Gitsubmit and VeCVL: Integrating Version Control in Introductory Computer
Science Education

Nathan W. Eloe
School of Computer Science and Information Systems
Northwest Missouri State University
Maryville, MO 64468, USA

nathane@nwmissouri.edu

Abstract

Version control systems (VCS), such as Subversion and
Git, are pervasive in industry; they are invaluable tools for
collaborative development that allow software engineers to
track changes, monitor issues, merge work from multiple
people, and manage releases. These tools are most effective
when they are a part of a developer’s habitual workflow.
Unfortunately, the use of these powerful tools is often taught
much later in a developer’s educational career than other
tools like programming languages or databases. Even an
experienced student’s first experience with version control
can be unpleasant. In this work, an assignment submission
system built around the Git version control system is intro-
duced and analyzed for usability and suitability for use in
entry level computer science classes.

Keywords- computer science education, education technol-
ogy, pedagogy, version control, visual language

1 Introducion

Version control tools and methodologies are essential
tools in the increasingly collaborative environment. The
size and complexity of many modern software development
projects require the talent and time of multiple developers
working together. While group projects and collaboration
are a mainstay of computer science classes, the tools that
are used in industry to promote teamwork are often not in-
troduced until later in a computer science curriculum (such
as in a Software Engineering course).

Version Control is most effective when it is interacted
with on a regular basis. It should ideally become part of the
developer’s regular workflow. Introducing such an invalu-
able tool so late in the curriculum forces students to recre-
ate their workflow by breaking bad habits that have been
reinforced through early computer science courses and in-

DOI reference number: 10.18293/DMSVLSS2017-005

tegrating industry best practices. Additionally, the use of
these best practices may or may not be reinforced in future
classes, requiring the student to self motivate in maintaining
the use of those skills.

This paper examines an implementation of a submission
system built around the Git version control system that sim-
plifies the process of interacting with version control to only
the important steps in a simple workflow (clone, add, com-
mit, push). The interface developed for students imple-
ments the Version Control Visual Language (VeCVL) [4].
Additionally, there are tools for teachers and graders to
manage assignments and grade submissions. The process
aims to simplify the assignment distribution process and re-
inforce version control workflow in pedagogy, not just as a
topic in a course. The student interface and visual language
is analyzed from a usability perspective through an evalua-
tion using the Cognitive Dimensions of Notations [10].

2 Background and Related Work
2.1 Git Workflow

Git [2] is a Distributed Version Control System that ex-
hibits a great amount of flexibility to allow powerful and
varied workflows [3, 8] to be designed around it. These
workflows primarily differ in their approaches and timings
for branching and merging. Beyond the branching, the
workflows use the same basic cycle of operations for an
individual developer: make changes to the local reposi-
tory, add the changes to the index, and commit the changes
(marking them with a commit message). Once a task
has been completed, the developer can sync their changes
to a remote server (if using a remote for collaboration
or backup). This cycle repeats itself, with the developer
pulling changes from a remote repository, making local
changes, and pushing the changes to the remote repository.

2.2 VeCVL and Scaffolding

Gitsubmit was developed in concert with VeCVL [4] as a
method of introducing version control in education through
scaffolding [1], and can be seen as the initial implementa-
tion of the visual language, expanded to be a full GUI in-
stead of an icon set. VeCVL is a visual representation of
the general steps present in version control system in a way
that conveys direction of the changes’ movement. Section 3
contains an examination of Gitsubmit and its close ties to
VeCVL, as well as a discussion of the deviations from the
icon set introduced in [4] to adapt the visual language to a
full GUL

2.3 Git in Education

Version control is a topic that is increasingly being intro-
duced in computer science curricula. Significant amounts
of research focus on going beyond introducing version con-
trol as a topic in a course to embedding the use of version
control into pedagogy [11, 5, 1]. As version control be-
comes more prevalent in industry, computer science educa-
tion should move to embrace these technologies and intro-
duce them to students.

Code hosting services such as GitHub are joining in the
efforts to educate computer science students about version
control by offering programs like GitHub Classroom [6] and
offering students free benefits when using their services [7].

