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Abstract

The inconsistencies of UML models (diagrams) during
the software development process may cause errors in doc-
uments or programs. Massive consistency rules have been
proposed by researchers to detect inconsistencies in exist-
ing works. However, the approaches of consistency anal-
ysis have not been addressed adequately in literature. In
this paper, we propose a new approach for analyzing con-
sistencies between UML models. We formally specify UML
models and define the consistency relation between UML
models. Based on the consistency definition, we first dis-
cuss the composition and decomposition of consistencies,
and then explore the equivalence of consistencies.

Index Terms UML model, Consistency, Composition,
Equivalence

1 Introduction

To develop a modern software system in the Model-
Based Engineering approach, multiple perspectives of mod-
eling the system are necessary. The UML is a semi-formal
graphical modeling language [15], and is widely used in
Model Driven Engineering (MDE) due to its multiple per-
spectives for describing software systems. Software arti-
facts (e.g., software architecture and implementation codes)
are interrelated to UML diagrams in whatever versions, lev-
els of abstraction, and stages. Consequently, it is often un-
able to avoid faults because of differences between UML
diagrams in software development. Specifically, the evo-
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lution of the models or diagrams is frequently accompa-
nied by augmenting, reducing, or modifying, which po-
tentially results in contradictory specifications (inconsis-
tencies). In order to classify such conflicts, there are
seven UML consistency dimensions in the systematic re-
searches [23, 8, 22, 11, 2], and a binary relation can capture
these dimensions, including those that refer to endogenous
consistency [14].

Multiple UML diagrams need to be strictly compliant in
order for a software system to be accurately and completely
described, especially for Safety Critical Systems (SCS).
Without complete and consistent design models, program-
mers need to manually supplement the lack of design mod-
els with codes, which may cause faults and insecurities.
Thus, we proposed to design accurate models because the
models are easier to be analysed in formal methods. Cor-
responding to categories of UML diagrams, consistencies
between these diagrams are generally divided into struc-
tural(i.e., syntactic) and behavioral(i.e., semantic) ones that
has been systematically investigated in research [18, 19].
The consistency rules are sophisticated and cannot distin-
guish between binary and N-ary relations (i.e., the number
of UML models involved in consistency rules is uncertain).
For example, rule 15 from [18] involves a class diagram, a
state machine diagram, and a activity diagram. Approaches
to check N-ary consistencies have not yet been fully de-
veloped and the relevant theories are merely reviewed as
well [18]. While using multiple rules to detect inconsisten-
cies in a large system, it is obviously arduous to manage
the duplication or absence of rules. Thus, it is necessary
to present binary consistency relations for unifying N-ary
consistency relations between UML models.

There are many existing efforts contributing to managing
consistency relations or rules among UML models whereas
ignoring the relationships between the rules [1, 17, 13].
In this paper, we propose a novel approach for analyzing
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consistencies between UML models. We formally spec-
ify UML models and define the consistency relation be-
tween UML models. Based on the consistency definition,
we first discuss the composition and decomposition of con-
sistencies, and then explore the equivalence of consisten-
cies. Because of such a duality of consistency relations, our
method saves complexity and makes consistency character-
istics more extensible, and formal methods aid in removing
ambiguities and enforcing consistency. Our work aims at
describing and managing consistency in complete UML di-
agrams for a system. Due to the space limitation, all proofs
are deleted from our paper.

2 Model Composition

In this section, we will introduce a formal model [20]
to specify UML diagrams, and then show characteristics
of the formal model. In UML [15] various software arti-
facts are all regarded as models and its constituent parts are
model elements. Such consideration facilitates the analy-
sis of and visualization representations of traceability using
graph-based tools.

Definition 1. A unified structure(US) is a tuple 〈ME,≺
,

1
↪→, · · · , n

↪→, λm, λd,
1
τ , · · · , mτ 〉 with

•ME, a finite set of the model elements,
• ≺⊆ ME ×ME, the containment relation such that it is
an (irreflexive) partial order,
• λm ⊆ ME×ME, the constraint on model elements,
• λd ⊆ ME × (≺ ∪ 1

↪→ ∪· · · ∪ n
↪→), the constraint on

dependencies,

• ∀i ∈ {1, · · · , n}, i
↪→⊆ ME×ME, the dependency rela-

tion, and

• ∀j ∈ {1, · · · ,m},
j
τ⊆ ME, the type set of model elements

such that ∀e ∈ ME,∃τ ∈ { 1τ , · · · , mτ } : e ∈ τ .

