
10.18293/DMSVLSS2017-006

Package Dependency Visualization: Exploration and
Rule Generation

Mubarek Mohammed
Department of Computer Science and Electrical

Engineering, Syracuse University
Syracuse, USA

mmohamme@syr.edu

James W. Fawcett
Department of Computer Science and Electrical

Engineering, Syracuse University
Syracuse, USA

jfawcett@twcny.rr.com

Abstract— Large software systems are difficult to understand and
complex to manage. Dependency among software components
such as packages is one of the reasons that makes software
complex. To partly cope with complexity, we designed and
implemented a dependency analysis and manipulation tool to
manage package dependency at a higher level. Two major graph
layout algorithms, spring layout and Sugiyama layout along with
clustering algorithms, are used to visualize layout of dependency
graphs. In addition, we propose use of layering with Sugiyama
algorithm to get insight about software design. It is also possible to
generate dependency rules at the architecture level for software
designs that are suited for layering design. Both the visualization
and rule generation have flexibility to be used with manual
restructuring of package dependency.

Keywords- Visualiztion; Dependency; Layering;

I. INTRODUCTION

Many organizations report that they face problems managing
software complexity using conventional software engineering
techniques [1]. Production sized software may contain millions
of lines of code [3]. Understanding, changing and maintaining
these large software systems is difficult. Documentation may
help reduce complexity to some extent. However, as software
evolves, changes may not entirely be captured in documents. Up
to date characteristics of the software system may be reflected
only in the source code. Extracting information about software
from source code is, therefore, important.

Software visualization can be used to manage complexity.
Software components can be represented as graphical elements
such as node and edges. Graph layout as well as analysis of the
graph gives insight about the design of a software system.
Specially interesting is the use of node-edge graph to represent
dependency of packages.

In this work, we show dependency among components,
particularly packages, with node-edge graphs to qualitatively
examine overall dependency. Using layered graph drawing,
edges are discriminated where those going from upper layers to
lower layers are considered generally acceptable edges. Whereas
those going in the opposite direction are unwanted edges. We
simply use two distinct colors: blue and red respectively.

For cases where distinguishing edges does not give useful
information, nodes that result in such edges can be clustered into
one of the layers. Strong components algorithm is used to

achieve this. Further examination of dependency can be done
after clustering to see if the resulting dependency graph makes
sense. After examining the dependency, developers may
restructure the dependency or leave it as it is. The dependency
graph can be further clustered by collapsing nodes in each layer
into a single node and adding the corresponding edges among
the layers. Rules can be generated, as xml file, from the resulting
dependency graph. This may be used to restrict further changes
to the existing dependency when change is made to the software
system.

The main contributions of this paper are:

 Dependency analysis tool that can be used to get insight
about a given software project.

 Layering concept that may potentially be used for
planning restructuring package dependency.

 Generation of dependency rules that restricts
introduction of unwanted changes.

The remaining part of the paper is organized as follows.
Section II introduces software visualization and layering
concepts. Sections III briefly discusses the layout algorithms
used in our visualization tool. Section IV presents the tool design
and brief discussion of each component. Section V shows how
the tool can be used in real scenario. Section VI reviews related
works in software visualization and dependency. Section VII
concludes the paper and future extensions of the work.

II. SOFTWARE STRUCTURE VISUALIZATION AND LAYERING

In this section, we briefly discuss software visualization and
layered structure of dependency.

A. Software Structrue Visualization

Software visualization represents software components
graphically. Generally, software developers use pictorial
representation such as UML diagrams at various stages of
software development process. Bringing similar representation
at the time of change or maintenance with some interactivity can
help understand software better and makes changing or
maintenance less complex.

Figure 1. Layering software components.

An important concept in software components representation
is dependency. A software component is dependent on another
component if the former uses instances or services of the later
one.

Once dependency analysis is extracted as node-edge graph,
it can be drawn after applying layout algorithms. Nodes
represent packages, header and/or cpp file in c++. Edges are
added if a package depends on another package. Some layout
algorithms such as spring layout show visually appealing
diagrams that clarify the existing dependency [9]. Other layout
algorithms such as the Sugiyama layout algorithm represent
such dependency in a hierarchical way [5]. This helps both in
understanding and investigating the meaning of hierarchical
representation into layers. The next sub-section briefly
introduces layering.

