
Graphical Animations of the Lim-Jeong-Park-Lee
Autonomous Vehicle Intersection Control Protocol

Win Hlaing Hlaing Myint, Dang Duy Bui, Duong Dinh Tran, Kazuhiro Ogata
School of Information Science

Japan Advanced Institute of Science and Technology (JAIST)
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Email: {winhlainghlaingmyint,bddang,duongtd,ogata}@jaist.ac.jp

Abstract—The main goal of SMGA is to help human users
be able to perceive (non-trivial) characteristics. The Lim-Jeong-
Park-Lee autonomous vehicle intersection control protocol has
been graphically animated with SMGA to demonstrate that
SMGA can be applied to the wider class of systems. We have
revised SMGA so as to handle composite data that are used
in the protocol. We design a flexible state picture for the
protocol so that it is possible to deal with different initial
states when the number of vehicles is less than or equal to a
given number. Some characteristics are guessed by observing
graphical animations based on the state picture design, and the
characteristics are confirmed with model checking. The paper
also summarizes several lessons learned as tips on how to make
a state picture design when composite data are used

Keywords-graphical animation; LJPL protocol; SMGA; state
machine; state picture design

I. INTRODUCTION

SMGA [1] has been developed to visualize graphical
animations of systems/protocols. The main purpose of
SMGA is to help human users be able to perceive non-
trivial characteristics of systems/protocols by observing its
graphical animations because humans are good at visual
perception [2]. Those characteristics could be used as lemmas
to formally verify that the systems/protocols enjoy some
desired properties. It implies the usefulness of the tool
since lemma conjecture is a challenging problem in formal
verification.

The Lim-Jeong-Park-Lee autonomous intersection control
protocol (the LJPL protocol) has been graphically animated
to demonstrate the potential of SMGA that can be applied to
wider classes of systems/protocols. First, we need to carefully
make a state picture design because it is a core task of the
tool [3]. The specification of the protocol, however, contains
some observable components whose values are composite
(over one component value inside). One possible way to
visualize such a composite value is to display each component
value of the composite value. We, however, revise the tool
so that users can design a state picture to be able to display

This work was partially supported by FY2020 grant-in-aid for new tech-
nology research activities at universities (SHIBUYA SCIENCE CULTURE
AND SPORTS FOUNDATION)

DOI reference number: 10.18293/DMSVIVA2021-004

the composite data explicitly. Because the LJPL protocol
has multiple different initial states even if the number of
vehicles is fixed, we make a flexiable state picture template
that can be used for different initial states. Given a natural
number n, we make a flexible state picture design so that
any initial states in which the number of vehicles is up to n
can be handled. After that, some characteristics are guessed
by human users based on some graphical animations of the
LJPL protocol and confirmed with Maude [4]. Some lessons
learned are summarized as tips on how to make a good
state picture design for state machine that use observable
components whose values are composite

Bui and Ogata [5] have revised SMGA to visualize the
network components. This work and ours can share working
flow but we cannot apply those technique as they are to
ours. One reason is that the behavior of a distributed mutual
exclusion protocol and the LJPL protocol cannot share each
other. Marı́a Alpuente, et al. [6] have proposed a methodology
and implemented a prototype tool to check whether a Maude
program is correct or not via logical assertions based on
rewriting logic theories. The tool is to visualize the possible
trace slides (as state sequences in our paper) to help users
identify the cause of the error. In case that many possible
rewriting rules are used, the visualization looks like a graph
or a tree in which the states (displayed as text) are nodes. This
visualization approach can be applied to our work, although
its purpose is different than ours.

We suppose the readers are familiar with state machines
and Maude [4] to some extent. The formal specification of the
LJPL protocol used in the paper is followed by the work [8]
in which they have proposed some modifications (i.e., two
more statuses running and approaching are added as each
vehicle’s status). Please refer to the paper [8] in detail.

II. SPECIFICATION OF LJPL PROTOCOL IN MAUDE

In this paper, a state is expressed as a soup of observable
components. Let b be a Boolean value, q a queue of vehicle
IDs (i.e., a queue of natural numbers). Let vid, lid, t, lt be
natural numbers, where vid and lid represent a vehicle ID
and a lane ID, respectively, while t and lt represent the time.