Here, for all x, y ∈ ME, x
i
↪→ y (i ∈ {1, · · · , n}) is

called a dependency, read as x depending on y (note that i
denotes that the type of dependencies). And x ≺ y means
x is contained in y. If x ≺ z, y ≺ z, they are simplistically
denoted by x, y≺ z and means x and y are both contained
in z. For all w, v ∈ ME, the notation v 6≺ w means that

w does not contain v. The tuples
1
τ , · · · , mτ are grouping

constructs for model elements and are used to classify the
model elements.

We then present an example showing how UML dia-
grams are converted into US models. Figure 1 presents
UML diagrams of a video-on-demand (VOD) system that
allows user U to select or play movies provided by server
S. Different from the original one [5], our example adds
a Composite State in the state machine diagram and the

Figure 1. VOD System Example

corresponding Combined Fragment in the sequence dia-
gram. The structure of the VOD system is represented
in the class diagram (top), where the state machine dia-
gram(middle) specifies the behavior of the class S in the
class diagram, and the sequence diagram (bottom) depicts
watching a movie.

Example 1. By Definition 1, the entire VOD system is

denoted as USVOD = 〈ME,≺, λm, λd,
ClaD
τ ,

SeqD
τ ,

StaD
τ ,

Trace
↪→ 〉where ME = {seq, smd, cla, (cla, seq), (cla, smd),

(smd, seq)}, ≺= λm = λd = ∅, ClaD
τ = {cla},

SeqD
τ = {

seq}, StaD
τ = {smd}, and

Trace
↪→ = {(cla, seq), (cla, smd), (

smd, seq)}. ClaD refers to class diagrams, SeqD means
sequence diagrams, StaD denotes state machine diagrams,
and Trace is dependencies between these diagrams. In-
tuitively, this is constructed at a higher level which views
the entire system as a diagram. The US supports not only
high-level modeling but also concrete one.

All UML diagrams in Figure 1 can be independently
modeled by Definition 1. The class diagram cla, one of

elements in
ClaD
τ of USVOD(i.e., the cla element), is rep-

resented by UScla = 〈ME′,≺′, λ′m, λ
′
d,

Class
τ ,

Oprs
τ ,

Asoc
τ 〉

where ME′ = {U,D, S, select, play, load, stream,wait,
close}, ≺′= λ′m = λ′d = ∅, Class

τ = {U,D, S}, Asoc
τ = {

A1, A2}, and
Oprs
τ = {select, play, load, stream,wait,

close}. There are notations such as Class representing
classes, Asoc representing associations, and Oprs depict-



ing a collection of operations of all classes.
The sequence diagram seq is denoted as USseq = 〈

ME′′,≺′′,
Inst
↪→ ,

Seq
↪→ ,

Itrc
↪→ , λ′′m, λ

′′
d ,

Obj
τ ,

Msg
τ ,

Frag
τ ,

Grd
τ 〉 whe-

re ME′′ = {u, s, d, U, S,D, Fr1, NExit, select, load,
wait, play, stream}, ≺′′= {(NExit, Fr1), (wait, Fr1),
(stream,Fr1)}, λ′′m = λ′′d = ∅,

Obj
τ = {u, d, s},

Frag
τ = {

Fr1}, Grd
τ = {NExit},

Msg
τ = {select, load, wait, play,

stream}, Inst
↪→ = {(d,D), (s, S), (u, U)},

ObjRecv
↪→ =

{(select, d), (play, d), (load, s), (stream, s), (wait, s)},
Seq
↪→= {(load, select), (wait, load), (play, wait), (stream,
play)}, and

Itrc
↪→= {(d, u), (s, d)}. The notation Inst

means the relation between objects Obj and corresponding
classes, Seq represents the sequence of all messages Msg,
ObjRecv represents all receiving messages of particular
object, and Itrc represents the interactions between
objects. ≺′′ is non-empty due to combined fragment Frag
containing messages and guard represented by Grd.

