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Abstract

We present a novel approach for accurate character-
ization of workloads. Workloads are generally de-
scribed with statistical models and are based on the
analysis of resource requests measurements of a run-
ning program. In this paper we propose to con-
sider the sequence of virtual memory references gen-
erated from a program during its execution as a tem-
poral series, and to use spectral analysis principles
to process the sequence. However, the sequence is
time-varying, so we employed processing approaches
based on Ergodic Continuous Hidden Markov Mod-
els (ECHMMs) which extend conventional stationary
spectral analysis approaches to the analysis of time-
varying sequences.

In this work, we describe two applications of the
proposed approach: the on-line classification of a run-
ning process and the generation of synthetic traces of
a given workload. The first step was to show that
ECHMMs accurately describe virtual memory se-
quences; to this goal a different ECHMM was trained
for each sequence and the related run-time average
process classification accuracy, evaluated using trace
driven simulations over a wide range of traces of
SPEC2000, was about 82%. Then, a single ECHMM
was trained using all the sequences obtained from a

given running application; again, the classification
accuracy has been evaluated using the same traces
and it resulted about 76%. As regards the synthetic
trace generation, a single ECHMM characterizing a
given application has been used as a stochastic gen-
erator to produce benchmarks for spanning a large
application space.

1 Introduction

Performance evaluation of computer systems requires
to test different alternatives under identical condi-
tions. However, a real computing environment is
generally not repeatable, and for this reason it is nec-
essary to characterize the workload by developing a
workload model that can be used repeatedly. Once a
workload model is available, changes in the workload
and in the system can be studied under controlled
conditions.

As pointed out in [1], workload characterization us-
ing a model plays a fundamental role in many areas,
namely to understand the key resource usage of appli-
cations, to tune computer architectures, to validate
trace reduction mechanisms, to guide the selection of
programs for obtaining benchmark sets, to generate
synthetic traces to span application spaces, and to
create abstract program behavior models for perfor-
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mance studies of computer systems.
Workloads are typically modeled as stochastic pro-

cesses and analyzed with statistical techniques [3] [4].
This is because different benchmarks are obtained
from a single application for different inputs, and
the only way to describe all the potential application
space is through the extraction from the running ap-
plication of suitable parameters which describes the
main features of the workload.

A running application thus produces a huge
amount of data; the only way to analyze such data
is by means of statistical techniques. In this paper
we propose to use ergodic Hidden Markov Models
as statistical models of workloads. Our approach is
based on the idea to treat the sequences of memory
page references produced by a running application
as time-varying discrete-time series of data and to
analyze them with statistical techniques using spec-
tral parameters. The proposed methodology operates
as follows: the page references sequences obtained
from a running application is divided into segments
of some hundreds of page numbers, and each piece is
then described with a vector of spectral parameters.
Chunks of references are formed by some hundreds
of such vectors; the chunks are then used to estimate
the parameters of a Hidden Markov Model. Repeat-
ing this operation for each running application, we
compute a HMM model of the application. The ac-
curacy of such models has been estimated as quite
good.

By considering a number of workloads obtained
from the same type of application, and re-estimating
the parameters of a single Hidden Markov Model, a
statistical model of that type of application can be
computed. In this way, we have obtained models for
several application types, as described in 1.1. In this
paper, models have been used in two ways: to de-
termine to which application type belongs a running
application and to generate synthetic traces. Both
these points are very important from a computer ar-
chitecture perspective. As regards the benchmark
classification, it is important to note that using our
approach the classification is possible in run-time, i.e.
during the application execution, since the computa-
tional complexity is quite low. As regards the syn-
thetic traces generation, HMMs can indeed be viewed

as generators of observations, in our case allowing to
cover a large application space for computer architec-
ture studies and designs [5].
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Figure 1: Graphical view of a portion of a sequence
of page references.

1.1 Methodology

We used traces-driven simulations to test the pro-
posed approach. The traces were a subset of the
SPEC2000 benchmark suite [2], as reported in Tab. 1.

Total number of
Benchmark Category page references

Bzip2 compression 519960950
Crafty chess game 322625985
Eon ray traces 526065045
Gcc C compiler 646344471
Gzip compression 477528457
Perl Perl interpreter 351047065
Twolf place and route simulator 5246007019
Vpr FPGA placement and routing 2240811177

Table 1: The traces used in this work.

CPU address traces have been obtained by run-
ning the applications of Tab. 1 with different input
data; several executions of each application have been



considered. The applications of Tab. 1 run on a Pen-
tium 2 processor at 450 MHz under Windows NT
operating system. The benchmarks were downloaded
from www.byu.com. In Fig. 1 a part of a page refer-
ences trace (16000 virtual time instants) is shown.
This figure illustrates the time-varying characteristic
of the trace.

