
Towards A Deep-Learning-Based Methodology for Supporting Satire Detection

Alfredo Cuzzocrea*

iDEA Lab, University of Calabria, Rende, Italy & LORIA, Nancy, France
alfredo.cuzzocrea@unical.it

Giosué Lo Bosco
Dept of Computer Science, University of Palermo & IEMEST, Palermo, Italy

giosue.lobosco@unipa.it

Mariano Maiorana
Dept of Computer Science, University of Palermo, Palermo, Italy

mariano.maiorana@community.unipa.it

Giovanni Pilato
ICAR-CNR, Palermo, Italy

giovanni.pilato@cnr.it

Daniele Schicchi
Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, Italy

danieleschicchi@iemest.eu

Abstract

This paper describes an approach for supporting auto-
matic satire detection through effective deep learning (DL)
architecture that has been shown to be useful for address-
ing sarcasm/irony detection problems. We both trained and
tested the system exploiting articles derived from two impor-
tant satiric blogs, Lercio and IlFattoQuotidiano, and signif-
icant Italian newspapers.

1 Introduction

Satire is a way of criticizing people (or ideas) by ridicul-
ing them on political, social, and morals topics (e.g., [18].
Most of the time, such a language form is utilized to influ-
ence people’s opinions. It is a figurative form of language
that leverages comedic devices such as parody (i.e to imitate
techniques and style of some person, place or thing), exag-
geration (i.e to represent something beyond normality make
it ridiculous), incongruity (i.e to present things that are ab-
surd concerning the context), reversal (i.e to present the

*This research has been made in the context of the Excellence Chair in
Computer Engineering — Big Data Management and Analytics at LORIA,
Nancy, France

opposite of normal order), irony/sarcasm (i.e to say some-
thing that is the opposite of what a person mean). Moreover,
satire masks emotions like irritation and disappointment by
using ironic content.

The easy way of denouncing political and societal prob-
lems exploiting humor has brought consensus to satire that
has been widely accepted. It leads people to constructive
social criticism, to participate actively in the socio-political
life, representing a sign of democracy. Unfortunately, the
ironic nature of satire tends to mislead subjects that can be-
lieve the humorous news as they were real; therefore, satir-
ical news can be deceptive and harmful.

Detecting satire is one of the most challenging compu-
tational linguistics tasks, natural language processing, and
social multimedia sentiment analysis. It differs from irony
detection since satire mocks something or someone, while
irony is intended to be a way for causing laughter. Tackling
such a task means both to pinpoint linguistic entities that
characterize satire and look at how they are used to express
a more complex meaning.

As satirical texts include figurative communication for
expressing ideas/opinions concerning people, sentiment
analysis systems may be negatively affected. In this
case, satire should be adequately addressed to avoid per-
formances degradation of such systems, mainly if sar-

DOI reference number: 10.18293/DMSVIVA2021-016

92



casm/irony is used [1]. Moreover, reliably detecting satire
can benefit many other research areas where figurative lan-
guage usage can be a problem, such as Affective Computing
[15]. An autonomous way of detecting satire might help
computers interpret human interaction and notice its emo-
tional state, improving the human-computer experience.

In this paper, we tackle automatic satire detection
through effective deep learning (DL) architecture that has
been shown to be effective for addressing the sarcasm/irony
detection problem. The Neural Network (NN) exploits arti-
cles derived from two important satiric blogs, Lercio and Il-
FattoQuotidiano, and major Italian newspapers. The dataset
has been specifically created for the task, and it includes
news concerning similar topics. Experiments show an opti-
mal performance achieved by the network that is capable of
performing well on satire recognition. The network demon-
strates the ability to detect satire in a context where it is not
marked as in IlFattoQuotidiano. In fact, in this special case,
news are so realistic that they seem to be true. [15]. An
autonomous way of detecting satire might help computers
interpret human interaction and notice its emotional state,
improving the human-computer experience.

On the other hand, studying these techniques as com-
bined with the emerging big data trend (e.g., [11, 10, 6, 8,
9]) is an interesting challenge.

The extended version of this paper appears in [7].

