
Improving MapReduce Performance by Using a New Partitioner in YARN

Wei Lu1,, Lei Chen1,∗, Haitao Yuan1, Weiwei Xing1, Liqiang Wang2, Yong Yang1

1 School of Software Engineering,Beijing Jiaotong University, Beijing, China
2 Department of Computer Science, University of Central Florida, Orlando, USA

Email: 1{luwei,13112084,htyuan,wwxing,12112088}@bjtu.edu.cn
2{lwang}@cs.ucf.edu

Abstract

Data skew, cluster heterogeneity, and network traffic are
three issues that significantly influence the performance of
MapReduce applications. However, the Hash-Partitioner
in native Hadoop does not consider them. This paper pro-
poses a new partitioner in Yarn (Hadoop 2.6.0), namely,
PIY, which adopts an innovative parallel sampling method
to achieve the distribution of the intermediate data. Based
on this, firstly, PIY mitigates data skew in MapReduce ap-
plications. Secondly, PIY considers the heterogeneity of the
computing resource to balance the load among Reducers.
Thirdly, PIY reduces the network traffic in shuffle phase by
trying to retain intermediate data on those nodes who act
as both mapper and reducer. Compared with the native
Hadoop and some other popular strategies, PIY can reduce
the execution time by 35.62% and 50.65% in homogeneous
and heterogeneous cluster, respectively. We also implement
PIY in parallel image processing. Compared with several
existing strategies, PIY can reduce the execution time by
11.2%

MapReduce; Hadoop; data skew; load balance; data
transmission amount; heterogeneous

1 Introduction

MapReduce has been proven to be an effective tool
to process large data sets [10]. As a parallel computing
framework that supports MapReduce, Apache Hadoop [6]
is widely used in many different fields. MapReduce consists
of two main functions: the map function, which transforms
input data into intermediate data, namely <key,value>
pairs, and the reduce function, which is applied to list of
values that correspond to the same key. Partitioning[4] is
a critical feature of MapReduce because it determines the
reducer to which an intermediate data item will be sent
in shuffle phase. Hadoop 2.6.0 usually employ static hash

functions to partition the intermediate data, which is called
Hash-Partitioner and described as the formula (1). Al-
though MapReduce is currently gaining wide popularity in
parallel data processing, its Hash-Partitioner is still ineffi-
cient and has room for improvement.

Hash(Hashcode(Intermediate data)modReducerNum)
(1)

First, data skew [2] is one of the most serious impact
factors affecting the performance of Hadoop cluster. Data
skew refers to the imbalance in terms of data allocated to
each task or the imbalance in terms of work required to
process such data. When data skew occurs, the aforemen-
tioned Hash-Partitioner leads to the fact that most of nodes
have to remain idle after they complete their tasks and await
the stragglers. Finally this approach prolongs the execution
time and decreases the computing efficiency. Therefore,
balancing the hash partition size, which is defined as the
size of the key-value pairs with the same hash result, is an
important indicator for load balancing among the reducers.

Secondly, heterogeneity is neglected by the Hash-
Partitioner. The computing environments for MapReduce
in the real world always are heterogeneous [17]. Even if
data skew does not happens on intermediate data, the exe-
cution time of each node are diverse because their various
computing capacities, consequently, stragglers still exist in
clusters. Therefore, Hash-Partitioner can not work well in
heterogeneous Hadoop cluster.

Thirdly, with the increasing size of computing clusters,
it is common that many nodes act as both Mapper and
Reducer in real production environment. Obviously, the
more intermediate data stay in these nodes, the less network
traffic happen in shuffle phase[20]. However, the Hash-
Partitioner does not consider this fact.

Many studies have focused on the data skew mitigation.
Among the proposed solutions, some are specific to a partic-
ular type of applications [9][13], some require a pre-sample
of the input data [18][12][16], some identify the task with
the greatest expected remaining processing time and repar-

DOI reference number: 10.18293/DMSVLSS2017-002



titions the unresolved data in a way that fully utilizes the
nodes in the cluster [10]. There are lot of studies on the het-
erogeneous Hadoop cluster [19] to reduce network traffic in
shuffle phase [11]. However, all previous studies can not
well solve the three deficiencies mentioned above compre-
hensively.