And the state machine diagram smd can be denoted by

USsmd = 〈ME′′′,≺′′′,
Trans
↪→ , λ′′′m, λ

′′′
d ,

I
τ ,

F
τ ,

CS
τ ,

SS
τ ,

Acts
τ 〉

where ME′′′ = {i2, i1, s2, waiting, streaming, loading,
f1, f2, load, wait, stream, close}, ≺′′′= {(i2, loading),
(waiting, loading), (streaming, loading), (f2, loading),

(wait, loading), (stream, loading)}, Trans
↪→ = {(loading,

i1), (waiting, i2), (waiting, streaming), (streaming,
waiting), (f2, streaming), (f1, loading)}, λ′′′m = λ′′′d =

∅, I
τ= {i1, i2}, F

τ= {f1, f2}, CS
τ = { loading }, SS

τ = {
waiting, streaming}, and

Acts
τ = {load, wait, stream,

close}. We classify states of the state machine diagram
into initial states I , final states F , simple states SS, and
composite states CS. We named the transitions in the state
machine diagram as Trans. Containment relation ≺′′′ is
formed between composite states and the elements inside.

It is obvious that the unified structure model can easily
specify single UML model and the composition of UML
models.

Definition 2. Let US = 〈ME,≺, 1
↪→, · · · , n

↪→, λm, λd,
1
τ

, · · · , mτ 〉 be a unified structure.
(1) A sequence rc = x1 · · ·xn is called a relation chain

in US iff ∀i ∈ {1, · · · , n−1}, xi, xi+1 ∈ ME, (xi, xi+1) ∈
(≺ ∪ 1

↪→ ∪· · · ∪ n
↪→) ∨ (xi+1, xi) ∈ (≺ ∪ 1

↪→ ∪· · · ∪ n
↪→).

r̈c denotes the model elements in the relation chain rc =
x1 · · ·xn, that is, r̈c = {x1, · · · , xn}. RC(US) denotes all
possible relation chains in US .

(2) A sequence dc = x1 · · ·xn is called a dependency
chain in US iff ∀i ∈ {1, · · · , n − 1}, xi, xi+1 ∈ ME,

(xi, xi+1) ∈ (≺ ∪ 1
↪→ ∪· · · ∪ n

↪→).

d̂c denotes the model elements in the dependency chain

dc = x1 · · ·xn, that is, d̂c = {x1, · · · , xn}. DC(US) de-
notes all possible dependency chains in US . [dc] denotes
the number of model elements in the dependency chain
dc = x1 · · ·xn, that is, [dc] = n.

Obviously, a relation chain is nondirectional while a de-
pendency chain is directional. For example, dctrace = cla
smd seq,[dctrace] = 3 in Figure 1 is one of dependency
chains and likewise a relation chain.

Proposition 1. Let US be a unified structure and dc = x1
· · ·xn ∈ DC(US). If ∀i ∈ {1, · · · , n− 1}, (xi, xi+1) ∈≺,
then there does not exist a cycle in dc.

This proposition states that a dependency chain only con-
taining containment relations does not have a cycle.

Proposition 2. If US is a unified structure, then DC(US)
⊆ RC(US).

Clearly, the number of relation chains is greater than
equal to that of dependency chains in a unified structure.

Complex software systems contain many UML diagrams
to specify complete information about the systems. Once
the whole system model is constructed, the UML diagrams
(or their subparts) must be consistent with information. We
then discuss the composition of models.

Definition 3. Let US ′ = 〈ME′,≺′,
1

↪→′, · · · ,
n

↪→′, λ′m, λ
′
d,

1

τ ′, · · · ,
m

τ ′〉 and US ′′ = 〈ME′′,≺′′,
1

↪→′′, · · · ,
n

↪→′′, λ′′m, λ
′′
d ,

1

τ ′′, · · · ,
m

τ ′′〉 be two unified structures.
US ′ is called a substructure of US ′′, denoted as US ′ v

US ′′, iff ME′ ⊆ ME′′,≺′⊆≺′′,
1

↪→′⊆
1

↪→′′, · · · ,
n

↪→′⊆
n

↪→′′,

λ′m ⊆ λ′′m, λ′d ⊆ λ′′d and
1

τ ′⊆
1

τ ′′, · · · ,
m

τ ′⊆
m

τ ′′.

Example 2. As Example 1 illustrates, we first construct
USVOD and then independently model each diagram in
USVOD. Thus, there exists the substructures UScla v
USV OD,USseq v USV OD, and USsmd v USV OD.