To formalize the LJPL protocol as a state machine MLJPL,
we use the following observable components:

• (clock : t,b) - it says that the current time is t.
clock represents the global clock shared by all vehicles.
Initially, the first parameter of clock is set to 0, and
increased by the time. However, if time is allowed to
increase without any constraints, the reachable state
space will quickly explode. That is the reason why
we introduce the second counterpart b such that t only
can increment when b is true. That is, whenever b is
true, t can increment, b becomes false, and when a
vehicle obtains the current time t (without changing t),
b becomes true,

• (v[vid] : lid,vstat,t,lt) - it says that the vehicle vid
is running on the lane lid, its current status is vstat,
it arrives at the intersection at the time t, and the lead
vehicle of the lane lid reaches the intersection at the
time lt,

• (lane[lid] : q) - it says that the queue of vehicles
running on lane lid is q,

• (gstat : gstat) - where gstat is either fin or nFin.
When it is fin, all vehicles concerned have crossed
the intersection.

Each state in SLJPL is expressed as {obs}, where obs is
a soup of those observable components. We suppose that
five vehicles (from 0 to 4) participate in the LJPL protocol
such that two vehicles are running on lane0, one vehicle is
running on lane1, and two vehicles are running on lane5. The
initial state of ILJPL namely init is defined as follows:

{(gstat: nFin) (clock: 0,false) (lane[0]: oo)
(lane[1]: oo) (lane[2]: oo) (lane[3]: oo)
(lane[4]: oo) (lane[5]: oo) (lane[6]: oo)
(lane[7]: oo) (v[0]: 0,running,oo,oo)
(v[1]: 0,running,oo,oo) (v[2]: 1,running,oo,oo)
(v[3]: 5,running,oo,oo) (v[4]: 5,running,oo,oo)
(v[oo]: 0,stopped,oo,oo) (v[oo]: 1,stopped,oo,oo)
(v[oo]: 2,stopped,oo,oo) (v[oo]: 3,stopped,oo,oo)
(v[oo]: 4,stopped,oo,oo) (v[oo]: 5,stopped,oo,oo)
(v[oo]: 6,stopped,oo,oo) (v[oo]: 7,stopped,oo,oo)}

Initially, gstat is set to nFin, the value of the global
clock is 0. Since the second value of the clock observable
component is false, the abstract notion of the current time
cannot increment. Each queue associated with each lane only
consists of oo (denoting ∞), saying that there is no vehicle
on the lane close enough to the intersection. v[0] & v[1]
represent the two vehicles running on lane0, v[2] represents
the vehicle running on lane1, and v[3] & v[4] represent
the two vehicles running on lane5. There are eight v[oo]
observable components that are used to represent dummy
vehicles.

12 rewrite rules are used to specify TLJPL. Let OCs and
OCs’ be Maude variables of observable component soups, T,
T’ and T’’ be Maude variables of natural numbers, and B is
a Maude variable of Boolean values. When all vehicles have
crossed the intersection, the state does not change anything,

which is specified by the following two rewrite rules:

rl [stutter] : {(gstat: fin) OCs}
=> {(gstat: fin) OCs} .

crl [fin] : {(gstat: nFin) OCs}
=> {(gstat: fin) OCs} if fin?(OCs) .

where fin?(OCs) returns true iff all vehicles in OCs have
crossed the intersection.

The rewrite rule tick is defined to specify the behavior
of the global clock:

rl [tick] :
{(gstat: nFin) (clock: T,true) OCs} =>
{(gstat: nFin) (clock: (T + 1),false) OCs} .

The rewrite rule says that if the second value of the clock
observable component is true, the abstract notion of the
current time T increments and the second value becomes
false.