2 The Overall Proposed Methodology

Recognizing satire can be modeled as a classification
task subdividing satiric and non-satiric articles in two dif-
ferent classes. Such a task has been widely tackled by using
machine learning algorithms, and it has been shown that it
is important to consider various aspects related to the ap-
plication domain. For what concerns the subject problem,
many factors should be taken into account: the way the
text is represented and how it is structured (sec. 2.1), the
model’s architecture for tackling the task and its tuning (sec
2.2 and 2.3). Le Hoang Son et al. [13] have introduced
a deep learning model that promises optimal performances
for detecting sarcasm/irony. We believe that such a network
can also help recognizing the main aspects of the satire; a
detailed description is given in sec. 2.2.

2.1 Preprocessing

The preprocessing phase deals with the input arrange-
ment to make it analyzable to the model as best as possible.
Most of the time, the text is changed by removing punctu-
ation marks, stop-words, etc. In this case, since the articles
have been harvested from online resources we focused on
the removal of the author’s name, HTML tags, hyperlinks,

and hashtags. Subsequently, the input text is split into to-
kens (i.e., words and punctuation marks) using NLTK 1. To
level out the lengths of the articles, we have analyzed the
cumulative frequency of the length of the texts, and then we
have selected a value L = 4500 words such that we con-
sidered 95% of the entire set of articles. Finally, each to-
ken is mapped to a 300-dimensional space by a pre-trained
embedding tool that relies on FastText [3, 12]. Therefore,
each article is represented by a matrix of real values of size
(L, 300). We crop texts longer than L, and we pad with 0s
texts that are shorter.

2.2 Architecture

The network’s architecture is inspired from the one pre-
sented by Le Hoang Son et al [13], that exploits Bidirec-
tional Long Short Term Memory (BiLSTM), Soft Atten-
tion Mechanism, Convolutional NNs, and Fully Connected
NNs. Moreover, such a model consider five different aux-
iliary characteristics that have been shown to be relevant to
sarcasm/irony detection: number of exclamation marks (!),
number of question marks (?), number of periods (.), num-
ber of capital letters, number of uses of or. A complete
model representation is given in figure 1.

2.2.1 Input Layer

The first network’s layer is the Input layer which manage
the pre-processed text in order to allow the analysis by the
BiLSTM.

2.2.2 BiLSTM Layer

BiLSTM is composed of two LSTM layers which examine
respectively the input sequence in forward (from the first to-
ken x0 to the last one xT ) and backward (from the last token
xT to the first one x0) ways. LSTM cell, is a neural unit cre-
ated specifically for overcoming the vanish/exploding gra-
dient problem [2] that affects the training phase by using the
backpropagation through time algorithm. The cell is com-
posed of a set of gates (i.e input, forget, and output gate)
which control the flow of information. The forget gate deals
with choosing the information part should be kept and what
should be gotten rid, the input gate proposes new informa-
tion that is worth to be considered, and the output gate mix
the contributes given by both the input and forget gates for
creating the final cell’s output. LSTM cell leverages two
feedback loops (i.e internal and external) which allow to
track the sequence of elements the cell has already analyzed
through a sequence of internal states h1, . . . , hT . The fi-
nal output of the LSTM cell is its final internal state that is
strictly dependent of the previous ones. The formulation of

1www.nltk.org

93



a LSTM unit, named memory unit, is described in by the
following equations [14]:

ft = σ(Wfxt+Ufht−1+bf )

it = σ(Wixt+Uiht−1+bi)

ot = σ(Woxt+Uoht−1+bo)

ct = tanh(Wcxt+Ucht−1+bc)

st = ft�st−1+it�ct
ht = tanh(st)�ot

where ft, it, ot are respectively the input, forget and out-
put gates, the � is the element-wise multiplication, the
bf , bi, bo, bc are bias vectors, while tanh is the hyperbolic
tangent and sigma is the sigmoid function.

The analysis of the input text in these two opposite di-
rections create two representation of the input sequence:
straight and reversed. BiLSTM layer merges the output of
the two LSTM layers into a single output by concatenating
them. The final vector, if examined through the soft atten-
tion, allow the network to capture the salient words consid-
ering the input text totally.