B. Layering

Layering is representing software components in such a way
that lower level layers provide services to upper layers [4]. If
software is designed in the form of layers, it can be extended by
adding upper layers that use services provided by lower layers
and contracted by removal of lower layers.

With a strict hierarchy, each layer uses services in the layer
immediately below it. With a non-strict hierarchy, a layer does
not have to invoke a service at the layer immediately below it,
but it can invoke services at more than one layer below.

Layering of software components results in improved
maintainability, reusability or testability. General layering
concepts can be shown as in figure 1. There are four layers in the
hierarchy, layer 1 at the bottom and layer 4 at the top. Most of
the arrows go from upper layers to lower layers. From a to d and
c to m are two examples. However, there are arrows going from
lower level layers to upper layers indicated by red arrows.
Arrows from k to e and m to e are two such examples. As will
be discussed later, the later kind of arrows are discouraged in a
layered design. Layout algorithms used in this work are
discussed in the next section.

III. LAYOUT ALGORITHMS

Layout algorithms arrange nodes in a node-edge graph in
such a way that the drawing is visually appealing and readable.
Some of the layout algorithms improve symmetry and minimize
crossing. Others may arrange the nodes hierarchically.

A. Sugiyama Layout Algorithm

Sugiyama layout algorithm is used for drawing flow charts,
UML diagrams and other diagrams that needs to be drawn
hierarchically [5]. The algorithm has the following steps:

Step 1 - Cycle removal - removes cycles temporarily as
the other steps need an acyclic graph. Algorithms starting from
the simple depth first search based feedback edge set to the
greedy minimum feedback arc set algorithms can be used to
make a graph acyclic [6].

Step 2 - Layering - The nodes are assigned layers based
on their dependency hierarchy. Independent nodes take the
bottom layer and those depending on lower layers take upper
layers. Spanning tree algorithm can be used to assign layers.
However, restrictions are applied to width and/or height of the
layout. A structure like figure 1 can be obtained using layering.

Step 3 – Cross minimization – this step minimizes the
number of crossing between edges of different layers. This is
done by repeatedly sorting the layered nodes according to
barycentric weights calculated from the index position of nodes
in the layers. This makes the drawing visually less cluttered.

Step 4 – Coordinate assignment - x and y coordinates are
assigned to each node. The y-coordinate of nodes of each layer
will be the same. However, the x-coordinate will be assigned
based on the index position of a node in each layer.

B. Spring Layout Algorithm

Force-directed algorithms model a graph layout problem by
assigning attractive and repulsive forces between vertices, and
finding the optimal layout by minimizing the energy of the
system [7], [8]. The model of Fruchterman and Reigold [9], also
known as spring-electrical model, has two forces. The repulsive
force, exists between any two vertices, and is inversely
proportional to the distance between them. Attractive forces, on
the other hand exist only between neighboring vertices (vertices
that share an arc) and is proportional to the square of the
distance. An example is shown in figure 2. For specific situations
spring layout gives the most visually appealing graph. Graph
interaction discussions that follow, except those that require
layering concepts, are applicable for spring layout. Therefore, it
will not

Figure 2. Spring layout example

be discussed further.

Before presenting the visualization tool usage, design of the
tool developed will be discussed briefly.

IV. SYSTEM DESIGN AND IMPLEMENTATION

To study software dependency understanding and quality
related issues, a prototype software visualization and analysis
tool has been designed and implemented. The system is depicted
in figure 3. The major components are discussed as follows.

Code Analysis - this component analyzes source code and
extracts information such as packages, classes, methods and
other software constructs that are not used in this work. This part
is implemented based on a light weight C/C++ parser
implementation [2]. This is a rule based parser which, with
minimal change, may be used to parse other programming
languages especially those syntactically similar to C++ such as
Java and C#.

Graph Processing and Layout - uses information extracted
from static analysis as input and results in a node-edge graph.
The graph will be further processed to generate the layout. The
layout can use spring layout or Sugiyama layout algorithms. In
addition, strong components algorithm is used to cluster nodes
to modify the layering. Output of this processing is presented as
an xml file.