Two rules are used to specify a set of transitions that
change a vehicle status from running to approaching as
follows:

rl [approach1] : {(gstat: nFin) (clock: T,B)
(lane[LI]: oo) (v[VI]: LI,running,oo,oo) OCs}
=> {(gstat: nFin) (clock: T,true)
(lane[LI]: VI) (v[VI]: LI,approaching,T,oo)
OCs} .

rl [approach2] : {(gstat: nFin) (clock: T,B)
(v[VI]: LI,running,oo,oo)
(lane[LI]: (VI’ ; VS)) OCs}
=> {(gstat: nFin) (clock: T,true)
(lane[LI]: (VI’ ; VS ; VI))
(v[VI]: LI,approaching,T,oo) OCs} .

where LI, VI, and VI’ are Maude variables of natural
numbers, VS is a Maude variable of queues of natural
numbers and ∞, and ; constructs the queue. The first rewrite
rule specifies the case in which there is no vehicle close
enough to the intersection on the lane where the vehicle
is running, while the second one deals with the case in
which there exists at least one vehicle close enough to the
intersection on the lane.

Three rewrite rules are used to specify a set of transitions
that change a vehicle status from approaching to stopped.

rl [check1] : {(v[VI]: LI,approaching,T,oo)
(gstat: nFin) (lane[LI]: (VI ; VS)) OCs}
=> {(gstat: nFin) (v[VI]: LI,stopped,T,T)
(lane[LI]: (VI ; VS)) OCs} .

rl [check2] : {(v[VI]: LI,approaching,T’’,oo)
(gstat: nFin) (v[VI’]: LI,stopped,T,T’)
(lane[LI]: (VS’ ; VI’ ; VI ; VS)) OCs}
=> {(gstat: nFin) (v[VI]: LI,stopped,T’’,T’)
(v[VI’]: LI,stopped,T,T’)
(lane[LI]: (VS’ ; VI’ ; VI ; VS)) OCs} .

rl [check3] : {(v[VI]: LI,approaching,T’’,oo)
(gstat: nFin) (v[VI’]: LI,crossing,T,T’)
(lane[LI]: (VS’ ; VI’ ; VI ; VS)) OCs}
=> {(gstat: nFin) (v[VI]: LI,stopped,T’’,T’’)



(v[VI’]: LI,crossing,T,T’)
(lane[LI]: (VS’ ; VI’ ; VI ; VS)) OCs} .

where VS’ is a Maude variable of queues. The first rewrite
rule specifies the case in which vehicle VI is the top of the
queue (i.e., VI will be lead on the lane). The second one
deals with the case in which there exists another vehicle
VI’ in front of the vehicle VI such that VI’ is stopped
(VI will be non-lead on the lane). The last one specifies the
case in which there exists another vehicle VI’ in front of
the vehicle VI such that the status of VI’ is crossing (VI
will be lead on the lane).

Two rewrite rules enter1 and enter2 are used to
specify a set of transitions that change a lead vehicle status
from stopped to crossing. enter1 deals with the case in
which the ID of the lane on which the lead vehicle is located
is even and enter2 deals with the case in which it is odd.
enter1 is defined as follows:

crl [enter1] : {(v[VI]: LI,stopped,T,T)
(gstat: nFin) (lane[LI]: (VI ; VS)) OCs}
=> {(gstat: nFin) (lane[LI]: (VI ; VS))
(v[VI]: LI,crossing,T,T) OCs’}

if isEven(LI) /\
LI1 := (LI + 2) rem 8 /\
(lane[LI1]: (VI1 ; VS1))
(v[VI1]: LI1,VSt1,T11,T12) OCs1 := OCs /\
VSt1 = stopped /\ T < T12 /\

LI2 := (LI + 5) rem 8 /\
(lane[LI2]: (VI2 ; VS2))
(v[VI2]: LI2,VSt2,T21,T22) OCs2 := OCs /\
VSt2 = stopped /\ T < T22 /\

LI3 := (LI + 6) rem 8 /\
(lane[LI3]: (VI3 ; VS3))
(v[VI3]: LI3,VSt3,T31,T32) OCs3 := OCs /\
VSt3 = stopped /\ T < T32 /\

LI4 := (LI + 7) rem 8 /\
(lane[LI4]: (VI4 ; VS4))
(v[VI4]: LI4,VSt4,T41,T42) OCs4 := OCs /\
VSt4 = stopped /\ T < T42 /\

OCs’ := letCross(VS,OCs) .

