
Formal Specification and Model Checking of Raft
Log Replication in Maude

Takanori Ishibashi
School of Information Science

Japan Advanced Institute of Science and Technology (JAIST)
Ishikawa, Japan

takanori.ishibashi@jaist.ac.jp

Kazuhiro Ogata
School of Information Science

Japan Advanced Institute of Science and Technology (JAIST)
Ishikawa, Japan
ogata@jaist.ac.jp

Abstract—Raft is a popular distributed consensus protocol
and is used to build highly available and strongly consistent
services in the industry. Using Maude, we formally specify the log
replication in Raft and conduct model checking to check whether
the protocol enjoys the Log Matching Property and the State
Machine Safety Property. The Log Matching Property is that if
two logs contain an entry with the same index and term, then
the logs are identical in all entries up through the given index.
The State Machine Safety Property is that if any two servers
have applied two entries to their state machines at a same index,
the two entries must be always the same. Our model checking
experiments show that the protocol enjoys the properties under
the condition that we limit the length of the server’s log and the
number of servers.

Index Terms—state machines, invariant properties, rewriting
logic, search command

I. INTRODUCTION

Distributed consensus protocols, such as Raft [1], play a
critical role in modern computing systems. These systems re-
quire high availability and strong consistency. The correctness
of the systems is highly dependent on the correctness of Raft,
and therefore, Raft provides significant functionality, and a bug
in Raft can have tremendous effects; however, it is difficult to
implement correctly distributed consensus protocols and to test
their correctness. A proof assistant, such as Coq [2], allows us
to prove that Raft enjoys the desired properties, but the time
required for the investigation would probably be very long.

In this paper, we concentrate on the log replication, which is
one of the basic mechanisms in Raft. We formally specify the
log replication in Raft using Maude, which is a rewriting logic-
based specification/programing language. We model check
with Maude that Raft enjoys the Log Matching Property and
the State Machine Safety Property, which are the properties
that Raft is expected to guarantee. The Log Matching Property
is that if two logs contain an entry with the same index and
term, then the logs are identical in all entries up through the
given index. The State Machine Safety Property is that if any
two servers have applied two entries to their state machines at
a same index, the two entries must be always the same. Our
model checking experiment shows that Raft enjoys the two

This work was supported in part by the Japan Society for the Promotion
of Science (JSPS) KAKENHI under Grant JP24H03370.

DOI reference number: 10.18293/DMSVIVA23-010

properties. The formal specification of the Raft log replication
in Maude is available online1.

The contribution of the work described in the present
paper is to demonstrate how the log replication in Raft is
formally specified in Maude and model checked with the
Maude and to show that Raft enjoys the two properties under
the condition that the length of the server’s log and the number
of servers are limited. We assume that a server in a Raft cluster
conducts unexpected operations, which is different from the
log replication in Raft. A server failure can result not only in a
simple shutdown, but also in incorrect behavior. It is preferable
to be able to handle the latter as well. Our model checking
experiments also show that servers except for a server that
conducts unexpected operations enjoy the two properties. To
our knowledge, no study has examined this.

Diego Ongaro’s original description of Raft [3] showed a
formal specification of Raft in TLA+ [4] but did not show
how to model check invariants of Raft with the TLA model
checker. The description reported that using the TLA model
checker on the specification was attempted but was abandoned
because this approach did not scale well to larger models. The
formal verification of the safety properties of the Raft was
conducted using the Verdi framework for distributed systems
verification [5]. This formal verification in Verdi proves some
invariants, and consists of approximately 50,000 lines of Coq
[2].

II. PRELIMINARIES

Raft [1] is a distributed consensus protocol. Raft divides
a distributed consensus problem into two independent sub-
problems: leader election and log replication2. In leader elec-
tion, Raft chooses at most one leader in each logical time
called a term. There is one and only one leader in a Raft
cluster in regular operations and all the other servers are then
followers. In log replication, the leader accepts requests from
clients, saves such requests in its log, and forwards them

1https://github.com/11Takanori/raft-maude
2Diego Ongaro et al. discussed that Raft divides a distributed consensus

problem into three independent sub-problems: leader election, log replication,
and safety [1]. In this paper, we consider that Raft divides the problem into
two independent sub-problems: leader election and log replication, and safety
is a requirement to be satisfied by the two subproblems.



to all the other servers. On receipt of such requests, each
server saves them in its log. When the leader receives positive
replies for a client request from the majority of servers, it
commits (or consents to) the request. Each server has a state
machine in which clients’ requests are processed. When a
follower receives a message saying that a client request has
been committed, the follower commits the clients’ request up
to the client request (inclusive).