2.4 Cognitive Dimensions of Notations

The original 14 Cognitive Dimensions of Notations, as
introduced by Green [10] are used to evaluate the usabil-
ity of an existing interface or appropriateness of the method
of information delivery. As the student interface to Gitsub-
mit is aimed at exposing only the needed functionality for a
simple git-based workflow, evaluation of the interface will
be done by students using the interface in classes (who may
have varying levels of experience with git). Certain dimen-
sions, such as Abstraction Gradient, can only be evaluated
by developers proficient with the workflow, who are famil-
iar enough with the steps to know whether more details can
be encapsulated.

This paper focuses on the following dimensions:

e Diffuseness/Terseness: how many symbols are needed
to express a solution?

e Error-proneness: how well does the interface protect
the user from mistakes?

e Hard Mental Operations: How much additional “pro-
cessing” must a user of the system do to complete a
solution? How much additional information is needed
that is not tracked by the UI?

e Premature Commitment: Is there a firm ordering of
steps needed to express a solution? Can a user go back
and correct mistakes?

e Progressive Evaluation: Does the Ul provide enough
feedback as to the current state of the solution?

e Role-expressiveness: How clear is the meaning of each
symbol, and the role it plays in the solution?

Some of the dimensions require analysis from people
who are skilled in the domain solution. These include:

e Abstraction Gradient: How much can be abstracted by
the notation?

e Closeness of Mapping: How well does the notation
correspond to the problem?

3 Gitsubmit

Gitsubmit is a submission system for programming as-
signments with three main parts: a student interface, an in-
structor interface, and a Git hosting system. What follows
is a brief discussion of the hosting system and instructor in-
terface, and an in-depth analysis of the student UI.

3.1 Hosting System

Currently, Gitsubmit uses a self-hosted instance of Git-
lab [9] as the hosting backend. This hosting solution was
chosen to allow full control of user creation, authentication,
and project visibility. The system itself is not tied to Gitlab,
and could be modified easily to use other well known host-
ing solutions such as GitHub or BitBucket. This would re-
quire cooperation from these respective companies to set up
this functionality, but is an attractive option, as this would
move the host system administration away from the instruc-
tor.

3.2 Instructor Interface

The instructor interface is a simple interface to automate
the creation of a class, the assignment of a project to a class,
and the fetching of the student submissions for a specific as-
signment. The interface is not designed to be a replacement
for a full-fledged git client (and indeed abstracts all of the git
operations away from the instructor). When discussing the
different functionalities of the instructor Ul, Gitlab termi-
nology is used; where possible the corresponding concepts
from GitHub and BitBucket have been provided.

3.2.1 Creating a Class

A class in Gitsubmit maps to the concept of a group in Git-
lab (similar to Organizations in GitHub or Projects in Bit-
Bucket). The instructor provides the semester, course num-
ber, and course name, and a new group is created with the
instructor added as a group administrator. The group name
is formatted to contain this information (for example, the
group W2017.44242 Data_Structures is the Data Structures
class (course number 44-242 at Northwest Missouri State
University) that is running during the Spring/Winter 2017
semester). Graders and TAs can be added to this group as
group administrators as well (allowing them automatic ac-
cess to student submissions for grading and assistance).

The instructor also provides a CSV file containing stu-
dent emails and student names. The UI creates a roster in
a git repository that contains a mapping of all students in
the class to their Gitlab user. If any student does not exist
in Gitlab, a user is automatically created. This is one of the
differences between GitHub Classroom and Gitsubmit; Git-
submit removes the need for the student to create their own
user on the system. One of the stated goals of Gitsubmit is
to remove the parts of the process that are not directly tied to
integrating the workflow into the students’ everyday devel-
opment cycle. It also allows a consistent naming convention
for student user IDs.

3.2.2 Creating an Assignment

To create an assignment in the instructor interface, the
teacher selects a class, names the assignment, and provides
either a skeleton directory or a Markdown formatted project
description. Optionally, the instructor may also specify a
CSV of groups (based on student ID) if the project being
assigned is a group project.