where LIi for i = 1, . . . , 4 are Maude variables of natural
numbers, VIi & Tj for i = 1, . . . , 4 & j = 11, 12, . . . , 41, 42
are Maude variables of natural numbers & ∞, VSi for i =
1, . . . , 4 are Maude variables of queues, VSti for i = 1, . . . , 4
are Maude variables of vehicle statuses, and OCsi for i =
1, . . . , 4 are Maude variables of observable component soups.
isEven(LI) holds if LI is even. The rewrite rule checks
if all lead vehicles of the four conflict lanes (i.e., LI1, LI2,
LI3, and LI4) are not crossing the intersection and the
arrival time T of the vehicle VI is less than all arrival times
of the lead vehicles on the conflict lanes. If the conditions
are satisfied, the status of vehicle VI is changed to crossing
from stopped and the statuses of all vehicles that follow
VI and whose statuses are stopped also become crossing,
which is done by letCross(VS,OCs).

The rewrite rule enter2 can be defined likewise. There
are also two more rewrite rules leave1 and leave2 that

Figure 1. A state picture design for the LJPL protocol (1)

Figure 2. A state picture for the LJPL protocol (1)

are used to specify a set of transitions changing a vehicle
status to crossed from crossing. All of them can be found
from the webpage presented in Sect. I.

III. GRAPHICAL ANIMATION OF LJPL PROTOCOL

A. Idea

At the beginning of the work, the first author of the
presented paper needs to deal with a problem of how to
design a good state picture so that it can display well a
composite value of some observable component. At that
time, the version of SMGA could only visualize observable
components whose value is text or designated place. The
tool, however, cannot display specific component inside the
composite values of the observable components. For example,
considering the following observable component: (time:
(Y Y,MM,DD)), SMGA cannot display the value “Y Y ”,
“MM”, or “DD”. Therefore, the first author has modified
the specification by adding some observable components that
do not affect the behavior of the protocol. With the example
above, three observable components are added: (year: Y Y )
(month: MM ) (day: DD) (time: (Y Y,MM,DD)). This



Figure 3. A state picture design for the LJPL protocol (2)

is the key idea to makes the tool be able to produce good
graphical animations for the LJPL protocol in particular and
display observable components whose values are composite
in general.

It is convenient for users if SMGA supports a functionality
that can explicitly visualize specific component inside the
composite values of the observable components without
adding unneeded observable components. Therefore, the
second author of the presented paper has revised the tool
to support that functionality. The key idea is to add #
followed by a natural number (start from 0) that represents
a position inside the composite value of an observable
component. For example, with the following composite value
(time: (Y Y,MM,DD(hh,mm, ss))), we can extract the
value mm by the notation time#2#1, where 2 denotes the
third position of time’s value (i.e., DD(hh,mm, ss)), and 1
denotes the second position inside DD (i.e., mm). Therefore,
users can display the component as a text or a designated
place as SMGA provides.

B. State picture design

In SMGA, designing a good state picture is an impor-
tant task because it can help humans better perceive the
characteristics of the protocol [9]. In the LJPL specification,
some observable components contain the same values of
some information inside such as the lane ID (laneID), the
status (vStat) of a vehicle. By following the similarity
principle of Gestalt [10], [11], they should be put together.
Furthermore, the laneID of a vehicle cannot be changed,
hence, we fix it as a constant text. After that, we come
up with a state picture design for the initial state init
mentioned in the previous section (shown in Fig. 1). A state
picture generated from the state picture design is depicted
in Fig. 2.

In Fig. 1, there are eight arrow shapes representing eight
lanes. A lane representation designed is as follows:

There are three colors: light green, pink, and light yellow that
represent three statuses crossing, stopped, and approaching,
respectively. For example, the status values of the fourth and
fifth vehicles (i.e., v3 and v4) in the following figure are
approaching:

Two status values running and crossed representations
used in Fig 1 are as follows:

A rectangle whose color is light cyan represents the status
running. A rectangle whose color is white represents the
status crossed. For example, the status values of the first and
third vehicles (i.e., v0 and v2) in the following figure are
running and crossed, respectively:

The design of the clock representation used in Fig. 1 is
as follows:



The value of the clock consists of two pieces of information:
a natural number and a Boolean value (mentioned in Sect. II).
Three blue squares represent the natural number from 0 to 2.
If the value of the natural number is 0, the first blue square
is displayed. A red circle represents the Boolean value. If the
value is true, a red circle is displayed, otherwise, nothing
is displayed. For example, when the value of the natural
number is 1, and the Boolean value is false, those values
are displayed as follows:

The design of the time arrivals of vehicles representation
used in Fig 1 are as follows:

In each line, three blue squares represent the value of the
time arrival (from 0 to 2). If nothing is displayed, the value
is ∞. If the value is 0, the first blue square is displayed. For
example, the figure below displays the case when the value
of the first vehicle is ∞, the values of the four other vehicles
are 0:

The design of the gstat representation used in Fig. 1 is
as follows:

If the value of gstat is fin, the circle and text is displayed,
otherwise, nothing is displayed.