We describe the log replication in a bit more detail. The
leader serves the client’s request and appends it to its log. To
replicate log entries, the leader sends appendEntries request
messages to each of the other servers in the Raft cluster. Each
server that has received the appendEntries request message
responds to the message by sending a appendEntries response
message to the leader. The appendEntries request message
includes the following:
• term - the leader’s term
• leaderId - the leader’s ID
• prevLogIndex - the index of the log entry immediately

preceding new ones
• prevLogTerm - the term of the log entry immediately

preceding new ones
• entries - the log which contains leader’s term and the

client request messages
• leaderCommit - the leader’s commit index

The appendEntries response message includes the following:
• term - the receiver’s term
• success - a boolean value that means whether the receiver

appends the new log entry to its log or not
If the follower that receives appendEntries request message
finds an entry in its log with the same prevLogIndex and
prevLogTerm, and the follower’s term is not bigger than the
leader’s term, then the follower appends the new log entry
to its log; otherwise, the follower refuses the new log entry.
When the log entry has been replicated on a majority of the
servers in the Raft cluster, the leader applies the log entry to
its state machine (called commit). If the leader’s commitIndex
is greater than the commitIndex of the follower, the leader’s
commitIndex and the follower’s index of the last new entry are
compared and the follower commits at a smaller one. If the
followers’ log is inconsistent with the leader’s log, the leader
decrements nextIndex and retries the appendEntries request
message. The leader maintains a nextIndex for each follower,
which is the index of the next log entry the leader will send to
that follower. In log replication, Raft is expected to guarantee
the Log Matching Property and the State Machine Safety
Property. These properties are discussed in the introduction.
Raft is expected to guarantee that each of all properties is true
under all non-Byzantine conditions, including network delays,
duplication, partitions, message loss, and reordering.

A state transition system3 is 〈S, I, T 〉, where S is a set
of states, I ⊆ S is the set of initial states, T ⊆ S × S

3It may be called a state machine but because what are called state machines
are used by Raft, we use the terminology ”state transition system” in this
paper.

is a binary relation over states. Each element (s, s′) ⊆ T
is called a state transition from s to s’ and T is called the
state transitions. There are multiple possible ways to express
states. In this paper, we express a state as a braced associative-
commutative collection of name-value pairs, where a name
may have parameters. Associative-commutative collections are
called soups according to the nomenclature of the Maude
community, and name-value pairs are called observable com-
ponents. That is, a state is expressed as a braced soup of
observable components. We use the juxtaposition operator
as the constructor of soups. Let oc0, oc1, oc2 be observable
components, and then oc0 oc1 oc2 is the soup of those three
observable components. A state is expressed as {oc0 oc1 oc2}.
T is specified in terms of rewrite rules. A rewrite rule starts
with the keyword rl, followed by a label enclosed with square
brackets and a colon, two pattern connected with =>, and
ends with a period. A conditional rewrite rule starts with the
keyword crl and have a condition following the keyword if
before a period. The following is a form of a conditional
rewrite rule: crl [lb] : l => r if ... /\ ci /\ ... where lb is a
label given to the rule and ci is part of the condition, which
may be an equation lci = rci. The negation of lci = rci
could be written as (lci =/= rci) = true, where = true could
be omitted. If the condition ... /\ ci /\ ... holds under some
substitution σ, σ(l) can be replaced with σ(r).

III. FORMAL SPECIFICATION OF THE LOG REPLICATION

To formalize the log replication in Raft as a state transition
system, we use the following observable components.
• (term[s]: t) - s is a server ID. t is a term. This means that

the term of a server s is t. For each server s participating
in a Raft cluster, an instance of this observable component
is used.

• (role[s]: r) - s is a server ID. r is a role: leader or follower.
This means that the role of a server s is r. For each
server participating in a Raft cluster, an instance of this
observable component is used.