The interface fetches the roster from the Gitlab, and cre-
ates a repository in the Gitlab group for each individual or
student team. The skeleton or description is then pushed
to each repository, and the appropriate students are added
to the repositories with the Developer role; this allows the
pupil to push and pull code from the repository, but not
change access permissions (and allow other students to see
their submission or working progress). Finally, the inter-
face creates a single repository that contains every student
repo as a git submodule. This repository enables efficient
fetching of the student submissions with only a few git com-
mands.

This assignment structure is one way Gitsubmit differen-
tiates itself from GitHub Classroom; the assignment struc-
ture is designed to not give students the ability to modify
the permissions on the assignments. In this way, assignment
confidentiality is preserved.

3.2.3 Fetching Student Submissions

Fetching student submissions can be done easily from a
command line with four simple commands:

git clone <url_of_grading_repo>
cd <grading_repo>
git submodule update —--init --recursive
git submodule foreach \
git pull origin master

In order to remove the need for the instructor to drop to the
command line, the instructor interface allows the teacher or
grader to select an assignment for a class and download all
student repositories for that assignment.

3.3 Student Interface

The student interface (Figure 1) was designed to be a
very simplified Git client that supports the basic operations
needed to use Git as a submission system: clone, push, pull,
add, and commit. The icons and UI were designed in tan-
dem with VeCVL [4].

To begin an assignment, the student selects the semester,
course, and the assignment (Figure 2). The list of commits
in the repository is shown in the right-most pane. To be-
gin the selection, the student clicks the Clone/Pull button
(circled in Figure 2). Colors as well as icons are used to
indicate the status of the commits. Commits that reside on
the server but not locally are indicated with an orange (or
red if the commit is the HEAD of origin/master) ID and the
Clone/Pull icon. Commits that reside only on the local ma-
chine are blue and indicated with the Push icon. If a commit
is indicated with a green ID and a check icon, the commit
is the HEAD commit on the remote repository and also ex-
ists on the local repository (and is the commit that will be
graded). Gray commit IDs are common to both local and
remote.

After an assignment is started, the student can complete
the work normally; using whatever IDEs or other tools are
used in the course. As files are modified or added, they ap-
pear in the “Unstaged Changes” pane. Students can select
which changes should be submitted. The changes are cho-
sen using the add button (circled in Figure 3). Once the stu-
dent has selected the changes to submit, a commit message
can be specified describing what the changes were, and the
commit finalized by hitting the Commit button (as circled
in Figure 4).

When the student stops working on a n assignment, they
can push their work to the server with the Push button (cir-
cled in Figure 5). Note the colors indicating the states of
the commits in the repositories. The student finalizes their
submission by clicking the push button. A successful sub-
mission is indicated with a green check mark next to the

B GitSubmit

Spring 2016

Unstaged Changes

Staged Changes

Commit Message

Q

Figure 1. The Gitsubmit Main Window

7 Gitsubmit

~Spring 2016 ~
v 44908super

prettyple
sigh (el
submodt.
submodt.

44998(super awesome test): Grouptest [cased-eloen]

Unstaged Changes

Staged Changes

Commit Message:

@

Initial commit with project desd

bb625c5) B

Nathan Eloe

Figure 2. Assighment Selection in Gitsubmit

7 Gitsubmit

~Spring 2016 ~

44998(super awesome test): Grouptest [cased-eloen]

Unstaged Changes

Staged Changes

®

READMEmd

- o x

DD

Initial commit with project desd

bsezecs) ()

Nathan Eloe

Figure 3. Adding files to the Submission in
Gitsubmit

7 Gitsubmit

~ Spring 2016 A
v aag0Bsuper

44998(super awesome test): Grouptest [cased-eloen]

Unstaged Changes

Staged Changes

-

newFilett bt
READMEmd

This became actvated when there were changes i the staged changes pane!|

Figure 4. Making a Commit in Gitsubmit

commit the student wants to have submitted (as in Figure 6).