A substructure is included in the original unified struc-
ture, and the unified structure may be separated into multi-
ple substructures.

Definition 4. Let US ′ = 〈ME′,≺′,
1

↪→′, · · · ,
n

↪→′, λ′m, λ
′
d,

1

τ ′, · · · ,
m

τ ′〉 and US ′′ = 〈ME′′,≺′′,
1

↪→′′, · · · ,
n

↪→′′, λ′′m, λ
′′
d ,

1

τ ′′, · · · ,
m

τ ′′〉 be two unified structures.
If ≺′ ∪ ≺′′ is an (irreflexive) partial order, the composi-

tion of US ′ and US ′′ is defined as US ′ ] US ′′ = 〈ME,≺,
1
↪→, · · · , n

↪→, λm, λd,
1
τ , · · · , mτ 〉 where ME = ME′ ∪ME′′,

≺=≺′ ∪ ≺′′, ∀i ∈ {1, · · · , n}: i
↪→=

i

↪→′ ∪
i

↪→′′, λm =



λ′m∪λ′′m, λd = λ′d∪λ′′d and ∀j ∈ {1, · · · ,m}:
j
τ=

j

τ ′ ∪
j

τ ′′.
US ′, US ′′ are said to be composable.

Note that two composable unified structures may have
different number of types of dependency relations and ele-
ments, we equivalently translate them into the two unified
structures with the same number of dependency or element
types before composition. For example, US ′ and US ′′ are

composable where US ′ = 〈ME′,≺′,
a

↪→′,
x

↪→′,
n

↪→′, λ′m, λ
′
d,

1

τ ′, · · · ,
m

τ ′〉 and US ′′ = 〈ME′′,≺′′,
x

↪→′′,
y

↪→′′,
z

↪→′′, λ′′m, λ
′′
d ,

1

τ ′′, · · · ,
m

τ ′′〉. Obviously, we can translate US ′ and US ′′ into
US1 and US2, respectively:

US1 = 〈ME′,≺′,
a

↪→′,
x

↪→′,
y

↪→′,
z

↪→′, λ′m, λ
′
d,

1

τ ′, · · · ,
m

τ ′〉

where
y

↪→′=
z

↪→′= ∅ and

US2 = 〈ME′′,≺′′,
a

↪→′′,
x

↪→′′,
y

↪→′′,
z

↪→′′, λ′′m, λ
′′
d ,

1

τ ′′ ,

· · · ,
m

τ ′′〉 where
a

↪→′′= ∅.
Clearly, US1 = US ′, US2 = US ′′. Moreover, US1 and

US2 have the same number of dependency types. Thus,
US1 and US2 can be composed according to the previous
definition. The composition of unified structures has the
following properties.

Proposition 3. Let US , US ′ and US ′′ be three unified
structures. And let every two of the three unified structures
be composable. Then

(1) US ′ ] US ′′ is a unified structure,
(2) US ′ ] US ′′ = US ′′ ] US ′, and
(3) (US ] US ′) ] US ′′ = US ] (US ′ ] US ′′).

This proposition shows the composition of unified struc-
tures has closure, commutativity, and associativity.

Proposition 4. If US , US ′ are two unified structures and
composable, then (DC(US) ∪ DC(US ′)) ⊆ DC(US ]
US ′).

The composition of unified structures does not add or re-
duce any elements of native structures. Consequently the
dependency chain of unified structures remains after com-
position.

3 Consistency Relation

Consistency can be treated as a relation that stores the
pairs of either two elements in UML diagrams or two UML
models, which satisfies the contained consistency rules. A
comparison should be sought between two or more UML
models with UML consistency rules. Consistency rules are
systematically collected in plain English text [18]. All ex-
ternal and internal rules are required to ensure the consis-
tency of a system model. But we select and extend a few

external rules listed (See Table 1) for VOD in Figure 1. The
internal consistency rules are not considered in this paper.

Table 1. Several Consistency Rules
ID Description
CR1 Each class in the class diagram must be instan-

tiated in a sequence diagram.
CR2 Each public method in a class diagram triggers

a receiving message in a sequence diagram.
CR3 A Loop fragment matches repetition of states

caused by messages.