Visualization - this component reads the xml representation
of the extracted information with coordinates and renders it on a
canvas. The user can interact with the visualization tool to see
the type of package represented by the node, panning,
dimensional zooming and coordinate based zooming.

Figure 3. System block diagram.

Rule Generation - unwanted dependencies can be
generated as xml rules that may be read automatically, at build

time, to prevent further deterioration of dependency. These
dependencies can be those not shown by arrows going from
upper layers to lower layers. It can also be implicit dependencies
that go from lower layers to upper layers. The later ones are red
edges if they are drawn on the dependency graph.

The static analysis and graph Processing and Layout
components are implemented using C++. Whereas the
visualization part is implemented using (Windows Presentation
Foundation) WPF.

Even though discussion in the sections that follow focuses on
package dependency analysis, the visualization system is
general enough to be used for other purposes.

V. RESULTS AND DISCUSSIONS

The dependency analysis tool can be used in different
scenarios. Some of its uses are:

 Examining dependency when changing software.
 Getting insight to restructure package dependency.
 Generate rules to prevent addition of unwanted

dependency.

We have explored two software systems using the
dependency visualization tool:

 Notepad++ - a multipurpose text editor. It has more
than 300 packages [10].

 Webkit - taken from chromium web browser source
code. It has more than 700 hundred packages [11].

Figure 4. Sugiyama layout of Notepad++ package dependency.

Source
Code

Extracted Data Static
Analysis

Graph
Processing
and Layout

Xml
Representation

Visualizatio

n

Rule
Generati

Figure 4. Sugiyama layout of Webkit package dependency.

A. Exploring Package Dependency Graphs

Figure 4 and figure 5 show the dependency graph of
Notepad++ and webkit respectively. One can explore
dependency using features such as zooming, panning and
viewing packages names from tooltips. In addition, one can
explore areas of interest by selecting and zooming specific
selections. In figure 3, the red arrows indicate edges going from
lower to upper layers. Whereas blue arrows go from upper to
lower layers. Generally, the red arrows are unwanted
dependencies in a layered architecture as they result in cycle
between layers. Similar observation can be made in Notepad++.

B. Layout After Applying Strong Components Clustering

To collapse the red edges into one of the layers, strong
components algorithm is run and the layout is redrawn using
sugiyama layout. Figure 6 is the resulting dependency graph.

For sake of clarity some parts are clipped. The clustered
nodes have more than one component. The tooltip text of one of
the nodes is shown as an example. The red edges are
significantly reduced. This is due to strong components
algorithm clusters nodes in a cycle. Generally, we expect that the
red edges to be contained in the clusters.

C. Clustering Each Layer Into A Node

Further clustering nodes in each layer results in a graph that
shows the relationship between the layers. This is achieved by
adding an edge between layers if there is an edge going from any
of the nodes from one layer to any other node in another layer.
Figure 6 shows what we found for webkit.

Even though layering is generated automatically, after
software designers examine its validity and manually restructure
the dependency, they can generate rules, as discussed in the next
section.

Figure 5. Webkit dependency visualization after applying clustering.

Figure 6. Layer dependency of webkit after clustering packages in each layer.

D. Generating Dependency Rules

If engineers are satisfied with the above layering or the
change they made manually after restructuring, they can
automatically generate rules similar to figure 8.

Rules can have two parts. The ones shown in figure 8, for
example are the ones that do not appear in figure 7. However,
we can include implicit rules that prevent addition of
dependency from lower layers to upper layers. Note that
generating meaningful names for the nodes is beyond the scope
of this work

Such rules can be used to notify engineers making change to
the software system. This file can be changed by engineers
whenever they want to restrict or relax the dependency structure.

<? xml version="1.0" encoding="UTF-8"?>
<graph title="Invalid Dependency">
 <node id="0">
 <Edge id="1"/> </node>
 <node id="1">
 <Edge id="2"/> </node>
 <node id="2"> <Edge id="3"/>
 <Edge id="6"/> </node>
 <node id="3">
 <Edge id="4"/> </node>
 <node id="4"> <Edge id="5"/> </node>
 <node id="5"> <Edge id="6"/> </node>
 <node id="6"> </node>
</graph>

Figure 7. Dependency rule.