7 Gitsubmit - o x
< Spring 2016 ~
v 4499isuper 44998(super awesome test): Grouptest [cased-eloen] @
again (el
argh (elo. Unstaged Changes Staged Changes [Another commit
putest (Nathan Elos (22503fe1) B
fingercro i activated when th
gradetest,
b - oy
radingt. with project desq
grading
grouptes. Nathan Eloe bse2oco) ()
hopefulf.
lastic (el
nobresk -
pleasefor. CommitMessage
prettyple
sigh (clo
submod.
submodt..
o <

Figure 5. All Commits Ready to Push in Git-
submit

3.4 Usability Features

Gitsubmit contains some embedded features to help
guide the students through the submission process, as well
as some visual cues that help form a connection between the
submission process and the version control process.

As a student progresses through an assignment submis-
sion, options that cannot be performed are disabled; for ex-
ample, if no files have been added to the staging area or a
commit message has not been provided, the button to make
a commit is disabled. Actions are only made available to the
student when all prerequisites for the step in the submission
process have been satisfied. Additionally if there is an in-
dication that the student has not completed the submission
process when he or she tries to exit the program (files have
not been added to the staging area, or changes have not been
committed, or commits have not been pushed), the interface
verifies this is intended before closing.

One major stated goal of Gitsubmit is to simplify the in-
troduction to Git and remove steps from the process that are

B GitSubmit

~ Spring 2016
v 449%8:super ...
again (el..

argh (elo.. Unstaged Changes

44998(super awesome test): Grouptest [cased-eloen]

Staged Changes

\Another commit

exetest ..
fingercro...
gradetest...
gradingt...

gradingt... »
grouptes...
hopeful f...
lastfix (el...

Nathan Eloe (22503fe1)
This became activated when th

Nathan Eloc
Initial commit with project desc

Mathan Eloe

nobreak .
pleasefor... Commit Message
prettyple.
sigh (elo..
submedt...

submodt...

Figure 6. Submission Pushed to Gitlab in Gitsubmit

not related to the Version Control workflow. To this end, all
interactions that are necessary but auxiliary to the Version
Control process are abstracted away. This includes authen-
tication with the central hosting service. When Gitsubmit
is first run, the student provides their Gitlab username and
password in a first run configuration window (not shown in
this paper); this is the only time a student is required to in-
teract with the authentication system. Gitsubmit uses the
student provided username and password to obtain an API
token from the Gitlab server and generate a SSH key that
is used to authenticate and encrypt all Git traffic. This re-
moves the burden of managing authentication methods from
the students without requiring that they learn how to gener-
ate an SSH key, or provide a password on every push or
pull. While authentication is an important part of securing
the workflow, it is an external mechanism that is not neces-
sary to understanding the basics of version control.

Tool tips provide both usability enhancement and sub-
tle introduction to the Git verbs. In the assignment select
panel, tool tips show additional information (the full name
of the project, for example) to help the student determine
which project should be chosen. This is particularly helpful
when there are multiple similarly named projects that might
only differ by the group members (but is not noticeable in
the project name itself). The tool tips for the VCS action
buttons are the git verbs; in this way, the student begins to
make connections between the verbs and the actions those
verbs represent in the Version Control process.

4 Usability Evaluation

The survey used to evaluate the usability of Gitsubmit
was designed to target the six cognitive dimensions that
could be analyzed by a novice in the practice of Version
Control. Individuals using the system were asked to eval-
uate these cognitive dimensions in much the same way
one would ask a novice user to perform a Cognitive Walk-

through. Two statements targeted each of the six identified
dimensions; one statement approached the dimension from
a positive perspective (the UI does X well), while the sec-
ond looked at it in a negative way (the UI does not do X
well). For example, for the dimension of Error-Proneness,
the survey gives the following statements:

e The UI makes it easy to make a mistake in the submis-
sion process.

e The UI makes it difficult to make a mistake in the sub-
mission process.

The exception to this are the statements focusing on Difuse-
ness/Terseness, which asks the user to evaluate two negative
statements:

e The Ul is not expressive enough to complete a submis-
sion.

e The Ul is cluttered or complex.

