
 

DOI reference number: 10.18293/SEKE2015-102 

A Novel Hybrid Approach for Diarrhea Prediction 
 

Yongming Wang 

Department of Computer Science & Technology 

East China Normal University 

Shanghai, China 

ymwang819@gmail.com 

Junzhong Gu 

Department of Computer Science & Technology 

East China Normal University 

Shanghai, China 

jzgu@ica.stc.sh.cn

 

 
Abstract—Accurate and reliable forecasts of diarrhea 

incidences are necessary for the health authorities to ensure the 

appropriate action for the control of the outbreak. In this paper, 

a novel hybrid model known as EEMD-GRNN is proposed to 

forecast the diarrhea incidences. The proposed approach first 

uses Ensemble Empirical Mode Decomposition (EEMD), which 

can adaptively decompose the complicated raw time series data 

into a finite set of intrinsic mode functions (IMFs) and a residue, 

which have simpler frequency components and higher 

correlations. The IMF components and residue are than modeled 

and forecasted using GRNN and the final prediction result can be 

obtained by these prediction results using the principle of 

ensemble. The proposed hybrid method is examined by 

predicting the monthly diarrhea cases number of children and 

adult located in Shanghai of China. The experimental results 

indicate that the proposed EEMD-GRNN model provides more 

accurate forecasts compared to the other ARIMA, single GRNN 

models and hybrid model (EMD-GRNN). Overall, the proposed 

approach was effective in improving the prediction accuracy. 

Keywords—Diarrhea prediction; Ensemble empirical mode 

decomposition; Generalized regression neural network; Hybrid 

approach  

I.  INTRODUCTION 

An accurate and timely diarrhea prediction is crucial for 
predicting future health events or situations such as demands 
for health services and healthcare needs. As a kind of common 
and important infectious disease, diarrhea has a serious threat 
to human health and leads to one billion disease episodes and 
1.8 million deaths each year (WHO, 2008). Hence, a robust 
prediction model for diarrhea facilitates preventive medicine 
and health care intervention strategies, by pre-informing health 
service providers to take appropriate mitigating actions to 
minimize risks and manage demand [1]. 

Over the past couple of decades, there have been wide 
attempts to capture the relationship between the available 
information using some straightforward linear regression 
assumptions, for example, the autoregressive integrated 
moving average (ARIMA). However, currently there is no 
evidence to support the assumption that the relationship 
between the past and future of diarrhea is a perfectly linear one. 
Many recent studies focus on the use of machine learning 
techniques, such as artificial neural networks (ANNs), to build 
a prediction model. Unlike traditional statistical models, ANNs 
are data-driven models. They do not require strong model 
assumptions and can map any nonlinear function without a 

priori assumption about the properties of the data, even though 
the underlying relationships are unknown or hard to describe. 
Related works have shown that machine learning techniques 
outperform many traditional models. 

In this paper we develop predictors using generalized 
regression neural networks (GRNNs) [2], a special type of 
neural networks. GRNN has only a single design parameter and 
is simple and fast in training. When using GRNN for diarrhea 
prediction, the observed original values of prediction variables 
are usually directly used for building prediction models. 
However, many factors underlie the diarrhea such as seasonal 
variations. Due to the complexity of the diarrhea incidence, it is 
difficult to capture its non-stationary property and accurately 
describe its moving tendency. 

     Empirical Mode Decomposition (EMD) [3] is a kind of 

adaptive signal decomposition technique using the Hilbert-

Huang transform and can be applied with nonlinear and non-

stationary time series. However, EMD suffers from an 

intrinsic drawback-the frequent appearance of mode mixing. 

Fortunately, there exists an improved method called Ensemble 

EMD (EEMD) which makes up for the deficiency of EMD. 

Different from other traditional decomposition methodologies 

such as wavelet decomposition, EEMD is an empirical, 

intuitive, direct and self-adaptive data processing method 

created especially for non-linear and non-stationary signal 

sequences. Therefore, the EEMD has been widely used in 

many fields [4-6]. However, existing literatures regarding 

diarrhea prediction have not adopted EEMD processes, and 

this study will be to fill this gap.  