• (log[s]: l) - s is a server ID. l is a list of log entries. This
means that a server s has a log l. A server s appends log
entries to the log l. For each server a participating in Raft
cluster, an instance of this observable component is used.

• (commitIndex[s]: ci) - s is a server ID. ci is an index
of highest log entry known to be committed. This means
that index ci is the highest index at which a server s has
committed log entries. For each server s participating in
a Raft cluster, an instance of this observable component
is used.

• (nextIndex[s0][s1]: ni) - s0 and s1 are server IDs. ni is an
index of the next log entry that has been sent to s1 by s0.
This means that a server s0 will next send a server s1 a
log entry at nextIndex ni. A leader maintains a nextIndex
for each follower, which is the index of the next log entry
the leader will send to the follower. For each follower of a
leader, an instance of this observable component is used.

• (matchIndex[s0][s1]: mi) - s0 and s1 are server IDs. mi
is an index of the highest log entry such that s0 knows



that s1 has its replication of the log entry. This means
that index mi is the highest index at which server s0 has
sent server s1 a log entry. For each follower of a leader,
an instance of this observable component is used.

• (servers: ss) - ss is a soup of server IDs. This maintains
the IDs of all servers participating in a Raft cluster. One
instance is only used and ss never changes.

• (clientRequests: c) - c is the messages that a client sends
to a Raft cluster. One instance is only used. When a client
sends a Raft cluster a message, the message is deleted
from clientRequests.

• (network: n) - n is a soup of messages. This expresses
the network with which the servers participating in a Raft
cluster exchange messages. One instance is only used. A
message that has been put into n is never deleted, which
expresses that a message may be duplicated. Although a
message is never deleted from the network, it would be
possible for a server to never receive a message addressed
to the server, which expresses that a message may be lost.

When there are three servers s0, s1 and s2 that participate in
a Raft cluster, the initial state defined init is as follows:
{(term[s0]: 1) (term[s1]: 1) (term[s2]: 1)
(role[s0]: leader) (role[s1]: follower)
(role[s2]: follower)
(log[s0]: empty) (log[s1]: empty) (log[s2]: empty)
(commitIndex[s0]: 0) (commitIndex[s1]: 0)
(commitIndex[s2]: 0)
(nextIndex[s0][s1]: 1) (nextIndex[s0][s2]: 1)
(matchIndex[s0][s1]: 0) (matchIndex[s0][s2]: 0)
(servers: (s0 s1 s2)) (clientRequests: (cr0 cr1))
(network: empty)} .

In the initial state, each value is as follows:
• the term of each sever is 1
• the role of the server s0 is a leader
• the role of the server s1 and the server s2 is a follower
• the list of log entries that has been appended by each

server is empty (meaning that each server has not yet
appended any log entries to its log)

• the index that each server has committed is 0 (meaning
that each server has not yet committed any log entries)

• the index of the next log entry that the server s0 will send
to the server s1 and the server s2 is 1

• the highest index at which the server s0 has sent the server
s1 and the server s2 a log entry is 0 (meaning that server
s0 has note yet known to be replicated on server s1 and
server s2)

• the soup of the servers that participate in a Raft cluster
is s0 s1 s2 because we suppose that the three servers
participate in the Raft cluster

• the soup of the client request messages is cr0 cr1 because
we suppose that the client sends two messages to the Raft
cluster

• the network is empty (meaning that no message has been
put into the network)

The log replication in Raft is specified as three rewrite rules
for each server: appendEntries, handleAppendEntriesRequest,
and handleAppendEntriesResponse. The rewrite rules use the
following Maude variables:

• OCs is a variable of observable components soups
• S0, S1, and S2 are variables of server IDs
• Ss is a variable of server ID soups
• T, U, and PLT are variables of terms
• R and R0 are variables of server roles
• CI and LCI are variables of commitIndex
• MI, MI1, and MI2 are variables of matchIndex
• NI, NI1, and NI2 are variables of nextIndex
• PLI is a variable of index of log entry immediately

preceding new ones
• PLT is a variable of term of log entry immediately

preceding new ones
• Ls and L are variables of log entries soups
• CR is a variable of client request messages
• CRs is a variable of client request message soups
• NW is a variable of message soups
• AEReq is a variable of AppendEntries request messages
The rewrite rule appendEntries is defined as follows:

rl [appendEntries] :
{(term[S0]: T) (role[S0]: leader)
(commitIndex[S0]: CI) (log[S0]: Ls)
(servers: Ss) (clientRequests: (CR CRs))
(network: NW) OCs} =>
{(term[S0]: T) (role[S0]: leader)
(commitIndex[S0]: CI)
(log[S0]: Ls[length(Ls) + 1] := log(T, CR))
(servers: Ss) (clientRequests: CRs)
(network: (NW mkAppendEntriesRequests(
S0, appendEntriesRequest(T, S0,
length(Ls), term(Ls[length(Ls)]),
log(T, CR), CI), Ss - S0))) OCs} .

The rewrite rule says that when a server S0 is a leader and
there exists a client request CR, S0 puts an appendEntries re-
quest message in the network addressed to all the other servers.
appendEntriesRequest(T, S0, length(Ls), term(Ls[length(Ls)]),
log(T, CR), CI) is the body of the appendEntries request
message. The first argument is S0’s term. The second ar-
gument is the leader’s server ID. The third argument is
the index of the log entry immediately preceding new ones
(called a prevLogIndex). The fourth argument is the term
of the log entry immediately preceding new ones (called a
prevLogTerm). The fifth argument is the log which contains
S0’s term and the client request messages. The sixth argument
is S0’s commit index. Ss − S0 is the soup of server IDs
obtained by deleting the server ID S0 from the soup Ss of
server IDs. mkAppendEntriesRequests(S0, AEReq, Ss’) makes
the appendEntries request message whose body is AEReq and
that is addressed to all server IDs in Ss’.

The rewrite rule handleAppendEntriesRequest is defined as
follows:
crl [handleAppendEntriesRequest] :
{(term[S0]: T) (role[S0]: R)
(commitIndex[S0]: CI) (log[S0]: Ls)
(network: (msg(S1, S0,
appendEntriesRequest(U, S1, PLI, PLT,
log(U, CR), LCI)) NW)) OCs} =>

{(term[S0]: if U > T then U else T fi)
(role[S0]: if U >= T then follower else R fi)
(commitIndex[S0]:
if LCI > CI then min(LCI, length(L))

else CI fi) (log[S0]: L)
(network: (msg(S0, S1, appendEntriesResponse(
(if U > T then U else T fi), B,



appendEntriesRequest(U, S1, PLI, PLT,
log(U, CR), LCI)))

msg(S1, S0, appendEntriesRequest(
U, S1, PLI, PLT, log(U, CR), LCI)) NW)) OCs}

if length(Ls) < 3
/\ B := U >= T and ((Ls[PLI] =/= null

and term(Ls[PLI]) == PLT) or (PLI == 0))
/\ L := if B and Ls[PLI + 1] == null

then Ls[PLI + 1] := log(U, CR)
else (if (CI < PLI)

and (length(Ls) =/= PLI
or term(Ls[PLI]) =/= PLT)
then Ls[: PLI] else Ls fi) fi .

When there exists msg(S1, S0, appendEntriesRequest(U, S1,
PLI, PLT, log(U, CR), LCI)) in the network and the length of
the server S0’s log is less than 3, the following are conducted.
If the server S0’s current term T is less than or equal to U
(U >= T ) and the server S0 has an entry at prevLogIndex
whose term matches prevLogTerm or the leader has not yet
appended any log entries to its log ((Ls[PLI] =/= null and
term(Ls[PLI]) == PLT) or (PLI == 0)), then B is true. If B is
true and the server S0 has not yet had a log entry at the index
PLI +1 (B and Ls[PLI + 1] == null), then the sever S0 ap-
pends the log entry to the log. If the commitIndex of the server
S0 is less than prevLogIndex (CI < PLI) and an existing log
entry of the server S0 conflicts with a new one (length(Ls) =/=
PLI or term(Ls[PLI]) =/= PLT), then S0 deletes the existing
entry and all that follow it. If the commitIndex of the leader
is greater than the commitIndex of the server S0, then the
commitIndex of the leader and the index of last new entry are
compared and the commitIndex of the server S0 is updated
by the smaller one. If U > T , then the server S0’s current
term becomes U and msg(S0, S1, appendEntriesResponse(U,
B, appendEntriesRequest(U, S1, PLI, PLT, log(U, CR), LCI))
is put into the network; otherwise the server S0’s current term
remains the same and msg(S0, S1, appendEntriesResponse(T,
B, appendEntriesRequest(U, S1, PLI, PLT, log(U, CR), LCI)) is
put into the network. If U >= T , then the server S0 becomes
a follower. Note that msg(S1, S0, appendEntriesRequest(U, S1,
PLI, PLT, log(U, CR), LCI) is not deleted from the network.
This is because a message may be duplicated.

