DATA includes attributes –
PI_NUMBER, PI_COMPANY, PI_CUSTOMER, etc. and an
array PI_ARRAY which stores objects of class PI_DATA.
Class PI_DATA includes attributes – PI_GU_NUMBER,
PI_GU_IDX, PI_GU_STATEMENT, PI_AMOUNT, PI_UNIT,
PI_PRICE and PI_PRESENTLY.

Another issue to consider is how an array manages its
associated objects. Consider arrays
PI_PROFORMA_INVOICE and SI_SHIPPING_INVOICE
(see four rectangular marks at class INVOICE in Fig. 2) for
illustrating how the object streams are stored in a file. Take
array PI_PROFORMA_INVOICE for example and array
PI_PROFORMA_INVOICE is used to manage objects of class
PROFORMA_INVOICE_DATA and seven methods enclosed
in the third rectangular mark are generated by OOFS that are
methods PI_PROFORMA_INVOICE_add(PROFORMA_INVOICE_DATA

element), remove_PI_PROFORMA_INVOICE(),
remove_PI_PROFORMA_INVOICE(int n),
get_PI_PROFORMA_INVOICE_size(),
PI_PROFORMA_INVOICE_isEmpty(),
get_PI_PROFORMA_INVOICE_PROFORMA_INVOICE_DATA(int n) and
PI_PROFORMA_INVOICE_expandCapacity().

If get_PI_PROFORMA_INVOICE_PROFORMA_INVOICE_DATA(int

n) returns an object of class PROFORMA_INVOICE_DATA
named A_PROFORMA_INVOICE1 and using this object to
call method getPI_NUMBER() gets value of attribute
PI_NUMBER. Therefore ISG can translate getting value of
PI_NUMBER with A_PROFORMA_INVOICE1 into a
command statement
A_PROFORMA_INVOICE1.getPI_NUMBER(). Another
command statement
A_PROFORMA_INVOICE1.setPI_NUMBER(n) is to set a
value n to attribute PI_NUMBER. When array
PI_PROFORMA_INVOICE is created (means object of class
INVOICE is created and array PI_PROFORMA_INVOICE in
it), it is allocated a specific number of cells into which elements
can be stored. Since we use a fixed–size data structure, at some
point the array may become full. So method
PI_PROFORMA_INVOICE_expandCapacity() will be called
automatically to double the size of array
PI_PROFORMA_INVOICE. Thus the file structure of

Eastland e–Business, with arrays and methods provided
makes it convenient and efficient t o retrieve data elements
in any array. How users use OOFS to set parameters and
translate to Java programs is discussed in [1].

C. How ISG Retrieves data from OOFS File Structure

If users specify a path for retrieving PI_GU_STATEMENT
data as INVOICE/PI_PROFORMA_INVOICE/PI_ARRAY/
PI_GU_STATEMENT, then ISG uses this path to translate a
Java program for getting PI_GU_STATEMENT.
INVOICE/PI_PROFORMA_INVOICE/PI_ARRAY/PI_PRICE
means that there are two arrays – PI_PROFORMA_INVOICE
and PI_ARRAY and there are objects stored in their associated
arrays.

The path indicates that an object of class INVOICE
contains a PI_PROFORMA_INVOICE array. Each element of
PI_PROFORMA_INVOICE array is an object of class
PROFORMA_INVOICE_DATA. Each of these objects
contains a PI_ARRAY array. Each element of PI_ARRAY
array is an object of class PI_DATA. Each of these objects
contains an attribute called PI_GU_STATEMENT. Therefore
ISG knows how to get attribute PI_GU_STATEMENT by
following steps using the above path specified. The command
statements can be seen in [2].

1. Read an object named THE_INVOICE from file INVOICE,
since PI_PROFROMAN_INVOICE is an array stored in
the THE_INVOICE object.

2. Next ISG uses for loop to retrieve each object of class
PROFORMA_INVOICE_DATA from the
PI_PROFORMA_INVOICE array which is temporarily
stored in AN_INVOICE object.

3. There is an array PI_ARRAY in object AN_INVOICE and
ISG use this object to get each object of class PI_DATA
stored in array PI_ARRAY. ISG also uses for loop to get
each object of class PI_DATA as step 2 does.