In this paper, we introduce EEMD and GRNN to predict 
the monthly number of diarrhea cases. A novel hybrid 
prediction algorithm called EEMD-GRNN is proposed. The 
proposed approach was compared with the EMD-GRNN, 
single GRNN approaches and traditional time series models, 
such as ARIMA, thus demonstrating that the proposed model is 
substantially featured with an excellent prediction capacity. 
Moreover, in order to evaluate the performance of the proposed 
approach, the real world diarrhea datasets are used as an 
illustrative example. 

The rest of this paper is organized as follows. Section 2 
reviews related methods used in this paper which are EEMD 
and GRNN. The proposed model is described in Section 3. 
Section 4 presents the experimental results and the 



 

 

effectiveness of the proposed methodology is discussed. 
Finally, Section 5 concludes the paper. 

II. METHODOLOGY 

A. Empirical Mode Decomposition 

The basic idea of EMD is to identify the intrinsic 
oscillatory modes and to decompose original time series data 
into a finite and small number of oscillatory modes based on 
the local characteristic time scale by itself [3]. The 
decomposition is based on the following assumptions [6]: (1) 
the signal has at least two extreme-one maximum and one 
minimum; (2) the characteristic time scale is defined by the 
time lapse between the extreme; and (3) if the data are totally 
devoid of extreme but contain only inflection points, then they 
can be differentiated one or more times to reveal the extreme. 
Final results can be obtained by integration of the components. 
With the assumptions of decomposition, an original data series 
X(t) (t=1; 2,...,T) can be decomposed in terms of the following 
sifting procedure. The detailed process of the EMD algorithm 
is shown as follows [3, 14-16]: 

Step 1: Identify local extreme in the data {x (t)}. 

All the local maxima are connected by a cubic spline line 
U(t), which forms the upper envelope of the data. Repeat the 
same procedure for the local minima to produce the lower 
envelope L (t). Both envelopes will cover all the data between 

them. The mean of upper envelope and lower envelope m1(t) is 

given by: 

 2/)()()(1 tLtUtm   

Subtracting the running mean m1(t) from the original time 

series x(t), we get the first component h1(t): 

                         )()()( 11 tmtxth               (2) 

The resulting component h1(t) is an IMF if it is symmetric 
and have all maxima positive and all minima negative. An 
additional condition of intermittence can be imposed here to 
sift out wave forms with certain range of intermittence for 

physical consideration. If h1(t) is not an IMF, the sifting process 

has to be repeated as many times as it is required to reduce the 
extracted signal to an IMF. In the subsequent sifting process 

steps, h1(t) is treated as the data to repeat steps mentioned 

above: 

 )()()( 11111 tmthth   

Again, if the function h11(t) does not yet satisfy criteria for 
IMF, the sifting process continues up to k times until some 
acceptable tolerance is reached: 

 )()()( 1)1(11 tmthth kkk  
 

Step 2: If the resulting time series is an IMF, it is 
designated as c1 = h1k(t). The first IMF is then subtracted from 
the original data, and the difference r1 given by: 

 )()()( 11 tctxtr   

 The residue r1(t) is taken as if it were the original data, and 

we apply to it again the sifting process of Step 1. 

Following the above procedures, we continue the process to 
find more intrinsic modes ci until the last one. The final residue 
will be a constant or a monotonic function which represents the 
general trend of the time series. Finally we obtain: 
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 Where rn is a residue. Thus, residue rn (t) is the mean trend 

of x(t). The IMFs={c1(t), c2(t), ..., cn(t)} include different 

frequency bands ranging from high to low. The frequency 
components contained in each frequency band are different and 
they change with the variation of time series x(t), while rn(t) 
represents the central tendency of time series x(t).  

B. Ensemble Empirical Mode Decomposition 

The EEMD [17] is the inheritor of the EMD. EEMD 
defines the true IMF components as the mean of the 
corresponding IMFs obtained via EMD over an ensemble of 
trials and generated by adding different realizations of white 
noise of finite variance to the original signal x[n]. The added 
white noise can help extract the true IMFs, and can offset them 
via ensemble averaging after serving their purpose [8]. 
Therefore, this can substantially reduce the chance of mode 
mixing and represent a significant improvement over the 
original EMD. The process of EEMD decomposition can be 
demonstrated by the following steps: 

1) Add a white noise series to the original time series 

dataset; 

2) Decomposition the data with added white noise into 

IFMs using the EMD procedure; 

3) Repeat the step 1 and 2 iteratively, but use different 

white noise each time 

4) Obtain the ensemble means of corresponding IMFs 

as the final results. 