2.2.3 Soft Attention Layer

The Soft Attention is a mechanism that weight the input se-
quence elements on the basis of their relevance for the clas-
sification task, suggesting on what elements leverage for
classifying the input correctly. It exploits the sequence of
LSTM states during the examination of the input sequence.

The attention layer’s output is the context-vector. It is
computed as the weighted sum of the attention weights
αt and the LSTM’s states h0, . . . , hT . The approach is
described by the following formulas, considering wα the
weights matrix:

zt = htwα

αt =
ezt∑T
i=1 e

zi

c =
T∑
i=1

αihi

In this case, the context-vector c is extended by concatenat-
ing the auxiliary features. Finally, one-dimensional vector
C which contains the analysis of the BiLSTM layer and the
Pragmatic features becomes the input of the next convolu-
tional layer.

2.2.4 Convolutional Layer

We stacked three convolutional layers for the feature learn-
ing. Each convolving filter of size s slides over the input
vector to compute a localized feature vector vj for each pos-
sible word through a nonlinear activation function. For each

Table 1. List of the model’s hyperparameters.
Embedding size 300
LSTM neurons 500

Batch size 10
Convolutional layers 3

Kernel size 3
Convolutional activation function ReLU

Dropout BiLSTM 0.2
Dropout ConvNet 0.4

Optimization algorithm Adam
Learning rate 0.0001

Dense layer neurons 350

filter, a transition matrix T is generated. Such a matrix is it-
eratively applied to a part of the input vector to compute the
features as following :

vj = f(〈T, Fj:j+s−1〉+ ba)

where 〈·, ·〉 is the inner product, Fg,l is the part of the input
vector which includes elements from position g to position
l, ba is a bias related to the specific filter, and f is a non
linear function.

The output of the convolutional layers is a vector of fea-
tures v = v1, v2, . . . , vn−s+1 where n is the length of the
input vector.

A max-pooling layer then processes the convolutional
layer’s output. Such a layer extracts the largest computed
feature for each filter, considering only the most relevant
ones. The output layer then analyzes the output vector that
included the selected features.

2.2.5 Output Layer

The output layer is a Fully Connected NN activated by Soft-
max. Such a layer takes as input the features extracted by
the max-pooling layer. Employing the Softmax activation
function computes the probability that the input text belongs
to the either satiric or non-satiric class.

2.3 Parameters

Hyperparameters have been chosen empirically and tak-
ing inspiration from [13, 1]. Different tries have shown that
taking a small learning rate and using a small minibatch
coupled with Dropout regularization factors helps the net-
work improve its performance by diminishing the loss. A
complete list of them can be found in table 1.

3 Conclusion and Future Works

Satire aims at criticizing either something or someone
leveraging on comedic devices. Its automatically detec-

94



Input layer

Auxiliary features

+
Context vector

LSTM LSTMLSTMLSTM

Soft-Attention

Attention BiLSTM

Max Pooling

Dense Layer

Softmax

Convolutional Neural Network

Not SatireSatire

Figure 1. The representation of the Neural Net-
work’s architecture. The first layer manages
the input in order to make it available for analy-
sis. BiLSTM layer analyses the input in the for-
ward and backward way to give a complete rep-
resentation of the text. The attention mech-
anism is exploited for detecting the most rele-
vant words for accomplishing the classification
task. Its output is concatenated to the aux-
iliary features and then it is given as input to
the convolutional layer. Such a layer extract
prominent features, which are processed by a
fully connected layer activated by softmax.

tion is a non-trivial task that have to consider the compo-
nents it is composed such as parody, exaggeration, rever-
sal, irony/sarcasm which often are related to stand-alone
research topics.

In this paper, we have introduced a powerful DL model
that tackles the satire detection problem by examining lexi-
cal, syntactical, and auxiliary features. To support the anal-
ysis by the system, we exploited an effective pre-trained
embedding tool based on FastText.

Future work will further analyze the network’s behavior
by exploiting incremental data [5] and clustering [4]. More-
over, we are going to study how satire might affect the text
comprehension [16] and if it might be reproduced through
automatic creative processes [17].