The rest of this paper is organized as follows. In
Section 2 the properties of HMMs are described to-
gether with the considered workload parameters. In
Section 3 the workload classification methodologies
based on HMM are described while in Section 4 the
generation of synthetic traces with HMMs is briefly
reported. Finally, in Section 5 some final remarks are
reported.

2 Hidden Markov Models for
Workload Classification

2.1 Parameters

The page references are produced at a CPU instruc-
tion clock rate, because each virtual memory address
is translated to a virtual page reference. This infor-
mation rate is too high to make reasonable workload
evaluations, and consequently the number of page ref-
erences is too large. Therefore, some feature extrac-
tion must be performed for getting rid of the redun-
dant information and for reducing the data rate. Ac-
cording to the idea of considering the page references
sequence as a signal, we use a spectral description
of the page references sequences. Characteristics in
the sequences, such as for examples loops or sequen-
tial program behaviors, are indeed described in the
spectrum. For instance, loops introduce peaks in the
spectrum while a sequential address sequence pro-
duces a DC component. For example, representing
the sequence of Fig. 1 in the log spectral domain, we
obtain the data shown in Fig. 2.

Since the page references sequence is time vary-
ing, as suggested in Fig. 1, the result of Fig. 2 is
obtained with short-time spectral analysis. In par-
ticular, the sequence of virtual memory pages is di-
vided into short sections – 120 references long – and
analyzed by means of a discrete Fourier transform.
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Figure 2: Log-spectral data of the portion of the page
references sequence shown in Fig. 1.

It is worth noting that Fig. 2 reports a log-spectral
view of the page references trace shown in Fig. 1. In
Fig. 2 it is possible to see how the change of behav-
ior in the trace of Fig. 1 at about 5000 virtual time
instants reflects in the spectral domain. As in the
proposed approach a fundamental issue is related to
the comparison between log-spectral data, it is im-
portant to define a log-spectral distance between two
spectra. To show how to define the log-spectral dis-
tance, let us start with the Euclidean distance defi-
nition between the log spectra of two sequences, xn
and yn:

e(ω) = log |X(ω)|2 − log |Y (ω)|2 =

= 2(log |X(ω)| − log |Y (ω)|) =

= 2Re [log (X(ω))− log (Y (ω))]

where X(ω) =
∑+∞
n=−∞ xne

jωn is the spectrum of
the xn sequence. On the other hand, log(X(ω)) =∑+∞
n=−∞ cne

jωn where cn is the cepstrum sequence [7]
which is obtained applying an inverse Fourier trans-
form to the log spectrum of the input page references
sequence. Hence, calling cxn and cyn the cepstrum of
the xn and yn sequences respectively,

e(ω) = 2Re

[
+∞∑

n=−∞
(cxn − cyn) ejωn

]
=

+∞∑
n=−∞

(cxn − cyn) ejωn



because the cn sequences are symmetrical since the
input reference page sequence is real. Finally, the
spectral distance between two sequences xn and yn is

d(X,Y ) =
1

2π

∫ π

−π
e2(ω)dω =

+∞∑
n=−∞

(cxn − cyn)
2
.

In conclusion, the spectral distance between the log
spectra is simply the Euclidean distance between the
cepstal sequences.

On the basis of this consideration, we described the
page references sequences with cepstral coefficients.
In Fig. 3 the cepstral representation of the page ref-
erences sequence of Fig. 1 is reported. As shown in
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Figure 3: Cepstral description of the portion of the
page references sequence shown in Fig. 1.

Fig. 2 the change of trace behavior at about 5000
time instants is reflected in the cepstral domain. In
fact, the slow spectral characteristics are seen in the
part around zero in the cepstral domain, in Fig. 3 we
can see that the initial part of the cepstrum is more
spiky around zero reflecting in this way the change of
trace behavior seen in Fig. 1. On the basis of that,
it is useless to consider all the cepstral coefficient to
represent traces; for this reason we used only the first
10 cepstral coefficients.