Definition 5. Let US ′ = 〈ME′,≺′,
1

↪→′, · · · ,
n

↪→′, λ′m, λ
′
d,

1

τ ′, · · · ,
m

τ ′〉 and US ′′ = 〈ME′′,≺′′,
1

↪→′′, · · · ,
n

↪→′′, λ′′m, λ
′′
d ,

1

τ ′′, · · · ,
m

τ ′′〉 be two unified structures. A relation RC ⊆
ME′ ×ME′′ is called a consistency relation between US ′
and US ′′ iff there exists a consistency rule between US ′ and
US ′′ such that RC satisfies the correspondence between
US ′ and US ′′ under such a rule. We define RC |US′ = {e ∈
ME′ | ∃e′ ∈ ME′′ : (e, e′) ∈ RC} and RC |US′′ = {e ∈
ME′′ | ∃e′ ∈ ME′ : (e′, e) ∈ RC}.

Here, we formally denote the consistency rule as a binary
relation.

Example 3. According to the consistency rules CR1 and
CR2 in Table 1, there exist the corresponding consistency
relations RC1 = {(D, d), (S, s)} and RC2 = {(select, se-
lect), (play, play), (load, load), (stream, stream), (wait,
wait)} between the class diagram UScla and the sequence
diagram USseq in Figure 1.

Proposition 5. Let US ′ and US ′′ be two unified structures.
If RC1, RC2 be two consistency relations between US ′ and
US ′′, then RC1 ∪ RC2 be a consistency relation between
US ′ and US ′′.

Example 4. As RC1, RC2 is presented in Example 3, we
haveRC = RC1∪RC2 = {(D, d), (S, s), (select, select),
(play, play)}. Obviously,RC is the composition of the con-
sistency rules CR1 and CR2.

Proposition 6. Let US ′ and US ′′ be two unified struc-
tures. And let RC1, RC2 be two consistency relations be-
tween US ′ and US ′′. Then

(1) RC1 ∪ RC2 be a consistency relation between US ′
and US ′′.

(2) RC1 ∩ RC2 be a consistency relation between US ′
and US ′′.

(3) RC1 \ RC2 be a consistency relation between US ′
and US ′′.



This proposition states that the consistency relations are
preserved under the union, intersection and minus opera-
tions

Theorem 1. Let US1, US ′1, US2, US ′2 be four unified
structures. Let US1 v US ′1 and US2 v US ′2. If RC be
a consistency relation between US1 and US2, then RC be
a consistency relation between US ′1 and US ′2.

Clearly, the consistency between the submodels implies
the consistency between the original models.

To manage consistencies between models, it is necessary
to handle how consistencies influence mutually. We intro-
duce atomic consistencies, i.e., the consistencies that cannot
be further decomposed. The combination of atomic consis-
tencies can express those complicated consistencies. Thus,
we discuss how the combination works in the following.

Definition 6. Let US ′ = 〈ME′,≺′,
1

↪→′, · · · ,
n

↪→′, λ′m, λ
′
d,

1

τ ′, · · · ,
m

τ ′〉 and US ′′ = 〈ME′′,≺′′,
1

↪→′′, · · · ,
n

↪→′′, λ′′m, λ
′′
d ,

1

τ ′′, · · · ,
m

τ ′′〉 be two unified structures. Let RC be a con-
sistency relation between US ′ and US ′′. RC is said to be

atomic iff ∃
x

τ ′∈ {
1

τ ′, · · · ,
m

τ ′} : RC |US′ ⊆
x

τ ′ and ∃
y

τ ′′∈ {
1

τ ′′

, · · · ,
m

τ ′′} : RC |US′′ ⊆
y

τ ′′.

This states that an atomic consistency is only connected
to the type sets of model elements when the model is trans-
lated into corresponding unified structures.

Example 5. In Figure 1, there exist consistency relations
RC = {(D, d), (S, s)} and RC4 = {(D, d), (select, select
), (play, play), (S, s), (load, load), (wait, wait), (stream,
stream)} between UScla and USseq . RC4 is under the
consistency rule that a lifeline(including receiving mes-
sages) in sequence diagram conforms to its class(including
operations). RC expresses consistency between the class
of UScla and the object of USseq . There are one single
type of elements in UScla and USseq . Nevertheless, RC4

describes consistency between the class and operation of
UScla and the object and receiving message of USseq .
Two distinct types of elements are involved in RC4. RC4 is
therefore not atomic.