C. Generalized Regression Neural Network 

The GRNN [7] is a kind of radial basis function networks 
which is based on a standard statistical technique called kernel 
regression. A typical GRNN is organized using four layers, 
namely the input layer, the pattern layer, the summation layer, 
and the output layer. The hidden layer has radial basis neurons, 
while neurons in the output layer have a linear transfer function. 
A typical architecture of the GRNN is presented in Fig. 1. 
Given a sufficient number of neurons, GRNN can approximate 
a continuous function to an arbitrary accuracy [8]. 

Given m input-output pairs   1,  nYX and as the 

training samples, assume the original design of GRNN, that is, 
the number of hidden neurons is equal to the number of 
training samples. For a desired estimate of system output 
vectors Y, under the input vectors X, is achieved by a regression 
calculation. The procedure of the GRNN model can be 
represented as: 
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Where X is a d-dimensional input vector, Y is the predicted 
value of the GRNN model, E[Y/X] is the expected value of the 
output Y, given the input vector X, f(Y,X) is the joint probability 
density function of X and Y. When probability density function 
adopt Gaussian function, the network output function of Y 
given the vector X: 
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denotes the smoothing parameter, X is the input variable of the 
network, Xi is a specific training vector of the neuron i in the 
pattern layer. 

A good performance for GRNN method depends on 
smoothing factor σ, which is very important in using GRNN 
for prediction and determines the generalization capability of 
the GRNN. The smoothing factor is only free (adaptive) 
parameter, apart from the input and output layer, involved in 
the designing of the network. 
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Fig. 1. Typical GRNN structure. 

GRNN have several advantages [9], including: 1) it has one 
design parameter (smoothing factor); 2) it is easy to train since 
it is a one-pass algorithm; 3) it can accurately approximate 
functions from sparse and noisy data; 4) it can converge to the 
conditional mean surface by increasing the number of data 
samples; and 5) ability to model from a relatively small data set, 
and ability to handle outliers. It is these unique advantages that 
make us to choose GRNN as local models for each IFM. 

From a time series prediction point of view, the purpose of 
GRNN is to define a function that produces outputs as close as 
possible to the actual values over the prediction horizon. Given 

a training set of T data points  T
t

d

tt yxyx
1

,|),(


 , the 

GRNN try to construct a predictor function expressed by y=f(x), 

where  df :)( is the predictor function. 

III. PROPOSED EEMD-GRNN APPROACH 

Considering the aforementioned points in section ІІ, in the 
current research the powerful combination of positive aspects 

of EEMD and GRNN algorithm is presented to one-step-ahead 
diarrhea time series prediction problem. As shown in Fig. 2, 
the proposed EEMD-GRNN modeling framework is generally 
composed of the following three main steps: 

 Step 1: Decompose time series by EEMD 

The original diarrhea time series are first decomposed into 
a finite and often a small number of intrinsic mode functions 
(IMFs) and a residue using EEMD technique (here the residual 

rn+1(t) also be considered as an IMF). 

 Step 2: Local-GRNN predictor construction 

 After the components (IMFs and a residue) are adaptively 
extracted via EEMD, each IFM component is modeled by an 
independent GRNN which are used to generate local predictor 
to forecast the component series respectively. 

 Step 3: Muti-local GRNN predictor ensemble 

The forecasts of all IFM components are aggregated using 
another independent GRNN model, which model the 
relationship among the IMFs and the residue, to produce an 
ensemble forecasts for the original time series. 
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Fig. 2. The EEMD-GRNN modeling framework. 

 Several studies, for example [10, 11], have indicated that 
selecting model inputs is probably the most critical task for a 
time series prediction model, since it contains important 
information embedded in the data. The statistical approach to 
examine partial-auto-correlation function (PACF) of the time 
series was recognized as a good and parsimonious method in 
the determination of model inputs [12, 13]. So, in this study, 
the model inputs in the approach are mainly determined by the 
plot of PACF. After determining the relationship between 
input(s) and output(s), the input/output pairs can be constructed 
for each IFM component. 