The rewrite rule handleAppendEntriesResponse is defined
as follows:

crl [handleAppendEntriesResponse] :
{(term[S0]: T) (role[S0]: R)
(commitIndex[S0]: CI)
(nextIndex[S0][S1]: NI1) (matchIndex[S0][S1]: MI1)
(matchIndex[S0][S2]: MI2) (log[S0]: Ls)
(network: (msg(S1, S0,
appendEntriesResponse(U, B, AEReq)) NW)) OCs} =>

{(term[S0]: if U > T then U else T fi) (role[S0]: R0)
(commitIndex[S0]:
if replicatedCount(N, (MI MI2)) >= majority
and T == term(Ls[N]) and R0 == leader
and N > CI then N else CI fi)
(nextIndex[S0][S1]: NI) (matchIndex[S0][S1]: MI)
(matchIndex[S0][S2]: MI2) (log[S0]: Ls)
(network: if (not B and U <= T and R0 == leader)
then (msg(S0, S1, appendEntriesRequest(

T, S0, PI, term(Ls[PI]), Ls[NI],
leaderCommit(AEReq)))

msg(S1, S0, appendEntriesResponse(
U, B, AEReq)) NW)

else (msg(S1, S0, appendEntriesResponse(
U, B, AEReq)) NW) fi) OCs}

if MI := if B then max(prevLogIndex(AEReq) + 1, MI1)

else MI1 fi
/\ NI := if B then MI + 1 else max(sd(NI1, 1), 1) fi
/\ PI := sd(NI, 1) /\ N := prevLogIndex(AEReq) + 1
/\ R0 := if U > T then follower else R fi .

When there exists msg(S1, S0, appendEntriesResponse(U,
B, AEReq)) in the network, the following are conducted. If
B that is included in appendEntriesResponse is true, S0’s
matchIndex for S1 is updated with the greater of prevLogIn-
dex(AEReq) + 1 and MI1, where prevLogIndex(AEReq) + 1
is the prevLogIndex (included in its appendEntriesRequest)
plus 1 and MI1 is server S0’s matchIndex for server S1, and
server S0’s nextIndex for server S1 is updated with server S0’s
matchIndex for server S1 plus 1; otherwise, S0’s nextIndex for
S1 is updated with the greater of the S0’s nextIndex for S1
minus 1 and 1 (the minimum value for nextIndex is 1). It is
wrong to simply increment the matchIndex and the nextIndex
because an appendEntriesResponse may be duplicated and the
server S0 may receive the appendEntriesResponse multiple
times. Let N be the previous index plus 1. If the server S0’s
matchIndex for server S1 or the server S0’s matchIndex for
server S2 is greater than or equal to N, the term of server S0’s
log at index N is server S0’s current term, the role of server
S0 is a leader and N is greater than server S0’s commitIndex,
then server S0’s commitIndex is updated by N. If B is false,
U is less than or equal to T and the role of server S0 is
a leader, then msg(S0, S1, appendEntriesRequest(T, S0, PI,
term(Ls[PI]), Ls[NI], leaderCommit(AEReq))) is put into the
network, meaning that server S0 sends appendEntriesRequest
message with the log entry at the previous nextIndex because
of log inconsistency between server S0 and server S1. If
U > T , then the S0’s term becomes U, S0 becomes a
follower. Note that msg(S1, S0, appendEntriesResponse(U, B,
AEReq)) is not deleted from the network due to as mentioned
beforehand.