This paper proposes a new partitioner for Yarn (Hadoop
2.6.0), namely, PIY, to solve the problems about data
skew and network traffic in shuffle phase in heterogeneous
Hadoop cluster. Compared with the previous studies, the
contributions of this paper can be summarized as follows:
(1) We propose a novel sampling method, named PRS. PRS
achieves a highly accurate approximation to the distribu-
tion of the intermediate data by parallelly sampling the input
data during the normal map processing, and it only causes
little overhead.
(2) We propose an algorithm, namely BASH, to tackle the
data skew problem.
(3) To avoid the degradation performance caused by hetero-
geneity, PIY allocates appropriate amount of intermediate
data to reducers according to their computing capacity.
(4) PIY optimizes the network traffic by decreasing the
amount of the transmitted data located on nodes acting as
both Mapper and Reducers.
(5) We conduct a performance evaluation with PIY in
YARN (Hadoop 2.6.0). Compared with some other popular
strategies, PIY can reduce the execution time by 35.62%
and 50.65% in homogeneous and heterogeneous Hadoop
cluster, respectively. We also implement PIY in parallel im-
age processing. Compared with several existing strategies,
PIY can reduce the execution time by 11.2%

The rest of this paper is organized as follows. Section
2 reviews related studies. Section 3 briefly introduces the
Approx Subset Sum algorithm, which is used by PIY.
Section 3 describes our PIY in detail. Section 5 describes
the performance evaluation of PIY. Finally, Section 6 con-
cludes this paper.

2 Related Work

To ascertain the distribution of the intermediate result be-
fore determining the partition in Hadoop, sampling meth-
ods are widely applied in previous studies. We classify
these methods into two categories. The first category is
to launch a pre-run extra job before whole normal jobs to
conduct data distribution statistics, and then decide an ap-
propriate partition [18]. The drawback of these methods
is that when the volume of data is large, sampling will cost
much time which results in prolonging the execution time of
whole job. The second category contains the methods that
integrate sampling into the map stage [2]. However, these
methods hardly achieve high sampling accuracy, and also
cause performance degradation because the parallel degree

is decreased between the map and the reduce stage.
Data skew has also been studied in the MapReduce en-

vironment during the past few years. In [6], Ibrahim et al.
proposed LEEN, which partitions all intermediate keys ac-
cording to their frequencies and the fairness of the expected
data distribution after the shuffle phase. However, LEEN
lacks preprocessing to estimate the data distribution effec-
tively and separates map and reduce tasks absolutely, and
therefore, it incurs significant time cost. Gufler et al. pro-
posed TopCluster [3], which can mitigate data skew among
reducers by estimating the cost of each intermediate parti-
tion. However, it increases the intermediate data transmis-
sion amount in shuffle because it ignores data locality in
reduce side.

Heterogeneous computing environment is a research
hotspot in recent years. LATE [19] calculates the progress
rate of tasks and selects the slow task with the longest re-
maining time to back up. The work in [17] presents a
system that adopts the virtualization technology to allocate
data center resources dynamically based on application de-
mands. Their common limitation is that they cannot solve
the data skew problem.

However, all the aforementioned approaches ignore the
fact that there are plenty of nodes that run map tasks and
Reduce tasks concurrently in large-scale computing cluster.
The network traffic in shuffle phase will be optimized obvi-
ously if the partitioner can reduce the transmission amount
of the intermediate data that stay on those nodes. Our ap-
proach, i.e., PIY, can comprehensively resolve all problems
mentioned in this section.