All responses are in the form of a five point Likert Scale,
with scores of 1, 2, 3, 4, and 5 corresponding to Strongly
Disagree, Disagree, Neutral, Agree, and Strongly Agree, re-
spectively. To determine the UI’s overall score for a specific
dimension, the scores for the negative and positive state-
ments need to be comparable; as such, the scores for a neg-
ative statement are converted to a positive score by deter-
mining the distance of the average score from 1 (Strongly
Disagree) and taking the score the same distance from 5
(Strongly Agree). This becomes a simple equation:

adjustedScore = 5 — (negativeScore — 1)
= 6 — negativeScore

The survey was distributed to sections of classes that
have used or are currently using Gitsubmit in their course-
work. This includes two sections of a Sophomore level Data
Structures class, a Senior level Operating Systems class,

and a Junior/Senior level Algorithms class. There was some
overlap in students between classes. Of the survey invita-
tions sent out, 34 responses were elicited.

Some of the respondents have experience with Git in
other courses (such as a Software Engineering Course) or
in industry (through an internship or other professional ex-
perience). A portion of the survey asks these students to
evaluate Gitsubmit (and VeCVL) on both the Abstract Gra-
dient and the Closeness of Mapping. The statements posed
to these more experienced respondents include:

e The UI exposes too many git operations to complete a
submission.

e The UI doesn’t expose enough git operations to com-
plete a submission.

e The UI abstracts away too many of the git operations.

e The UI should combine more operations into abstrac-
tions.

e The UI uses too many symbols to indicate a git opera-
tion.

e The UI doesn’t use enough symbols to indicate a git
operation.

For all of these statements, an average score of less than
3 is a positive indicator.

The full survey can be accessed at https://www.
surveymonkey.com/r/922NT9X.

5 Results

Figure 7 shows the average score for each statement in
the survey aimed at all respondents, as well as the aggregate
overall score for each Dimension. For statements posed as
a negative, a score below 3.0 indicates that on average stu-
dents disagree that with the negative statement, and is a de-
sirable score. For positively posed statements, a score above
3.0 shows that Gitsubmit is on average doing well in that
category. The reported overall score is an average of the
scores of the statements for the given Cognitive Dimension
(adjusted in the case of negative statements).

Table 1 shows the average results for the questions di-
rected at students with Git experience. In all cases, the state-
ments were negative, so an average less than 3 reflects well
on Gitsubmit and VeCVL. The number of responses (that
were not N/A or prefer not to answer) varies from question
to question based on student understanding of version con-
trol and Git.

Table 1. Average Results for Non-novice
Statements. All statements reflected nega-
tively; average scores less than 3 is desirable.

Metric Avg. Score Responses
Too Few Operations 2.19 26
Too Many Operations 2.04 26
Too Much Abstraction 224 25
Too Little Abstraction 2.71 24
Too Many Symbols 2.08 26
Too Few Symbols 231 26

6 Conclusions

The results in Figure 7 show that Gitsubmit as an im-
plementation of VeCVL performs well when analyzed by
these eight Cognitive Dimensions of Notations. Overall,
students of varying experience levels indicated that Gitsub-
mit’s strongest areas were Diffuseness/Terseness and Pro-
gressive Evaluation. This suggests that students find Git-
submit’s interface to be simple enough to use, but provide
sufficient functionality to submit the assignment. Students
also like that it is able to show them the status of their sub-
mission.

The weakest area of those examined is Error-Proneness.
Responses were on average slightly positive; this indicates
that this is an area where Gitsubmit can improve. Further
exploration of the kinds of errors that students are encoun-
tering will be needed to determine whether the failings are
in the UL, in VeCVL, or both. From an instructor and grader
perspective, there have been fewer instances of students
submitting the wrong file (or corrupted files) since moving
to using Gitsubmit in these classes.