References

[1] Teresa Alcamo, Alfredo Cuzzocrea, Giosue Lo Bosco,
Giovanni Pilato, and Daniele Schicchi. Analysis and
comparison of deep learning networks for support-
ing sentiment mining in text corpora. In 22th Inter-
national Conference on Information Integration and
Web-based Applications and Services (iiWAS2020),
2020.

[2] Y. Bengio, P. Simard, and P. Frasconi. Learning long-
term dependencies with gradient descent is difficult.
IEEE Transactions on Neural Networks, 5(2):157–
166, March 1994.

[3] Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. Enriching word vectors with sub-
word information. CoRR, abs/1607.04606, 2016.

[4] G. Casalino, G. Castellano, and C. Mencar. Incre-
mental adaptive semi-supervised fuzzy clustering for
data stream classification. In 2018 IEEE Conference
on Evolving and Adaptive Intelligent Systems (EAIS),
pages 1–7, 2018.

[5] Gabriella Casalino, Ciro Castiello, Nicoletta
Del Buono, and Corrado Mencar. A framework
for intelligent twitter data analysis with non-negative
matrix factorization. International Journal of Web
Information Systems, 2018.

[6] Alfredo Cuzzocrea. Improving range-sum query eval-
uation on data cubes via polynomial approximation.
Data & Knowledge Engineering, 56(2):85–121, 2006.

[7] Alfredo Cuzzocrea, Giosue Lo Bosco, Mariano Maio-
rana, Giovanni Pilato, and Daniele Schicchi. A
novel approach for supporting italian satire detec-
tion through deep learning. In Flexible Query An-
swering Systems - 134th International Conference,

95



FQAS 2021, Bratislava, Slovakia, September 19–24,
2021, Proceedings, Lecture Notes in Computer Sci-
ence. Springer, 2021.

[8] Alfredo Cuzzocrea and Ugo Matrangolo. Analytical
synopses for approximate query answering in olap en-
vironments. In International Conference on Database
and Expert Systems Applications, pages 359–370.
Springer, 2004.

[9] Alfredo Cuzzocrea, Rim Moussa, and Guandong Xu.
Olap*: effectively and efficiently supporting parallel
olap over big data. In International Conference on
Model and Data Engineering, pages 38–49. Springer,
2013.

[10] Alfredo Cuzzocrea, Domenico Saccà, and Paolo Ser-
afino. A hierarchy-driven compression technique for
advanced olap visualization of multidimensional data
cubes. In International Conference on Data Ware-
housing and Knowledge Discovery, pages 106–119.
Springer, 2006.

[11] Alfredo Cuzzocrea and Paolo Serafino. Lcs-hist:
taming massive high-dimensional data cube compres-
sion. In Proceedings of the 12th International Confer-
ence on Extending Database Technology: Advances in
Database Technology, pages 768–779, 2009.

[12] Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. Learning word vec-
tors for 157 languages. In Proceedings of the Interna-
tional Conference on Language Resources and Evalu-
ation (LREC 2018), 2018.

[13] Le Hoang Son, Akshi Kumar, Sangwan Raj Saurabh,
Anshika Arora, Anand Nayyar, and Mohamed Abdel-
Basset. Sarcasm detection using soft attention-based
bidirectional long short-term memory model with con-
volution network. IEEE Access, 7:23319–23328,
2019.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

[15] Rosalind W Picard. Affective computing. MIT press,
2000.

[16] Daniele Schicchi, Giosué Lo Bosco, and Giovanni Pi-
lato. Machine learning models for measuring syn-
tax complexity of english text. In Biologically In-
spired Cognitive Architectures Meeting, pages 449–
454. Springer, 2019.

[17] Daniele Schicchi and Giovanni Pilato. Wordy: a semi-
automatic methodology aimed at the creation of ne-
ologisms based on a semantic network and blending
devices. In Conference on Complex, Intelligent, and
Software Intensive Systems, pages 236–248. Springer,
2017.

[18] Aman Sinha, Parth Patekar, and Radhika Mamidi.
Unsupervised approach for monitoring satire on so-
cial media. In Prasenjit Majumder, Mandar Mitra,
Surupendu Gangopadhyay, and Parth Mehta, editors,
FIRE ’19: Forum for Information Retrieval Evalua-
tion, Kolkata, India, December, 2019, pages 36–41.
ACM, 2019.

96