3 Approx-Subset-Sum Algorithm

Because our PIY algorithm is based on the Approx-
Subset-Sum algorithm[8], we introduce it in this section.
An instance of the subset-sum problem is a pair (L, t), where
L is a set x1, x2, ..., xn of n positive integers (in arbitrary
order) and t is a positive integer. This decision problem is
to find whether there exists a subset of L that adds up ex-
actly to the target value t. As we known, this problem is
NP-complete and traversing all subset of L will take expo-
nential time, and therefore, this is unacceptable when the
data being processed is extremely large. To reduce the time
complexity, the Approx-Subset-Sum algorithm trims list L
by selecting and remaining only one value Z to represent all
the values Y according to the formula (2) and finally get the
list L

′
. Here ε (0 < ε < 1) is a trimming parameter. We

assume there is a Z that represents y in the new list L
′
. Each

removed element y is represented by a remaining element z
that satisfies formula (2). Obviously, trimming can dramati-
cally decrease the number of elements kept while remaining
a close (and slightly smaller) representative value in the list
for each deleted element. Algorithm 1 describes the pro-



cedure of trimming list L that contains m elements in time
Θ(m). It is assumed that L is sorted in monotonically in-
creasing order. The output of the procedure is a trimmed
and sorted list.

Y

1 + ε
≤ Z ≤ Y (2)

Algorithm 1 Trim Algorithm

Input: L: a positive integer set contains m factors <
l0, ..., lm−1 >; ε: trimming parameter;

Output: L
′

1: m = L.length;
2: L

′
= 〈l0〉;

3: last = l0;
4: for i = 1 to m-1 do
5: if li > last ∗ (1 + ε) then
6: append i1 onto the end of L

′
;

7: last = li;
8: end if
9: end for

10: return L
′
;

Algorithm 2 Approx-Subset-Sum

Input: S: a positive integer set contains n elements <
S0, ..., Sn−1 >; L: a positive integer set; t: target value;
ε(0<ε<1): trimming parameter; Li: the generated list
after the Si is appended.

Output: z∗: the largest value in Ln

1: n = the length of L
2: L0 = < 0 >
3: for i=0 to n-1 do
4: Li = Merge-Lists(Li−1, Li−1 + Si)
5: Li = Trim(Li, ε/2n)
6: remove every element that is greater than t from Li.
7: end for
8: return z∗

The Approx-Subset-Sum algorithm is described as Al-
gorithm 2. It returns a value z∗ whose value is within a
1+ε factor of the optimal solution. Line 2 initializes the list
L0 to be the list containing just the element 0. For loop in
lines 3 - 6 computes Li as a sorted list containing a suitably
trimmed version of the set Li−1 , with all elements larger
than t removed. MERGE-LISTS(L, L

′
) in line 4 returns the

sorted list that is the merge of its two sorted input lists L
and L

′
with duplicate values removed. Li−1 + Si denotes

the list of integers derived from Li−1 by increasing each el-
ement of Li−1 by Si. For example, if Li−1 = 〈1, 2, 3, 5, 9〉,
then Li = Li−1 + 2 = 〈3, 4, 5, 7, 11〉. Trim(Li, ε/2n) in line
5 decreases the length of Li with the trimming parameter
ε/2n.

Figure 1: The Architecture of PIY

Here is an example to illustrate the execution of Approx-
Subset-Sum algorithm. It is assumed that the instance
S=〈104, 102, 201, 101〉, t=308 and ε=0.40. The trimming
parameter is ε/8 = 0.05. Approx Subset Sum computes
the following values in the indicated lines:
line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉

line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉

line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉

line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

The algorithm returns z∗ = 302 as its answer, which is
maintaining within 2% of the optimal answer 307 = 104 +
102 + 101. This shows that the Approx Subset Sum al-
gorithm can find an approx optimal solution in a fully poly-
nomial time, therefore, the overhead it causes is acceptable.

4 A New Partitioner in Yarn

4.1 System Overview

We designed a new partitioner in Yarn, named PIY,
based on Hadoop 2.6.0, and the architecture of PIY frame
is shown in Figure 1. In particular, each Parallel Reservoir
Sampler (PRS) samples the input data on each Mapper.