VI. RELATED WORKS

There are many works on software visualization in general.
Source code-based visualization is done in [12], [13]. The work
in [13] addresses some issues of understanding large industry
size software. Class centered visualization is done in [14], [15],
[16]. These works represent a class blue print to show the overall
structure of a class, control flow among methods, and how
methods access attributes. Software organization visualization
has been done with optimized visual representation using trees
[17], [18]. The organization can also be represented as a treemap
[19], [20]. That means containment is defined in rectangular or
circular spaces. Another aspect related to organization is concern
for software components relationships. The most common ones
are Dependency Structure Matrix (DSM), UML class diagrams
and Simple Hierarchcal Multi-perspective(SHriMP) [21], [22].
From the three ways, ShHriMP is a relatively complete work. It
shows software at source code level, class level and package
level.

There are some research works on layering and cycles in
software component dependency. Strong components in
dependency is studied well in [2]. It emphasizes the fact that
strong components make software maintainability and testability
difficult. Some research is done to remove cycles to overcome
this problem. A heuristic greedy algorithm to find the minimum
feedback arc set is used [6]. We used this algorithm at the cycle
removal stage of the Sugiyama layering algorithm.

Some research studies hierarchical organization of systems
using graph algorithms. Sugiyama layout algorithm is used for
hierarchical drawing of graphs [5].

A similar work to ours that visualizes object oriented
programs is implemented as a polymeric view in [23]. It is
different from our work in that it has a fine-grained view of
objected-oriented programs. The approach represents metrics
such as weighted calls per method and lines of code graphically.
This work is extended in [24] by visualizing software programs
at the package level.

In our work, layout algorithms such as spring layout and
Sugiyama algorithms are used to show software component
dependencies. Interactions such as zooming, panning and saving
features allow the user to understand the diagram. Furthermore,
Sugiyama layout algorithm is used to hierarchically represent
dependencies. The layering and discrimination of edges is used
to examine package dependency at a higher level. Strong
component clustering along with Sugiyama layout algorithm is
used to collapse unnecessary dependencies, red edges that may
result in cycle, into a corresponding node in the nearby layer. It
is also possible to cluster each layer after which rules to restrict
dependency can be generated.

VII. CONCLUSION AND FUTURE WORK

We proposed a dependency visualization tool that can
potentially be used to assess software design and generate
dependency restriction rules. We implemented two layout
algorithms that are used to explore package dependency of real
software systems. Features including zooming, panning, pointed
and selected zooming, saving layout and printing layouts are
some of the functionalities of the tool. In addition, it helps one
to explore high level design of a software and possibly help
guide the restructuring of package level dependency.

Layering is one of the software architecture focused
processes used in software design. The logical layering with
additional input from engineers help restructure package
dependency. After automatically identifying strong components
in package dependency graphs, logically layering packages
enables engineers to manage complexity by enabling them to
control change in an ordered manner. Clustering packages in a
layer after possible manual change of the dependency
information results in a layered high level design of the software
under investigation. If the layering in the high level layered
design is found to be useful, rules can be generated that can be
used as configuration file to check software change that prevents
deterioration of design. Of course, such rules can be changed to
further restrict or relax possible dependencies.

This work is a preliminary result. It has limitations that
should be addressed in future work. Some of the planned works
are:

 Getting feedback from real users will make the tool
useful in real software design restructuring. The
future change will be more concrete if we get
feedback from engineers using our tool.

 Strong components hide cycles in package
dependency. Whenever possible breaking these

cycles improves the design. Allowing automatic
suggestions of such restructuring will be very helpful.

 Not all software designs benefit from layering
architecture. Allowing other ways of arranging
packages to automatically suggest high level design is
also useful.

REFERENCES
[1] Ultra –Large-Scale Systems: The Software Challenge of the Future,

Retrieved from
http://www.sei.cmu.edu/library/assets/uls_Book20062.pdf.

[2] J.W. Fawcett et al., Analyzing static structure of large software systems,
proceedings of the 2005 International Conference on Software
Engineering Research and Practice, 2005.

[3] T. Ball and S.G. Eick. Software visualization in the large, IEEE Computer,
Vol. 29, April 1996, pp. 33–43.