The results in Table 1 are overwhelmingly positive to-
wards both Gitsubmit and VeCVL. The survey indicates that
the “Goldilocks Zone” has been reached in terms of num-
ber of operations and symbols needed to complete the task.
The weakest area for GitSubmit is the amount of abstrac-
tion; while students on average agree that there is neither
too much or too little abstraction, the results for too little
abstraction are closer to neutral than outright disagreement.
This indicates an area where Gitsubmit could improve in its
usability.

7 Future Work

Gitsubmit and VeCVL are continually evolving works;
every course they are used in give feedback and a chance
for refinement and improvement. These results show that
one area that Gitsubmit could improve in is how well it pre-
vents users from making mistakes. Of particular interest

Cognitive Dimensions Survey Results

4.5 T T T T T T
Positive =20 . . :
4T Negative) e 1
3.5 | Overall 2 . . . 4
@ 3 N
o
@ 25 . 1
=
g 2r T
- 15 .
l —. -
0.5 1

Figure 7. Average Novice Statement Results from Survey. Note that both statements for Diffuse-
ness/Terseness were negatively framed questions; an average score of less than 3 is desirable for
both, and both scores were adjusted to determine the Overall score.

is the kind of errors users are making; the notation needs
to prevent users from making errors related to submitting
the correct files. Most errors that instructors and graders
encounter students making relate to the student closing the
Ul in the middle of a git operation (such as clone or pull),
which puts the Ul in a state it cannot easily recover from. If
students are making other kinds of errors, it needs to be de-
termined whether the notation (VeCVL) or the UI (Gitsub-
mit) needs to be modified to solve the errors that students
are encountering.

Further analysis of the Ul is in progress, both through
surveys of users and analyses with Human/Computer Inter-
action tools. A Cognitive Walkthrough analysis is ongo-
ing, and further directed research will investigate the error-
proneness of the UL

Additionally, work is progressing to make the UI look
more attractive to users and easier to deploy. Gitsubmit is
currently implemented using Python and QT; while devel-
opment is quick, deployment to multiple platforms (specif-
ically OSX and Windows) is difficult. Updating the UI on
student computers is also difficult. Additionally, the UI is
not optimal when it comes to interface real estate or visual
appeal.

References

[1] D. M. Case, N. W. Eloe, and J. L. Leopold. Scaffolding
Version Control into the Computer Science Curriculum. In
Proceedings of the 2016 International Workshop on Dis-
tance Education Technology (in conjunction with the 22nd

(2]
(3]
(4]

(5]

(6]
(7]
(8]

(9]

(10]

[11]

International Conference on Distributed Multimedia Sys-
tems (DMS’16)), 2016.

S. Chacon. Pro Git. Apress, Berkely, CA, USA, 2nd edition,
2014.

V. Driessen. A successful Git branching model, 5 Jan. 2010.
http://nvie.com/posts/a-successful-git-branching-model.

N. W. Eloe, D. M. Case, and J. L. Leopold. VeCVL: A Visual
Language for Version Control. In Proceedings of the 2016
International Workshop on Visual Languages and Comput-
ing (in conjunction with the 22nd International Conference
on Distributed Multimedia Systems (DMS’16)), 2016.

R. Francese, C. Gravino, M. Risi, G. Scanniello, and G. Tor-
tora. On the Experience of Using Git-hub in the Context of
an Academic Course for the Development of Apps for Smart
Devices. In Proceedings of the 21st International Confer-
ence on Distributed Multimedia Systems (DMS’15), pages
292-299, 2015.

GitHub. GitHub Classroom. https://classroom.github.com.
GitHub. GitHub Education. https://education.github.com/.
GitHub. Understanding the GitHub Flow, 12 Dec. 2013.
https://guides.github.com/introduction/flow/.

GitLab. Code, test, and deploy together with Git-
Lab open source git repo management software.
https://about.gitlab.com.

T. R. Green. Cognitive dimensions of notations. People and
Computers V, pages 443-460, 1989.

J. Lawrance, S. Jung, and C. Wiseman. Git on the cloud
in the classroom. In Proceeding of the 44th ACM technical
symposium on Computer science education, pages 639-644.
ACM, 2013.