The Data Frequency Table (DFT) creates a table that
records the value of each key in each DataNode according
to the sampling statistics. The Capacity Monitor fetches
the computing capacity value of each DataNode. The
Global DFT (GDFT) summarizes all DFT data in each
DataNode. The CV records the computing capacity values
of all DataNodes. The BASH is the core unit in our PIY
that generates the final partitioning result. The workflow of
PIY consists of 3 steps:
(1) When split operation in map stage finishes, PRS applies
to Resource Manager for containers to conduct sampling.
All the sampled <key,value> pairs are summarized and
stored into a file. The detailed process of PRS is described
in the following Section 4.2. The DFT counts and records
the sampled <key,value> pairs in each DataNode and
generates a key frequency table. Here the key frequency
refers to the number of pairs corresponding to each key.
At the same time, the Capacity Monitor collects the
computing capacity of each DataNode, which is described
in Section 4.3. When all these processes are completed, the
information data, which consists of the key frequencies in
DFT and the computing capacity value of each DataNode
will be transmitted from the Application Master to the
Resource Manager through heartbeat messages.
(2) When the Resource Manager receives the information
data, it will transmit corresponding data to the GDFT
and CV, respectively. Then the GDFT summarizes all the
key frequencies in each DataNode into a total frequency
table. The CV records the computing capacity values of all
DataNodes by the data from the Capacity Monitor. These
are essential preparative works for the final partitioning
results generated by the unit BASH.
(3) Then the BASH generates the final partitioning result
using the algorithm described in Section 4.5. Finally, the
Resource Manager will transmit the results back to the
application Masters through the resource response message.

4.2 Parallel Reservoir Sampling Strategy

In PIY, we get the distribution of the intermediate re-
sult by running a novel sampling during the normal map
processing. Our sampling is performed by some map tasks
with higher priority. Therefore, when split operation in map
stage finishes, the map tasks conducting sampling are pro-
cessed preferentially. Obviously, there is tradeoff between
the sampling overhead and the accuracy of the result. In
our experiments, we find that by integrating sampling into
20% of map tasks, a sufficient accuracy approximation can
be achieved. Our sampling strategy, namely Parallel Reser-
voir Sampling, simply PRS for short, is based on reservoir
sampling algorithm[15]. PRS runs by invoking the class
org.apache.hadoop.mapreduce.lib.InputSampler and over-

(a)Sampling Job

(b)Normal MapReduce Job

Figure 2: The Process of Parallel Reservoir Sampling

loading the SplitSampler method.
The main idea of PRS is described as follows. PRS

builds one reservoir for each split and samples K elements
from it. All key/value pairs in each split are scanned and
the first K elements are stored in each reservoir. For a
key/value pair whose sequence number is larger than K, we
replace stored elements with it based on a certain probabil-
ity. This process is executed for each reservoir in parallel.
All the sampled key/value pairs are summarized together
and stored into a file by the reduce function. The process of
PRS is shown as Figure 2(a). When the sampling tasks of
some splits are finished, their corresponding normal user-
defined map function are executed successively. Thus, our
PRS is integrated into the normal map processing. As is
shown in Figure 2(b), when all samplers are complete, the
sampling result will be aggregated and transmitted to GDFT
model in the NameNode which decides the sampling par-
tition. In our system, Reducers begin to pull their input
data after the sampling partition is decided. This is later
than the default start time of reduce stage in native hadoop
because the decision of sampling partition introduces over-
head. However, this overhead is negligible based on our
experimental results shown in Section 5.

4.3 The Capacity Monitor

The Hadoop cluster is ofen heterogenous. To get the
computing capacity of each DataNode, we designed a spe-
cial model, namely, Capacity Monitor, in each DataNode.
To decrease the extra overhead dramatically, the Capac-
ity Monitor in each DataNode keeps monitoring the im-
plementation of the sampled input data when the sampling
function begins to run, and gets its consuming volume
V olume(con)id(1 ≤ id ≤ m) during a period of time ∆t,
here m denotes the number of DataNode in cluster. Then



we can calculate the capacity value of the idth DataNode,
CVid, by following formula (3). Capacity Monitors sends
the capacity values of the DataNode to the PIY in NameN-
ode through the heartbeat message.

CVid = V olume(cons)id/∆t (3)

4.4 Network Traffic in Shuffle Phrase

As the bandwidth is the scarce resource in networks,
the shuffle phase has become the bottleneck of MapReduce
due to its large amount of network traffic. As is known,
there are many Reducers in cluster, especially in Datacen-
ter Network (DCN). In addition, many DataNodes act as
both Mapper and Reducer[12]. If we can stay as many as
intermediate <key,value> pairs on these DataNodes by the
partition method in shuffle phase, it also furthest decrease
the network traffic[5]. It’s assumed that there are many
<key,value> pairs corresponding to a special key on those
DataNodes simultaneously. The BASH algorithm will find
the DataNode that contains the maximum amount of these
pairs, and then transmits all the pairs corresponding to the
key to this DataNode. Our experimental result proves this
method could decrease the network traffic in shuffle phase
by up to 19.11%.