2.2 Hidden Markov Modeling

Markov models are stochastic interpretations of time
series. The basic Markov model is the Markov
chain, which is represented with a graph composed
by a set of N states; the graph describes the fact
that the probability of the next event depends on
the previous event. The current state is tempo-
rally linked to k states in the past via a set of Nk

transition probabilities. Let us denote the generic
state of the system with St, St ∈ {1, 2, ..., N} and
by a(St|St−1, St−2, . . . , St−k) the probability that the
system is currently in state St given the previously
sequence of states St−1, St−2, . . . , St−k; a() is called
the transition probability for a model of order k. In
homogeneous Markov chains, the transition probabil-
ity depend on the previous state only; in such case the
transition probabilities can be represented by a tran-
sition matrix. If the Markov chain is fully connected,
or ergodic, each state of the model can be reached
from every other state in a single virtual time step.
As regards the macroscopic capabilities of such mod-
els, we can say that the self loops describe a locality
in the process.

Other types of HMMs could better describe the
statistical properties of the observed process. For
example, the left-to-right models have the property
that, as virtual time increases, the state index also
increases; they can therefore model sequences whose
properties change over time in a successive manner.

In general, an homogeneous Markov chain has the
following properties:

1. limited horizon: Prob(St+1|St, St−1, . . . , S1) =
Prob(St+1|St);

2. stationarity: Prob(St+1|St) = Prob(S2|S1).

A Markov chain is therefore described by the transi-
tion matrix A whose elements are ai,j = Prob(St+1 =
j|St = i) and the initial probability vector πi, πi =

Prob(S1 = i),
∑N
i=1 πi = 1. However, in many cases,

Markov models are too simple to describe complex
real systems and signals [8]. In Hidden Markov Mod-
els (HMMs), the output for each state corresponds
to an output probability distribution instead of a de-
terministic event. That is, if the observations are



sequences of discrete symbols chosen from a finite al-
phabet, then for each state there is a corresponding
discrete probability distribution which describes the
stochastic process to be modeled. In HMMs, the state
sequence is hidden and can only be observed through
another set of observable stochastic processes. Thus,
the state sequence can only be recovered with a suit-
able algorithm, on the basis of optimization criteria.
It is important to note that the observation proba-
bilities has been so far assumed discrete. In many
cases, however, the observations are continuous fea-
tures vectors. It is possible to convert the continuous
observations into discrete ones using vector quanti-
zation, but in general some performance degradation
due to the quantization process is observed. Hence,
it is important, from a performance point of view,
to use an overall continuous formulation of the algo-
rithms.

Generally speaking, HMMs lead to the three basic
problems:

1. the estimation problem: given the observed
sequence O=O1, O2, . . . , OT , how the model
parameters λ can be adjusted to maximize
Prob(O|λ)? This problem concerns the estima-
tion of the model parameters. This estimation
process is performed by iteratively maximize the
likelihood Prob(O|λ) using an Expectation Max-
imization (EM) approach [9]. The differences
between discrete and continuous HMMs lead to
different re-estimation algorithms for the model
parameters.

2. the evaluation problem: given the observed se-
quence O, the problem is to compute the prob-
ability that the observed sequence whose pro-
duced by the model. This problem can be also
stated as follows: given several HMMs and a se-
quence of observations, how do we choose the
model which best matches the observations?

3. the decoding problem: given the observation se-
quence O, what is the most likely state sequence
S = S1, S2, . . . , ST ? The decoding is usually per-
formed using the Viterbi algorithm.

3 Workload Classification

For dynamic characterization of processes, the ad-
dress field of the BYU traces has been extracted. In
this way we have obtained a sequence of virtual ad-
dresses generated by the processor during the exe-
cution of the processes. For converting the trace of
addresses into trace of virtual pages, the sequence of
addresses has been divided by the page dimension,
which we set to 4096 bytes.

Once the sequence of virtual pages has been ob-
tained from every BYU trace and thus for every pro-
cess, we have tried to use discrete HMMs for their
classification. Even if the sequence of pages is a dis-
crete sequence, it can not be used for processes clas-
sification using discrete HMMs, as it contains a too
high number of symbols.

In order to face this problem, the sequence of vir-
tual pages has been turned into a sequence of few
symbols, without loosing meaningful data. The se-
quence of virtual pages has been turned into sequence
of cepstral coefficients by the short time analysis pro-
cess described in Sec. 2.1.

3.1 Single Trace Classification

The sequences of cepstral coefficients are real number
sequences. For analyzing cepstral sequences using a
discrete HMM, vector quantization is needed. In this
process some degradation is introduced and the train-
ing lacks its efficiency.

A continuous HMM can use an input sequences of
10-dimensional cepstral vectors and vector quantiza-
tion is not needed. The results obtained in this way
usually perform better than using the discrete model.

The multivariate Gaussian density is used for
describing the cepstral observation. The 10-
dimensional cepstral vector is described using a mul-
tivariate density having 10 dimensions, and it is
specified by means of the mean and covariance ma-
trixes. Using this approach it is supposed that the
10-cepstral coefficients are uncorrelated and so the
covariance matrix is diagonal.