The performance of GRNN is mainly affected by the 
smoothing factor σ. There are no general rules for the choice of 
smoothing factor. In this study, the optimal smoothing factors 
for each local predictor are determined by the trial-and-error 



 

 

method. Normalization required for neural network modeling 
in general is also included in our preprocessing. Thus, the 
inputs are normalized by the method of maximum and 
minimum normalization; after simulation, the corresponding 
estimate results are rescaled through the contrary process of the 
employed normalization method. 

Through EEMD, different characteristics information of 
original time series can be displayed on different scales, and 
the proposed method can more fully capture the local 
fluctuations of raw data. Moreover, each IMF component has 
similar frequency characteristics, simple frequency components, 
and strong regularity, therefore allowing this model to reduce 
the complexity of local GRNN modeling and further improve 
GRNN prediction efficiency and accuracy. 

IV. RESULTS AND DISCUSSION 

In order to validate the effectiveness of the proposed 
EEMD-GRNN model, comprehensive experiments based on 
two real world diarrhea datasets were conducted. First, data 
description and performance criteria used in this study are 
presented and then the experimental results are reported. 
Finally, the result are compared and discussed. 
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Fig. 3. Monthly diarrhea of children and adult from 2006(1)-2012(12). 

A. Data Sets 

In this study, the monthly diarrhea cases number data of 
children (0-15) and adult (>15) from 2006.01 to 2012.12 in 
Shanghai of China has been used. All data employed in this 
study are obtained from the Shanghai Municipal Center for 
Disease Control & Prevention. In particular, first, the data of 
the diarrhea of children are used to witness the whole process 
of the proposed method. In the same way, the corresponding 
prediction results of adult diarrhea are shown and further 
confirm the validity of the proposed method, accordingly. 

There are in total 84 data points in each diarrhea dataset 
and the monthly series behavior is illustrated in Figure 3. The 
plot exhibits a permanent deterministic pattern of long-term 
upward trend with short-term fluctuations that are independent 
from one time period to the next. From Fig. 3, it can be seen 
that the series appear to be nonlinear, non-stationary in that the 
mean is increasing over time. 

In order to testify the performance of the proposed 
prediction methods, the collected data is divided into two sets, 
training data and testing data. To achieve a more reliable and 
accurate result, a long period is served as the training period. 
Based on these considerations, the first 72 data points are used 

as the training samples while the remaining 12 data points are 
used as the testing sample. The statistic characteristics of 
children and adult diarrhea in monthly time scale is tabulated in 

Table І. 

To assess the forecast capacity of the EEMD-GRNN model, 
four indices for error forecast serve as the criteria to evaluate 
the prediction performance; they are mean absolute error 
(MAE), mean absolute percent error (MAPE), root mean 
square error (RMSE) and the coefficient of determination (R

2
). 

MAE, MAPE and RMSE are measures of the deviation 
between actual and predicted values. The models with the 
smallest MAE, MAPE, RMSE and the largest R

2 
are 

considered to be the best models. 

TABLE I.  STATISTICAL CHARACTERISTICS OF CHILDREN AND ADULT 

DIARRHEA FOR TRAINING AND TESTING DATA. 

Indexes 
Children Adult 

Training Testing Training Testing 

Max 41923.0000 37808.0000 34325.0000 28273.0000 

Min 802.0000 11973.0000 2330.0000 15220.0000 

Mean 13055.7500 21675.4167 14704.5556 20800.9167 

SD 8069.2917 8214.7503 6892.3226 4296.5920 

B. Prediction Results 

According to the proposed hybrid EEMD-GRNN approach, 
in Stage 1, the original children diarrhea time series are 
decomposed into three independent IMFs (Illustrated in Fig. 4) 
and one residual employing EEMD technique, which exhibit a 
stable and regular variation. This means that the interruption 
and coupling between the different characteristics information 
embedded in the original data have been weakened to an extent. 
Thus, the local GRNN prediction model is easier to build. 
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Fig. 4.  EEMD decomposition result for children diarrhea. 

After using EEMD to decompose the original children 
diarrhea data into three IMFs and a residue, these are then used 
to build the local GRNN prediction model for each IFM. In 
Stage 2, the relationship between the data of each IMF in the 
same frequency band should be identified prior to obtaining the 
prediction results of IMFs. The PACF is employed as a 
detector to determine the correlations between them. The lag 
orders of the autoregressive process of each IMF are two, four, 
five and five, respectively. 