IV. MODEL CHECKING THE LOG REPLICATION

The experimental environment used is SUSE Linux Enter-
prise Server 15 SP1 installed on a computer with a 2.8GHz
16 core processor and 1.5 TB memory. The computer is
maintained by Research Center for Advanced Computing
Infrastructure, JAIST. We are allowed to keep on using the
computer up to one week in a row for each job, a model
checking experiment for us. If a model checking experiment is
not completed in one week, the job is killed. Under condition
that the length of server’s log is less than 3 and the number of
servers is 3, we conducted some model checking experiments.

A. Model checking under assumptions that no server conducts
unexpected operations

We first confirmed that logs are replicated correctly in our
specification by using the following Maude command:
search [1] in RAFT : init =>*
{(role[S0:ServerID]: leader)
(log[S0:ServerID]: L0:Logs)
(log[S1:ServerID]: L1:Logs)
(log[S2:ServerID]: L2:Logs)
(commitIndex[S0]: 2)
(commitIndex[S1]: 1) (commitIndex[S2]: 1)
(matchIndex[S0][S1]: 2) (matchIndex[S0][S2]: 2)



(nextIndex[S0][S1]: 3) (nextIndex[S0][S2]: 3) OCs}
such that length(L0:Logs) == 2
and length(L1:Logs) == 2 and length(L2:Logs) == 2 .

Maude finds a solution for the search command. The solu-
tion says that there exists a path from the initial state leading
to a state in which all servers have two log entries, the leader
commits at index 2, the other servers commit at index 1, the
leader’s matchIndex for the other servers is 2, and the leader’s
nextIndex for the other servers is 3. This means that two log
entries are replicated correctly. Note that the result dose not
say that log entries will be eventually replaced correctly. There
is a path along which two log entries have not been replicated.

We use Maude to check that Raft satisfies the Log Matching
Property or not by using the following search command:

search [1] in RAFT : init =>*
{(log[S0:ServerID]: L0:Logs)
(log[S1:ServerID]: L1:Logs)
(matchIndex[S0][S1]: I:Nat) OCs}
such that L0:Logs[I:Nat] =/= null
and L1:Logs[I:Nat] =/= null
and (term(L0:Logs[I:Nat])
== term(L1:Logs[I:Nat]))
and ((term(L0:Logs[sd(I:Nat, 1)])
=/= term(L1:Logs[sd(I:Nat, 1)]))
or (value(L0:Logs[sd(I:Nat, 1)])
=/= value(L1:Logs[sd(I:Nat, 1)]))) .

The result returned by Maude for the search command is
as follows:

No solution. states: 2805 rewrites: 1049267 in 488ms
cpu (486ms real) (2150137 rewrites/second)

That is to say, Maude did not find any state in which two
logs contain a log entry with the same index and term, and
the logs contain a different log entry in all entries up through
the index. Consequently, we can conclude that Raft enjoys the
Log Matching Property under the condition that the length of
server’s log is less than 3 and the number of servers is 3.

We use Maude to check that Raft satisfies the State Ma-
chine Safety Property or not by using the following search
command:

search [1] in RAFT : init =>*
{(log[S0:ServerID]: L0:Logs)
(log[S1:ServerID]: L1:Logs)
(commitIndex[S0]: I:Nat)
(commitIndex[S1]: I:Nat) OCs}
such that ((term(L0:Logs[I:Nat])
=/= term(L1:Logs[I:Nat]))
or (value(L0:Logs[I:Nat])
=/= value(L1:Logs[I:Nat]))).

The result returned by Maude for the search command is
as follows:

No solution. states: 2805 rewrites: 993397 in 448ms
cpu (451ms real) (2217404 rewrites/second)

That is to say, Maude did not find any state in which a
server has applied a log entry at a given index to its state
machine, and other servers apply a different log entry for the
same index. Consequently, we can conclude that Raft enjoys
the State Machine Safety Property under the condition that the
length of server’s log is less than 3 and the number of servers
is 3.

B. Model checking under assumptions that a server conducts
unexpected operations

We assume that a follower conducts unexpected operations
in a Raft cluster. We define SERVER-ID module in the
previous subsection as follows:
fmod SERVER-ID is
sort ServerID .
ops s0 s1 s2 : -> ServerID [ctor] .
endfm

In this subsection, we modify SERVER-ID module as fol-
lows:
fmod SERVER-ID is
sorts ServerID BadServerID .
subsort BadServerID < ServerID .
ops s0 s1 : -> ServerID [ctor] .
op s2 : -> BadServerID [ctor] .
endfm

This means ServerID and BadServerID are sorts, sort Bad-
ServerID is a subsort of sort ServerID, s0, s1 and s2 are
constants, s0’s sort and s1’s sort are ServerID, and s2’s sort is
BadServerID.