Theorem 2. Let US ′ = 〈ME′,≺′,
1

↪→′, · · · ,
n

↪→′, λ′m, λ
′
d,

1

τ ′

, · · · ,
m

τ ′〉 and US ′′ = 〈ME′′,≺′′,
1

↪→′′, · · · ,
n

↪→′′, λ′′m, λ
′′
d ,

1

τ ′′

, · · · ,
m

τ ′′〉 be two unified structures. LetRC be a consistency
relation between US ′ and US ′′.

IfRC is not atomic, then there exists the k atomic consis-
tency relations RC1

, · · · , RCk
such that RC = RC1

∪ · · · ∪
RCk

.

Example 6. According to Example 5, we have consistency
relation RC4 between UScla and USseq in Figure 1. RC4

is able to be the union of RC1 and RC2 between UScla and
USseq by Example 3.

This theorem considers that the atomic consistency re-
lations are the most fundamental ones as they can compose
new consistency relations.

There are several ways to illustrate containment relations
in UML diagrams. The sequence diagram, for example, em-
ploys Combined Fragment to explicitly confine a series of
interactions, but the class diagram uses relations (e.g., com-
position, aggregation, realization, and inheritance) to rep-
resent implicit containment between elements. The consis-
tency of these containment relations has yet to be widely
debated. The unified structure is capable of modeling these
containment relationships and it is then used to discuss the
consistency of containment relations.

Theorem 3. Let US ′ = 〈ME′,≺′,
1

↪→′, · · · ,
n

↪→′, λ′m, λ
′
d,

1

τ ′

, · · · ,
m

τ ′〉 and US ′′ = 〈ME′′,≺′′,
1

↪→′′, · · · ,
n

↪→′′, λ′′m, λ
′′
d ,

1

τ ′′

, · · · ,
m

τ ′′〉 be two unified structures. LetRC be a consistency
relation between US ′ and US ′′.

If (a, b) ∈ RC and there exists a relation Rx ⊆ ME′ ×
ME′′ such that ∀(e′, e′′) ∈ Rx, e

′ ≺′ a ∧ e′′ ≺′′ b,then Rx

is a consistency relation between US ′ and US ′′.

The theorem shows that the consistency relation is pre-
served under containment relations.

Example 7. In Figure 1, there exists the consistency rela-
tion RC = {(loading, Fr1)} between USseq and USsmd

by consistency rule CR3 in Table 1.
In the sequence diagram USseq , there are the messages

wait, stream satisfying wait ≺′′ Fr1, stream ≺′′ Fr1.
Similarly, the state machine diagram USsmd has two ac-
tions wait, stream that satisfy wait ≺′′′ loading, stream
≺′′′ loading. By Theorem 3, there exists the consistency
relation Rx = {(wait, wait), (stream, stream)} between
USseq and USsmd.

Next, we discuss the composition of consistencies.

Theorem 4. Let US1, US ′1, US2, US ′2 be four unified
structures. Let US1,US ′1 be composable and US2,US ′2 be
composable. If RC be a consistency relation between US1
and US2, then

(1) RC be a consistency relation between US1 ] US ′1
and US2 ] US ′2,

(2) RC be a consistency relation between US1 and
US2 ] US ′2, and

(3) RC be a consistency relation between US1 ] US ′1
and US2.



Proposition 3 shows that types of dependency relations
and elements during composition between unified structures
are incremental. Thus, the consistency relation between
models before composition remains.

Example 8. In Figure 1, there is a consistency relation
RC1 = {(D, d), (S, s)} between UScla and USseq accord-
ing to rule CR1 in Table 1. As is stated by Proposition 3, the
composition of unified structures remains unified structure.
Let a unified structure US ′ = USseq ] USsmd. By Defini-
tion 4, RC1 is consistency relation between UScla and US ′
as well. Analogously, Theorem 4 (3) is shown.

In our method, the consistency relations are equivalent
only if both ends of the consistency relation are model ele-
ments. Those non-type sets of the unified structure express
implicit and explicit relationships between model elements.

Definition 7. Let RC1, RC2 be two consistency relations.
RC1, RC2 are equivalent, denoted by RC1 ! RC2 iff both
RC1 and RC2 can be decomposed into the same atomic
consistency relations.

The equivalent consistency relations share identical
atomic consistency relations.

Proposition 7. Let RC1, RC2, and RC3 be three consis-
tency relations.