Based on the correlation between the data of each IMF, the 
input and the output pair vectors of the local GRNN model can 
be generated. Then the respective GRNN model is built and 
trained in terms of the input and the output vectors of the IMFs 



 

 

and residue. For building the GRNN prediction model, the 
Matlab R2013a software package is adapted in this study and 
the optimal smoothing factor for each IFM is selected based on 
the corresponding minimum mean absolute error (MAE) on the 
out-of-sample testing samples. After that, the established 
GRNN model produces the one-step-ahead prediction results of 
each series of IMFs. In Stage 3, the final prediction results can 
be obtained using another independent GRNN model using the 
prediction results of each IFM as the input. 

In order to reflect the model superiority, it is necessary to 
build other models to compare with the proposed model. Some 
other popular single prediction approaches recommended by 
recent works on time series prediction are selected as 
benchmarks. The benchmarks include time series techniques 
and artificial intelligence (AI) techniques. Amongst time series 
techniques, the autoregressive integrated moving average 
(ARIMA) models are adopted. For AI models, single GRNN is 
employed for the purpose. Furthermore, a hybrid learning 
approach with the EMD selected as decomposition method is 
also utilized. The simulation of this method is in general 
similar to the proposed model. 

In the modeling of the single GRNN model like the EEMD-
GRNN model, the input layer lags number has been determined 
using PACF and the smoothing factor are selected through the 
implementation of iterative optimization procedures. 

In this study, the ARIMA model has three steps: model 
identification, parameter estimation, and diagnostic checking. 
The test time series data were processed by taking the first-
order regular difference and the first seasonal difference to 
remove the growth trend and seasonality characteristics. We 
used the SPSS.19 statistical software to formulate the ARIMA 
model. Estimate the model parameters and utilize the Akaike 
Information Criterion (AIC) value to identify the best model. 
The model obtained from the training data set is ARIMA 
(2,1,1)(1,1,1)12 model, the future one-head monthly cases 
number of children diarrhea can be obtained. 

C. Comparison and discussion 

The comparisons of prediction models for the monthly 
number of children diarrhea are made between the ARIMA 
model, the single GRNN model, the hybrid EMD-GRNN 
model and the hybrid EEMD-GRNN model. The actual 
diarrhea cases number for children and predicted values of 
different models are illustrated in Fig. 6 and the prediction 
performances are shown in Table ІІ. Through model 
comparisons, the proposed hybrid EEMD-GRNN model 
performs best. It can be observed from Fig. 6 that the predicted 
values obtained from the proposed EEMD-GRNN model are 
closer to the actual values than those obtained from the other 
models. This phenomenon signifies that the hybrid model can 
combine different advantages from EEMD and GRNN. 

As seen from Table ІІ and Fig. 6, it is clear that the hybrid 
EEMD-GRNN model performs much better than ARIMA 
model and single GRNN model, and outperforms the hybrid 
EMD-GRNN model. More precisely, the MAE, RMSE, MAPE 
and R

2
 of the proposed EEMD-BPN model are, respectively, 

664.361, 811.925, 3.1% and 0.991. That these values are 
smaller than other models. This indicates that there is a smaller 

deviation between the actual and predicted values using the 
proposed EEMD-GRNN model. Thus, the proposed EEMD-
GRNN model provides a better prediction result than the other 
models based on MAE, RMSE, MAPE and R

2
. 

The possible reason is that the proposed hybrid model 
adequately makes use of the advantages of the decomposition 
methods and GRNN algorithm and integrates them well. In 
comparisons between EMD-GRNN and EEMD-GRNN, the 
decomposition method of EEMD is superior to EMD in terms 
of contribution to the prediction accuracy. 

Similarly, the proposed EEMD-GRNN method also 
performs well in terms of predicting the diarrhea for adult. 
According to above steps, the ARIMA model generated from 
the data set is ARIMA (2,1,0)(1,1,1)12. Table Ш summarizes 
the diarrhea cases number for adult prediction results using the 
ARIMA, single GRNN, EMD-GRNN and EEMD-GRNN 
models. It can also be observed that the proposed EEMD-
GRNN model has the smallest MAE, RMSE, MAPE and R

2
 

values in comparison with the single GRNN and ARIMA 
models and hybrid EMD-GRNN model. Thus, the proposed 
method produces lower prediction errors and outperforms other 
models with respect to predicting of diarrhea for adult. 