We add the following rewrite rule.
crl [badHandleAppendEntriesRequest] :
{(term[S2:BadServerID]: T) (role[S2:BadServerID]: R)
(commitIndex[S2:BadServerID]: CI)
(log[S2:BadServerID]: Ls)
(network: (msg(S1, S2:BadServerID,
appendEntriesRequest(U, S1, PLI, PLT,
log(U, CR), LCI)) NW)) OCs} =>

{(term[S2:BadServerID]: if U > T then U else T fi)
(role[S2:BadServerID]:
if U >= T then follower else R fi)

(commitIndex[S2:BadServerID]: length(L))
(log[S2:BadServerID]: L)
(network: (msg(S2:BadServerID, S1,
appendEntriesResponse(
(if U > T then U else T fi), true,
appendEntriesRequest(U, S1, PLI, PLT,
log(U, CR), LCI)))

msg(S1, S2:BadServerID, appendEntriesRequest(
U, S1, PLI, PLT, log(U, CR), LCI)) NW)) OCs}

if length(Ls) < 3 /\ L := Ls[PLI + 1] := log(U, crb) .

When the sort of sever ID is BadServerID, there exists
msg(S1, S2:BadServerID, appendEntriesRequest(U, S1, PLI,
PLT, log(U, CR), LCI)) in the network and the length of the
server S0’s log is less than 3, the following are conducted.
The sever S2 appends the log entry including client request
crb and term U to the log. crb is the unexpected value and it
is not the value that client sent. The commitIndex of server S2
is updated by the length of server S2’s log. If U > T , then the
server S0’s current term becomes U and msg(S2:BadServerID,
S1, appendEntriesResponse(U, true, appendEntriesRequest(U,
S1, PLI, PLT, log(U, CR), LCI)) is put into the network;
otherwise the server S0’s current term remains the same
and msg(S2:BadServerID, S1, appendEntriesResponse(T, true,
appendEntriesRequest(U, S1, PLI, PLT, log(U, CR), LCI)) is
put into the network. If U >= T , then the server S0 becomes
a follower. Note that msg(S1, S2:BadServerID, appendEntries-
Request(U, S1, PLI, PLT, log(U, CR), LCI) is not deleted from
the network due to as already mentioned.

This rewrite rule shows an unexpected operation. How to
replicate a log entry and how to commit are different from
the log replication in Raft. The server s2 whose sort is



BadServerID conducts the rewrite rule handleAppendEntries-
Request or the rewrite rule badHandleAppendEntriesRequest.
This is because sort BadServerID is a subsort of sort ServerID.
That is to say, the server s2 conducts both normal operations
and unexpected operations.

We confirmed again that logs are replicated correctly in
our modified specification by using the following search
command:
search [1] in RAFT : init =>*
{(role[S0:ServerID]: leader)
(log[S0:ServerID]: L0:Logs)
(log[S1:ServerID]: L1:Logs)
(log[S2:ServerID]: L2:Logs)
(commitIndex[S0]: 2)
(commitIndex[S1]: 1) (commitIndex[S2]: 1)
(matchIndex[S0][S1]: 2) (matchIndex[S0][S2]: 2)
(nextIndex[S0][S1]: 3) (nextIndex[S0][S2]: 3) OCs}
such that length(L0:Logs) == 2
and length(L1:Logs) == 2 and length(L2:Logs) == 2 .

Maude finds a solution for the search command. The solu-
tion says that there exists a path from the initial state leading
to a state in which all servers have two log entries, the leader
commits at index 2, the other servers commits at index 1, the
leader’s matchIndex for the other servers is 2, and the leader’s
nextIndex for the other servers is 3. This means that two log
entries are replicated correctly. Note that the result dose not
say that log entries will be eventually replaced. There is a path
along which two log entries have not been replicated.