[4] H. Gomma, Software Modeling and Design, Uml, Use cases, Patterns, and
Software Architectures, Cambridge Univesity Press, 2011.

[5] K. Sugiyama and et al., Methods for Visual Understanding of Hierarchical
System Structures, IEEE Transactions on Systems, Man, and Cybernetics,
VOL. SMC- 1, NO. 2, 1981, pp. 109-125.

[6] P. Eades et al., A fast and effective heuristic for feedback arc set problem,
Information processing letters, Vol 47, Issue 8, 1993, pp. 319 – 323.

[7] P.Eades. A heuristic for graph drawing. Congressus Nutnerantiunt, 42:149
– 160, 1984.

[8] Hu, Y. F. "Efficient, High-Quality Force-Directed Graph Drawing." The
Mathematica Journal 10, no. 1 (2006): 37-71.

[9] T.M.J Fruchterman and E.M. Reigold, Graph drawing by force directed
placement, Software – Practice and Experience, 21:1129 -1164, 1991.

[10] Notepad++, retrieved from http://notepad-plus-
plus.org/download/v6.2.2.html , sept. 2012.

[11] Webkit from chromium web browser project, retrieved from
http://dev.chromium.org/developers/how-tos/get-the-code , sept 2012.

[12] S. Eick, J. Steffen, and E. Summer Jr., “Seesoft – A Tool for Visualizing
Line Oriented Software Statistics, “IEEE Trans. Software Eng., vol 18,
no. 11, pp. 957-968, Nov. 1992.

[13] T. Ball and S. Eick, “Software Visulization in the Large,” Computer, vol.
29, no. 4, pp. 33-43, Apr. 1996.

[14] M. Lanza, “Object Oriented Reverse Engineering – Coarse-Grained, Fine
Grained, and Evolutionary Software Visualization, PhD dissertation,
Univ. of Bern, 2003.

[15] M. Lanza and S. Ducasse, “A Catogorization of Classes Based on the
Visualization of Their Internal Structure: The Class Blueprint,” Proc. 16th
ACM SIGPLAN Conf. Object-Oriented Programming, Systems,
Languages, and Applications, pp. 300-311,200.

[16] S. Ducasse and M. Lanza, “The Class Blueprint: Visually Supporting the
Understanding of Classes, “IEEE Tans. Software Eng. vol 31, no. 1, pp.
75 – 90, Jan. 2005.

[17] C. Wetherell and A. Shannon, “Tidy Drawings of Trees, “IEEE Trans.
Software Eng., vol SE-5, no. 5, pp. 514 -520, Sept. 1979.

[18] T. Barlow and P. Neville, “A Comparison of 2D Visualization of
Hierarchies, “Proc. IEEE Symp. Information Visualization, pp. 131-138,
2001.

[19] B. Johnson and B. Shneiderman, “Tree-Maps: A Space-Filling Approach
to the Visualization of Hierarchical Information Structures, “Proc. Second
IEEE Conf. Visualization, pp. 284 – 291, 1991.

[20] B. Shneiderman, “Tree Visualization with Tree-Maps: 2D Space-Filling
Approach, “ACM Trans. Graphics, vol. 11, no. 1, pp. 92 – 99, Jan. 1992.

[21] M. Storey, H. Muller, and W.K., “Manipulating and Documenting
Software Structures, “Software Visualization, pp. 244 – 263, World
Scientific Publishing Co., 1996.

[22] M. Eiglsperger, “Automatic Layout of UML Class Diagrams: A
Topology-Shape-Metrics Approach,” PhD dissertation, Univ. Tubingen,
2003.

[23] R. Francese, M. Risi, G. Scanniello, and G. Tortora, “Proposing and
assessing a software visualization approach based on polymetric views,”
Journal of Visual Languages & Computing, vol. 34–35, pp. 11–24, Jun.
2016.

[24] R. Francese, M. Risi, G. Scanniello, and G. Tortora, “Enhancing
Polymetric Views with Coarse-Grained Views,” in 2016 20th
International Conference Information Visualisation (IV), 2016, pp. 57–
62.

[25] J.W. Fawcett, (2016, December 10), Light Weight Parser [Online].
http://www.ecs.syr.edu/faculty/fawcett/handouts/WebPages/blogParser.h
tm.