4. From the retrieved objects of class PI_DATA, we can get
the value of PI_GU_STATEMENT by using each of them.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We analyze the efficiency obtained in terms of the OOFS
CPU time using the two tools (ISG and DWL).

A. Analyzing Efficiency of OOFS CPU Time Using ISG

ISG generated an e–Business system for the Eastland
Company by generating a total of 74 Java programs. There
were 15 user interface screens for entering the shipping cost,
monthly expenses, foreign manufacture’s data, local
manufacture’s data, foreign bank data, local bank data,
packaging data, about products, about the company, foreign
customer shipments etc. The average time it took for translating
these GUI screens was 14.46 milliseconds (not including I/O
time) which is pretty good since ISG moves the parameters to
the memory and uses fast access methods. For storing these
parameters there are two files—HF file and FRAME file. An
HF file is for storing data architecture such as field name, data
type, array dimension, size of array and data type of array. A
FRAME file is for storing graphic interface screen component
and data path. Since OOFS moves everything to memory at
once, it reduces the amount of time it takes to read a FRAME

file (it took 288.93 milliseconds to move data). It took just
22.8 milliseconds for reading the HF file. So the total time for
translating a screen was 326.19 milliseconds.

B. Analyzing Efficiency of OOFS CPU Time Using DWL

We used DWL [11] to implement an E–commerce web–
based system that we call E–POLEMONG for POLEMONG
Plastic Company. POLEMONG Plastic Company
manufactures eleven types of products viz. telecommunication
parts, auto parts, sports equipment, daily supplies, appliances,
aquarium supplies, etc. E–POLEMONG displays six items viz.
News, Products, About POLEMONG Company, Investor
Information, Product Quality and Contact us. We translated 22
web pages using DWL for E–POLEMONG such as News and
eleven different types of products like About POLEMONG,
Product Quality, Investor Information, Contact Us, etc. We
also applied OOFS to retrieve data and then to translate it to
web-pages. The average translation time for these web pages
was 545.5 milliseconds, with the shortest time being 330
milliseconds and the longest time being around 700
milliseconds.

ISG’s and DWL’s experimental results show that OOFS is
scalable. Since our extents are implemented as one object in
one segment, as the number of objects in the extension
increased, the size of the extent object increased and that space
is big enough to keep all the class extension objects needed for
a transaction.

C. Another Advantage of OOFS – Join Approach

Note that ISG uses arrays and methods to create an
information system that is convenient and efficient for
retrieving data elements in any array. Another characteristic
of this OOFS standard model is when the drop–down lists of a
GUI screen has data items from other files, ISG can combine
data from these files into one file. This mechanism is similar
to SQL joins in a database. Since an index is an integer pointer
(into an array), using this index can identify elements of the
array. Therefore we can use the selected indices from a drop–
down list to retrieve its associated data elements from the
source file. This mechanism for drop–down lists combines
data elements from two or more files into a file which is a
Joined Approach. Therefore a Joined Approach can eliminate
duplication of information when objects may have one–to–
many relationships.

Figure 3: The Medical Supplier page of E–POLEMONG.

D. How to Update Web Pages Quickly as the Company

Produces New Products Frequently

Figure 3 shows the Medical Supplier webpage of E–
POLEMONG. It shows six types of hospital handrail image
pictures. We describe the steps below on how to implement an
application that translates it into a new webpage whenever a
new product is introduced.

1. Execute building data processing window of ISG to
generate an interface screen to input data – product name,
its image file name, and data is stored into a file called
MEDICAL_SUPPLIERFILE.

2. Use DWL to generate an HTML program called
MEDICAL_SUPPLIER.html which shows a webpage
similar to the one shown in Fig. 3. We wrote a translator to
update Fig. 3 which calls PrintWriter to print formatted
representations of objects to a text-output stream such as
MEDICAL_SUPPLIER.html. There is a for loop in the
translator which can be used to make changes to the
RIGHTCOLUMN section in Fig. 3. It gets the number of
hospital handrails from the MEDICAL_SUPPLIERFILE
file. The command statements can be referenced from [11].

V. Conclusions and Future Work

An information system was developed using ISG for
Eastland that involves computing the monthly shipping
amount, generating reports on their monthly earnings, profit,
orders etc. We had already established the usefulness of ISG in
our earlier work.