(1) RC1 ! RC1.
(2) RC1 ! RC2 ⇒ RC2 ! RC1.
(3) RC1 ! RC2 ⇒ RC1 ∪RC3 ! RC2 ∪RC3.

This proposition states that the equivalent consistency re-
lations have idempotence and commutativity. Furthermore,
the equivalence between the consistency relations preserves
if they have the same operations.

4 Tool

We have developed an experimental tool(See Figure 2).
All diagrams are stored in the JSON document form and
can be exported in the PNG file form. The tool allows con-
sistency management concerning two main phases: incon-
sistency detection and inconsistency repair. The outcomes
of each detection trigger the generation of repairs for the
corresponding model. Moreover, we have implemented the
composition of unified structures and equivalence of con-
sistency relations. More functions will be added to the tool
step by step.

5 Related Work

A precise semantics for overall UML diagrams have
drawn great attentions. Most of the efforts focus on formal-
izing commonly used UML diagrams. For instance, Lu et

Figure 2. Inconsistencies detection

al. [12] analyse the behavior aspects of the UML sequence
diagram by a trace of properties to check and reason con-
sistency. Based on the transformation into Labeled Transi-
tion Systems (LTS), Lambolais et.al [10] propose a frame-
work to combine refinement and extension developments,
and then they check for consistency in the incremental pro-
cess using the accept set (as a special failure trace seman-
tics [16]). The semantic models mentioned above are be-
havior ones with not good semantics. Instead, we present a
new formal model called unified structure which can char-
acterize not only all the UML behavioral diagrams, but also
all the UML structural diagrams. The conventional con-
struction for the semantics of behavioral UML diagrams
mostly resorts to the path formed by the transformations.
In contrast, a unified structure views the behavior (i.e., the
path) as a set of execution steps which are graphically rep-
resented by a transformation between two elements in the
diagram.

Consistency checking is promising research work in
UML, and the techniques are widely discussed. Egyed [7]
proposes an informal way of using rule instances to check
consistency instantly and efficiently. He further discusses
an incremental method to perform consistency checking
in [6]. Formal approaches to check consistency are exten-
sively reviewed. For example, Xu et al. [21] check the con-
text’s incremental consistency when constraints are repre-
sented using a First Order Logic formula, which addresses
stopping the system’s aberrant behavior. Based on the trans-
formation of UML class diagram detailed in Object Con-
straint Language (OCL) into a Constraint Satisfaction Prob-
lem, Cabot et al. [3] resort the automatic solver to check
properties. OCL extends UML diagrams by textual con-
straints but it limits the expressiveness of UML. And Camp-
bell et al. [4] proposed an intermediate step for integrat-
ing UML diagrams into a formal framework to recognize
discrepancies between the system’s structure and behavior.
Therefore, transforming UML diagrams into formal seman-
tics differentiates among existing literature, which leads to
different consistency checking methods.

Motivated by Egyed [7, 6], we apply consistency rules
for efficient and accurate inconsistency detection. The work



of collecting UML consistency rules is ongoing, which
comes from the work of Torre et al [18]. A total of 116 con-
sistency rules were systematically documented among 10
of the 14 types of UML diagrams. The network of consis-
tencies brings the complexity of formal verification. Klare
and Heiko [9] decompose consistency relations on model
transformation by extracting a tree from a reduced consis-
tency relation graph. Our strategy, in contrast, is to allow
the decomposition of consistency relations between partic-
ular models. This decomposition offers flexibility to depict
consistencies. We further introduce a consistency equiva-
lence for simplification and reduction.

6 Conclusion

In this paper, we have introduced a new formal model
called unified structure. It represents UML diagrams and
enables tooling and analysis for consistencies between
UML diagrams. Based on the unified structure model, we
have discussed the composition, decomposition, and equiv-
alence of consistency between UML models. This paper
aims to define formal consistency relations between UML
diagrams. Such consideration provides a foundation for
conflict checking of consistency rules.

Threats to validity come from two main aspects. On the
one hand, it is vital to observe that constraints and models
in our case are limited. On the other hand, consistency re-
lations require the professional to comprehend so that the
relations can be used correctly.

In future work, we will first improve scalability of the
tool to analyze UML consistency relations and their equiv-
alence. Then we will conduct experiments in complicated
scenarios to update and optimize our tool.
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