4.5 BASH Algorithm

In this section, we describe our proposed algorithm
named BASH that comprehensively considers the load
BAlance among all Reducers, network traffic in Shuffle and
the Heterogeneity of Hadoop cluster. As shown in algo-
rithm 3, there are three steps in BASH. First, it minimizes
intermediate data transmission in shuffle phase. Second, it
gets the data volume that each reducer should process ac-
cording to their computing capacity. Finally, to balance the
load among Reducers, BASH partitions intermediate data to
each Reducer using Approx-Subset-Sum algorithm.

We assume that there are k distinct <key,value> pairs
corresponding to various keys, and r Reducers in clus-
ter. key desti records the serial number of the destina-
tion Reducer that will process the <key,value> pairs cor-
responding to keyi, and all key desti consist of the array
key dest[1,...,k]. Lines 1-3 initialize all key desti with -
1, which means all <key,value> have not been partitioned.
The array RS[1,...,r] records the volume of data that should
be processed by special Reducers. CV[1,...,r] records the
computing capacity of each Reducer, the value of CVi can
be obtained by formula (3). Sum CV records the total com-
puting capacity value of all Reducers. Lines 4-7 initialize
all RSi 1≤i≤r, and compute the Sum CV.

Lines 8-17 reduce the amount of network traffic in shuf-
fle phase. As described in section 4.4, we focus on the

Algorithm 3 BASH Algorithm

Input: k: the number of <key, value> pairs; r: the num-
ber of Reducer; key size[1,..,k] : the data volume of all
<key,value> pairs ; CV[1,...,r] : the computing capac-
ity value of every Reducer; Sum CV: the total capac-
ity value of all Reducers; ε : approximation parameter;
RS[1,..,r]: the volume of the data that have been deter-
mined to be processed in every Reducer; T[1,...,r]: the
remaining capacity of every Reducer; Total Size: the
total volume of all <key,value> pairs produced by all
Mappers.

Output: key dest[1,...,k]: A array indicating the desti-
nation Reducer of every key;

1: for i = 1 to k do
2: key desti = −1;
3: end for
4: for i = 1 to r do
5: RSi = 0;
6: Sum CV = Sum CV + CVj ;
7: end for
8: for each Reducer Rj(1 ≤ j ≤ r) do
9: if Rj is also a Mapper then

10: for every keyi on Rj do
11: if key desti == -1 then
12: key desti = MaxReducer(keyi);
13: RSkey desti = RSkey desti +key sizei;
14: end if
15: end for
16: end if
17: end for
18: for j = 1 to r do
19: Tj = Total Size ∗ (CVj/Sum CV )−RSj ;
20: end for
21: for j=1 to r do
22: Z∗ =Approx Subset Sum(key size[1, ..., k],Tj , ε);
23: Set key dest of the keys which composing Z∗ to

the sequence number of Reducerj ;
24: end for
25: for i = 1 to k do
26: if key desti == −1 then
27: key desti = the sequence number of the

strongest capacity Reducer;
28: end if
29: end for
30: return key dest[1, ..., k];

DataNodes who act as both Mapper and Reducer. For
each keyi (1 < i < k) on these Reducers, BASH first
checks whether its destination Reducer is determined. If
not, the function MaxReducer(keyi) in Line 12 will find
the Reducer on which the volume of the <key,value> pairs
corresponding to the keyi is the maximum, and then set



this Reducer as the destination Reducer of keyi. Line 13
updates the volume of the data that should be processed
on this Reducer. Here, the array key size[1,...,k] records
the data volume of all <key,value> pairs. Lines 18-20
get the remaining capacity of each Reducer, which is de-
noted as array T. Here remaining capacity means the ex-
tra data volume that one Reducer can process. The To-
tal Size denotes the total volume of experimental data set.
Total Size * (CVj /Sum CV) means the total data volume
that the Reducerj should process according to its comput-
ing capacity.