We use Maude to check that Raft satisfies the Log Matching
Property for the server s0 and the server s1 or not by using
the following Maude command:
search [1] in RAFT : init =>*
{(log[s0]: L0:Logs) (log[s1]: L1:Logs)
(matchIndex[s0][s1]: I:Nat) OCs}
such that L0:Logs[I:Nat] =/= null
and L1:Logs[I:Nat] =/= null
and (term(L0:Logs[I:Nat])
== term(L1:Logs[I:Nat]))
and ((term(L0:Logs[sd(I:Nat, 1)])
=/= term(L1:Logs[sd(I:Nat, 1)]))
or (value(L0:Logs[sd(I:Nat, 1)])
=/= value(L1:Logs[sd(I:Nat, 1)]))) .

The result returned by Maude for the search command is
as follows:
No solution. states: 24987
rewrites: 8900588 in 6364ms cpu
(6389ms real) (1398583 rewrites/second)

That is to say, Maude did not find any state in which the
server s0 and the server s1 have a log entry with the same
index and term, and the server s0’s log and the server s1’s
log contain a different log entry in all entries up through the
index. Consequently, we can conclude that Raft enjoys the Log
Matching Property in servers which do not conduct unexpected
operations under the condition that the length of server’s log
is less than 3 and the number of servers is 3.

We use Maude to check that Raft satisfies the State Machine
Safety Property for the server s0 and the server s1 or not by
using the following search command:
search [1] in RAFT : init =>*
{(log[s0]: L0:Logs) (log[s1]: L1:Logs)
(commitIndex[s0]: I:Nat)
(commitIndex[s1]: I:Nat) OCs}

such that ((term(L0:Logs[I:Nat])
=/= term(L1:Logs[I:Nat]))
or (value(L0:Logs[I:Nat])
=/= value(L1:Logs[I:Nat]))).

The result returned by Maude for the search command is
as follows:
No solution. states: 24987
rewrites: 8380677 in 5412ms cpu
(5417ms real) (1548536 rewrites/second)

That is to say, Maude did not find any state in which the
server s0 or the server s1 has applied a log entry at a given
index to its state machine, and the opposite server apply a
different log entry for the same index. Consequently, we can
conclude that Raft enjoys the State Machine Safety Property
in servers which do not conduct unexpected operations under
the condition that the length of server’s log is less than 3 and
the number of servers is 3.

Under the condition that the length of the server’s logs is
less than 4 and the number of servers is 3 and the condition
that the length of the server’s logs is less than 3 and the number
of servers is 4, we conducted model checking experiments to
check whether Raft enjoys the Log Matching Property or not,
and the State Machine Safety Property or not. However, the
model checking experiments took over a week to complete
and the job running model checking was killed.

V. CONCLUSION

We reported that the log replication in Raft is formally
specified in Maude and model checking experiments are con-
ducted based on the formal specification. Our model checking
experiments have said that logs are replicated correctly and
Raft enjoys the Log Matching Property that if two logs contain
an entry with the same index and term, then the logs are
identical in all entries up through the given index and the
State Machine Safety Property that if any two servers have
applied two entries to their state machines at a same index, the
two entries must be always the same. Under assumptions that
a server conducts unexpected operations, which are different
from the log replication in Raft, our model checking experi-
ments have said that Raft enjoys the Log Matching Property
and the State Machine Safety Property in servers that do not
conduct unexpected operations.

REFERENCES

[1] Diego Ongaro and John Ousterhout. 2014. In search of an
understandable consensus algorithm. In Proceedings of the 2014
USENIX conference on USENIX Annual Technical Conference
(USENIX ATC’14). USENIX Association, USA, 305-320.
https://dl.acm.org/doi/10.5555/2643634.2643666

[2] Yves Bertot and Pierre Castéran. 2013. Interactive theorem proving and
program development: Coq’Art: the calculus of inductive constructions.
Springer Science & Business Media.

[3] Diego Ongaro. 2014. Consensus: Bridging Theory and Practice. Ph.D.
Dissertation. Stanford University.

[4] Lamport, L. Specifying Systems, The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002.

[5] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael
D. Ernst, and Thomas Anderson. 2016. Planning for change in a formal
verification of the raft consensus protocol. In Proceedings of the 5th
ACM SIGPLAN Conference on Certified Programs and Proofs (CPP
2016). Association for Computing Machinery, New York, NY, USA,
154-165. https://doi.org/10.1145/2854065.2854081