TABLE II.  PERFORMANCE OF THE FOUR MODELS FOR CHILDREN 

Metrics 
Models 

ARIMA GRNN EMD-GRNN EEMD-GRNN 

MAE 3364.427 3330.324 2123.084 664.361 

RMSE 4437.433 4212.306 3049.842 811.925 

MAPE 17.1% 14.9% 14.3% 3.1% 

R2 0.846 0.953 0.9666 0.991 
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Fig. 6.  Prediction results of diarrhea for children. 

Fig. 7 depicts the actual diarrhea cases number for adult 
and the predicted values from the ARIMA, single GRNN, and 
EMD-GRNN, EEMD-GRNN models. From the Fig. 7, it can 
be observed that the proposed EEMD-GRNN model provides 
good prediction results. The predicted values of the proposed 
model are closer to the actual values than the other three 
models. 

TABLE III.  PERFORMANCE OF THE FOUR MODELS FOR ADULT. 

Metrics 
Models 

ARIMA GRNN EMD-GRNN EEMD-GRNN 

MAE 2999.752 2644.084 1839.788 1110.087 

RMSE 3737.192 3643.624 2476.043 1484.657 

MAPE 14.09% 11.69% 10.51% 5.14% 

R2 0.823 0.969 0.971 0.995 
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Fig. 7.  Prediction results of diarrhea for adult. 

V.  CONCLUSIONS 

In this paper, a novel hybrid approach integrating the 
EEMD algorithm and the GRNN model is proposed to settle 
the diarrhea prediction problem. The main contribution of the 
paper is to propose a novel hybrid method for a stable 
prediction of nonlinear and non-stationary diarrhea time series 
data. The proposed method pre-processes the diarrhea time 
series data and decomposes them into more stationary and 
regular components (IMFs or residue) using the EEMD 
technique. Furthermore, the corresponding GRNN model for 
each divided component is easier to build. After the IMF 
components and residue are forecasted in the built GRNN 
model, the prediction values are then aggregated using another 
independent GRNN model as the final prediction results. This 
study compared the proposed method with the single GRNN, 
ARIMA models and hybrid EMD-GRNN model, using MAE, 
RMSE, MAPE and R

2
 as its criteria. Experimental results 

showed that the proposed EEMD-GRNN model is better and 
more efficient for prediction diarrhea in Shanghai areas. 

There are several advantages of the proposed methodology. 
First, thanks to the non-linearity and non-stationary of diarrhea, 
hybrid the EEMD algorithm and GRNN model is a very wise 
practice for the diarrhea prediction. Moreover, it has rarely 
been mentioned in previous literature. Thus, applying this 
hybrid method to forecast diarrhea is very important for the 
future studies. Furthermore, from the simulation process and 
results, we can find this hybrid approach is useful in prediction 
diarrhea. Next, in terms of empirical results, it is a clear finding 
that the hybrid model can describe them comprehensively. The 
conventional single prediction models cannot do this very well. 
However, a hybrid method can integrate the advantages of 
other single models which conduce to boosting the model 
prediction ability and enhancing prediction efficiency. From 
this point of view, in terms of different criteria, it is 
unsurprising that the hybrid approach performs better than the 
single ARIMA and GRNN methods, and also superior to other 
hybrid models, for instance, EMD-GRNN model. Both 
statistical errors are reduced effectively in this hybrid model. 
Therefore, the proposed method is very suitable for prediction 
with nonlinear, non-stationary and strong complexity data, and 
is an efficient method for diarrhea prediction. 

Our study has the some limitations that need further 
research. First, future studies may aim at combining EEMD 
and other prediction tools, like support vector regression (SVR), 
in evaluating the ability of the proposed prediction scheme. 
Second, integrating GRNN and other time series processing 

techniques, such as wavelet transformation and seasonal 
adjustment method (SAM), in further improving the prediction 
capabilities can also be investigated in future studies. 
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