In order to choose the number of states and the
topology of the HMMs, several tests have been per-
formed. The number of states needed is lower than



in the discrete HMM. Considering topology, ergodic
models score better results.

In Fig. 4 a graphical representation of the mean
classification of all the traces over the number of
states for ergodic and left-right models is depicted.

Left-right CHMM (50 observations)

Left-right CHMM (20 observations)

Ergodic CHMM (100 observations)

Figure 4: Average recognition rate for all the traces
over the number of states of ergodic and left-right
models.

As the models using 4 states provides better re-
sults using a lower number of observation, we have re-
peated experiments using this configuration increas-
ing the number of observations.

Using 100 observations for every model, in the er-
godic case the recognition mean of single traces is
about 82%, in the left-right case this mean is 65%.
In Fig. 5 and in Fig. 6 these results are depicted,
gathering the traces per workload and computing for
every traces group the mean recognition rate.

The ergodic continuous HMMs have been trained
using 100 observations for every model. The recogni-
tion rate varying the number of states and using all
the traces is reported in Fig. 6.

The results obtained using such statistical models
demonstrated the effectiveness of this dynamic pro-
cesses modeling approach. Cepstral coefficient ob-
tained from the virtual pages sequences are a good
parameter for describing traces of programs during
execution.
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Figure 5: Average classification rate for all the traces
using 16-state ergodic discrete HMMs.
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Figure 6: Average classification rate for all the traces
with 4-state ergodic continuous HMMs.
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Figure 7: Average classification rate for all the traces
with 4-state left-right continuous HMMs.



3.2 Program Behavior Modeling

Dynamic classification of BYU traces, taking as pa-
rameter the virtual pages, has obtained satisfactory
results. As seen in 3.1, the traces of a single applica-
tion have been obtained processing such application
with different inputs, or processing different functions
of the same program.

Then, we have classified the workloads, gather-
ing the traces of the same workload using a single
HMM trained with several traces representing the
same workload.

Using several traces of the same workload for clas-
sifying program behavior using ergodic discrete and
continuous HMM, we have obtained the results re-
ported in Fig. 8 and in Fig. 9.
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Figure 8: Workload classification using ergodic dis-
crete HMM.
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Figure 9: Workload classification using ergodic con-
tinuous HMM.

The mean results obtained in the case of ergodic
discrete and ergodic continuous HMMs are reported
in Tab. 2: ergodic continuous models obtain better
classification accuracy than the discrete ones.

Ergodic Ergodic
Discrete HMM Continuous HMM

Cepstral 65% 76%

Table 2: Workloads classification.

4 Synthetic Trace Generation

A Hidden Markov Model can be used as a generator of
a stochastic process. The procedure is the following:

1. Choose an initial state i according to the initial
distribution π.

2. Set t = 1.

3. Generate a N -dimensional random variable ac-
cording to the characteristic of the multivariate
Gaussian distribution in state i.

4. Perform a state transition according to the tran-
sition probabilities ai,j .

5. Set t = t+ 1. If t < T go to 3, else terminate.

The random variable generated in step 3 is a vector
of cepstral coefficients. This vector must be inverted
to obtain a set of page references.

A result is reported in Fig. 10, where the log-
spectral data of a synthetic trace produced with the
above procedure and the HMM trained with the trace
of Fig. 1 is reported. Fig. 10 should be compared with
Fig. 2.

5 Conclusions and Future
Work

In this paper we describe an approach for workload
characterization using ergodic hidden Markov mod-
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Figure 10: Example of synthetic trace generated us-
ing a continuous ergodic HMM represented in the
spectral domain.

els. The page references sequences produced by a
running application are divided into short virtual
time segments and used to train a HMM which mod-
els the sequence and is then used for run-time clas-
sification of the application type and for synthetic
traces generation. The main contribution of our ap-
proach are on one hand that a run-time classification
of the running application type can be performed and
on the other hand that the applications behavior are
modeled in such a way that synthetic benchmarks
can be generated. Using trace-driven simulation with
SPEC2000 benchmarks, the mean classification rate
is about 82% for each traces and about 76% using
a single HMM to model a single application type.
Many future developments of our approach are possi-
ble since what we propose in this paper – to use time-
varying non-linear processing techniques to treat se-
quences produced by programs during execution – is
a novel approach in computer architecture studies. In
addition to this, we believe that another interesting
line of research is represented by the adaption of the
proposed framework to novel big data trends (e.g.,
[10, 11, 12]).
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