Fig. 3 shows a state picture in which the initial state
contains one vehicle in each lane1, lane2, lane4, lane6, and
lane7, two vehicles in lane0, and three vehicles in lane5.
It indicates that users need to redesign a new state picture
since the initial state is changed. We design a flexible state
picture such that it can be used when the number of vehicles
participating in the protocol is small enough. Fig. 5 displays
the flexible state picture design, in which each lane can
contain up to four vehicles, the value of the natural number
of clock, and the value of the time arrival are up to 6.

C. Graphical animation of LJPL protocol

Fig. 4 shows a state sequence for the LJPL protocol based
on the state picture design depicted in Fig. 3. Six pictures
correspond to six consecutive states from State 13 to State
18 in one state sequence randomly generated by Maude.
Those pictures follow the rewrite rules mentioned in II. For
example, State 17 is the successor of State 16 by the rewrite
rule leave1. Taking look at the first picture (State 13)
immediately makes us recognize that each of lane0 and lane5
contains two vehicles whose status are stopped, each of lane6
and lane7 contains one vehicle whose status is approaching,
each of lane1 and lane2 contains one vehicle whose status
is stopped, the values of time arrival of those vehicles are
equal to 0 except two vehicles whose status are running
have time arrival ∞. Taking look at State 13 and State 14
immediately makes us recognize that v12’s status changes
from approaching to stopped. Taking look at State 15 to
State 17 immediately makes us recognize that v2’s status
changes from stopped to crossing and finally to crossed,
and v4’s status changes from running to approaching.

Fig. 6 shows another state sequence. Three pictures
correspond to three consecutive states from State 27 to
State 29. Taking look at State 27 and State 28 makes
us immediately recognize that three vehicles can change
the status from stopped to crossing at the same time. It
is interesting because crossing is regarded as the critical
section such that at most one vehicle should be located in
the critical section at the same time. Taking look at the State
28 makes us immediately recognize a case that exists two
vehicles running on two different lanes, and their statuses
are crossing. It can be explained that two vehicles running
on two concurrent lanes (e.g., lane5 and lane2) are allowed
to cross the intersection simultaneously.

IV. CONFIRMATION OF GUESSED CHARACTERISTICS
WITH MAUDE

Observing the graphical animations, we first see that the
status of a vehicle sometimes does not change when the value
of clock changes (shown at State 15 in Fig. 4). Carefully
focusing on the value of clock, we guess that when the
Boolean value of clock is false, the time arrival value of any



Figure 4. A state sequence for the LJPL protocol (1)

Figure 5. A flexible state picture design for the LJPL protocol (1)

vehicle cannot be greater than the first value of clock. The
characteristic can be confirmed by Maude search command
as follows:

search [1] in RIMUTEX :
init =>* {(clock: X:NatInf, false)
(v[i:NatInf]: j:NatInf, k:VStat,
Y:NatInf, t:NatInf) OCs}
such that
Y:NatInf >= X:NatInf and Y:NatInf =/= oo .

The search command above tries to find a reachable state
in which the value of the time arrival of the vehicle i (i.e.,
Y) is greater than or equal to the first value of clock (i.e.,
X). Maude does not find any reachable state from the state
init that satisfies the condition. Therefore, the guessed
characteristic is confirmed with the initial state shown in Fig.
3.

Observing the graphical animations, we guess that if the
first value of clock is equal to the time arrival of a vehicle,

the status of such vehicle is not running. The characteristics
can be confirmed by Maude search command as follows:

search [1] in RIMUTEX :
init =>* {(clock: X:NatInf, b:Bool)
(v[i:NatInf]: j:NatInf, K:VStat,
Y:NatInf, t:NatInf) OCs}
such that
Y:NatInf == X:NatInf and K:VStat == running .