It is convenient and easy to use DWL to generate a web–
based system for any company or business. The web–based
system enables customers to better understand the company
and its products, which would result in increased sales. We
illustrated this for a company in the paper. In the future, we
hope to use this tool to develop customized web–based
systems for other small and medium sized businesses. Both
ISG and DWL can save time in writing, debugging and testing
a program.

We established the usefulness of DWL in our earlier work
which reduced the cost of producing software written in
HTML. For example, using DWL we developed a customized
web–based system for GREATYO sunglasses for sports and
kids [11] and for the 7th Ubiquitous–Home Conference
UHC2013 [3]. ISG has been used to generate an e–Business
system for Eastland International Company [2]. Our research
also offered a tool called W–Revised for creating customized
websites. Because companies introduce new products
frequently and the web pages of its site need to be updated
frequently, it can be done conveniently using W–Revised
generated by ISG and DWL [11].

Websites are often hacked by hackers seeking to
compromise the corporate network. Also programs are

sometimes downloaded without the users consent or knowledge
when they visit a web site (drive–by download). As a result,
industry is paying increased attention to the security of the web
applications themselves in addition to the security of the
underlying computer network and operating systems. In order
to keep a website clean and secure, we are trying to find a good
solution to defend the websites. Therefore we hope that in the
near future our software tools might be included in business
applications as software as a service (SaaS).

ACKNOWLEDGMENT

Eastland e–Business System was developed in
collaboration with Eastland International Company for
implementing an e–Business System. E–POLEMONG was
developed in collaboration with POLEMONG Plastic
Company for developing a web–based system for their
business. We would like to thank them for giving us this
opportunity to work with them and test our tools for
generating the information and the web–based systems.

REFERENCES

[1] Ling–Hua Chang, Sanjiv Behl, “An Efficient Information System
Generator,” 4th Asian Conference on Intelligent Information and
Database Systems, pp. 286–297, 2012.

[2] Ling–Hua Chang, Sanjiv Behl, Tung–Ho Shieh, “Amazing Use of ISG
for Implementing Information Systems,” 2014 International Conference
on Information Science, Electronics and Electrical Engineering,
(iseee2014), pp. 1980–1985, April 26–28, 2014.

[3] Ling–Hua Chang, Tung–Ho Shieh, Sanjiv Behl, “Amazing of Using ISG
on Implement a Web–Based System,” 14th International Conference on
Parallel and Distributed Computing, Applications and Technologies
(PDCAT’13), pp. 44–49, 2013.

[4] Raimund K. Ege, “Reading Large Volumes of Java Objects from
Database,” TOOLS '00 Proceedings of the Technology of Object–
Oriented Languages and Systems (TOOLS 34'00), pp. 117–124 , Aug.
2000.

[5] Linna Li, Bingru Yang, Faguo Zhou, “A Framework for Object–
Oriented Data Mining,” the 5th International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD 2008), pp. 60–64 , Oct. 2008.

[6] Wei–Chou Chen, Tzung–Pei Hong and Wei–Yang Lin, “A Composite
Data Model in Object–Oriented Data Warehousing,” TOOLS '99
Proceedings of the 31st International Conference on Technology of
Object–Oriented Language and Systems, pp. 400–405, 1999.

[7] L. Opyrchal, A. Prakash, “Efficient object serialization in Java,”
Proceedings of 19th IEEE International Conference on Distributed
Computing Systems Workshops on Electronic Commerce and Web–
based Applications., pp. 96–101, 31 May 1999–04 Jun 1999.

[8] Joe Cheri Ross, Dr. Priya Chandran, “Object Serialization Support for
Object Oriented Java Processor,” IEEE Transactions of Information
Technology, pp. 1–6, vol. 3 Aug. 2008.

[9] C.S. Horstmann, G. Cornell, Core Java Volume I–Fundamentals, 8th ed.
Sun Microsystems Press, Prentice Hall, New Jersey, 2008.

[10] John Lewis, Joseph Chase,, “Java Software Structures designing and
using data structures,” Pearson Education Inc., 2005.

[11] Ling–Hua Chang, Sanjiv Behl, Tung–Ho Shieh, “W–Revised: an
Amazing Tool for Creating Customized Websites”, 2014 IEEE, DOI
10.1109/ICSAI.2014.7009333, pp.465–470, 2014.