The search command above tries to find a reachable state in
which the value of the time arrival of a vehicle i is equal
to the first value of clock, and the status of the vehicle i
is running. Maude does not find any reachable state from
the state init that satisfies the condition. Consequently,
the guessed characteristic is confirmed with the initial state
shown in Fig. 3.

V. LESSON LEARNED

Through the case study with the LJPL protocol, we obtain
several lessons on how to design a good state picture so that



Figure 6. A state sequence for the LJPL protocol (2)

we can conjecture some non-trivial characteristics, especially
when there are some observable components with composite
values. Some of the lessons learned can be summarized as
follows:

• When an observable component has a composite value,
which consists of more than one component value inside,
we need to carefully select which component values
to visualize. For example, the second and the third
component values (i.e., the status and the time arrival)
of the vehicle observable component are selected while
the fourth component value (i.e., the time arrival of the
lead) of the vehicle observable component is not used
in our design.

• If a value of an observable component does not change,
it should be expressed at a fixed label, such as laneID
of each vehicle observable component.

• If there exist some observable components that have the
same values, we should design and display their domain
values together in a designated place.

• If there exist observable components that have a natural
number as their values and the values are small enough,
the values should be visually expressed nearby together
so that we can see them simultaneously and compare

them instantaneously. For example, the first value of
clock (i.e., a natural number) and the time arrival of
each vehicle have been visualized in our design.

VI. CONCLUSION

We have revised SMGA to be able to visualize composite
data that are used in a state machine formalizing the LJPL
protocol so that the LJPL protocol can be graphically
animated. Some characteristics of the protocol have been
conjectured by human users and confirmed with Maude based
on our proposed state picture design. We have summarized
our experiences as some tips on how to make a good state
picture design for a state machine in which composite data
are used. One future direction is to apply our work to other
self-driving vehicle protocols, such as a merging protocol
[12].

REFERENCES

[1] T. T. T. Nguyen and K. Ogata, “Graphical animations of state
machines,” in 15th DASC, 2017, pp. 604–611.

[2] K. W. Brodlie, et al., Ed., Scientific Visualization: Techniques
and Applications. Springer, 1992.

[3] D. D. Bui and K. Ogata, “Better state pictures facilitating
state machine characteristic conjecture,” MTAP, 2021.

[4] M. Clavel, et al., Ed., All About Maude, ser. LNCS. Springer,
2007, vol. 4350.

[5] D. D. Bui and K. Ogata, “Graphical animations of the Suzuki-
Kasami distributed mutual exclusion protocol,” JVLC, vol.
2019, no. 2, pp. 105–115, 2019.

[6] M. Alpuente, et al., “Debugging Maude programs via runtime
assertion checking and trace slicing,” J. Log. Algebraic
Methods Program., vol. 85, no. 5, pp. 707–736, 2016.

[7] J. Lim, et al., “An efficient distributed mutual exclusion
algorithm for intersection traffic control,” J. Supercomput.,
vol. 74, no. 3, pp. 1090–1107, 2018.

[8] M. N. Aung, Y. Phyo, and K. Ogata, “Formal specification
and model checking of the Lim-Jeong-Park-Lee autonomous
vehicle intersection control protocol (S),” in SEKE 2019, 2019,
pp. 159–208.

[9] D. D. Bui and K. Ogata, “Better state pictures facilitating
state machine characteristic conjecture,” in DMSVIVA 2020,
2020, pp. 7–12.

[10] C. Ware, Information Visualization: Perception for Design.
MKP Inc., 2004.

[11] D. Todorovic, “Gestalt principles,” Scholarpedia, vol. 3, no. 12,
p. 5345, 2008.

[12] S. Aoki and R. Rajkumar, “A merging protocol for self-driving
vehicles,” in ICCPS 2017, 2017, pp. 219–228.


	Introduction
	Specification of LJPL Protocol in Maude
	Graphical Animation of LJPL Protocol
	Idea
	State picture design
	Graphical animation of LJPL protocol

	Confirmation of Guessed Characteristics with Maude
	Lesson learned
	Conclusion
	References