Using Approx Subset Sum algorithm, lines 21-29 bal-
ance the load among all Reducers by partitioning the in-
termediate data based on Reducer’s computing capacity.
In lines 21-24, BASH partitions intermediate data to each
Reducer and records the destination Reducer of each key
into the array key dest. We can get these value through
the GDFT in PIY. As we describe in Section 3, the Ap-
prox Subset Sum algorithm only gets an approximate result
that does not reach the target value. Therefore, the amount
of data that is partitioned to each Reducer could not reach its
capacity value. This generates some trivial datasets that are
not partitioned finally. In lines 25-29, BASH assigns these
trivial datasets to the Reducer with the strongest computing
capacity.

5 Evaluation

In this section, we describe the performance evaluation
of PIY by running two popular benchmarks with synthetic
and real-world data sets whose data skew rate are different,
our experiments are performed under both homogeneous
and heterogeneous environments. Specially, we evaluate
PIY to process large-sized imagine in parallel.

5.1 Experimental Environment

In our experiments, we set up two Hadoop clusters,
one is homogeneous, and the other is heterogeneous. Our
Hadoop homogeneous cluster consists of 60 physical ma-
chines installed with Ubuntu 12.04(KVM as the hypervi-
sor) with 16 core 2.53GHz Intel processors, 4G memory,
and the 60 nodes connected through a single switch, the net-
work bandwidth is 1Gbps. Our experiments are performed
in YARN (Hadoop 2.6.0). All nodes are used as both com-
puting and storage nodes. The HDFS block size is set to 64
MB and each node is configured to run at most 6 map tasks
and 2 reduce tasks concurrently. Our heterogeneous cluster
contains 60 physical machines with three types. The first
type contains 30 machines with 16 core 2.53GHz Intel pro-
cessors, 4G memory. The second type contains 20 machines
with 4 core 3.3GHz Intel processors, and 8G memory. The

Table 1: Jobs with Different Sampling Methods

Sampling Method Time(s) Sample File Size(MB) Accuappro
Random 2.8 1.2 307889

TopCluster 2.5 1.3 142728
PRS 2.6 5 97335

third type contains 10 machines with 2.4GHz Intel proces-
sors, and 2G memory. The other configurations are same in
the homogeneous cluster.

In this section, we evaluate PIY by running different type
of bench-marks in homogeneous and heterogenous Hadoop
cluster, respectively. In order to ensure accuracy, we per-
formed each group of experiments at least 10 times and took
the mean value as the final result so as to reduce the influ-
ence of the environment.

5.2 Accuracy of the Sampling Method

We compare our PRS with the other two sampling meth-
ods: the random sampler used in native Hadoop and Top-
Cluster [3]. We run three different samplers on a 10GB
real-word data sets from the full English Wikipedia archive,
which contains 50000 keys. We measure the sampling ap-
proximation by formula(4), where xapproi and xreali denote
the sampling and real frequency of tuple corresponding to
the key i, respectively. The smaller value of Approsampl,
the better. All three methods sample 20% of input splits
and 1000 keys from each split. Table 1 shows that the size
of sample file generated from PRS is larger than the others
meanwhile their execution time are approximately equal.
This is because PRS completes reservoir sampling on each
split in parallel and collects the sample result with larger
volume. The better accuracy can be realized if the sampling
result is larger.

From Table 1 we can see that the approximation of our
PRS is 97335, which is better than the other two sampling
methods. This is also visualized in Figure 3 for the top 1000
large keys in the data. Note that the sampling approximation
of TopCluster is fairly accurate on the large keys which are
at the beginning of the curve, representing their frequency
are relatively large, but terrible on the keys whose frequency
is lesse than 103. The reason is that TopCluster assumes
the distribution of small keys are in accord with the large
keys, and this assumption can be misleading when there are
a large number of small keys in the data.

Approsampl =

√∑n
i=1 (xapproi − xreali )2

n
(4)



Figure 3: Comparison of three sampling methods in Grep

5.3 Load Balance among Reducers When Run-
ning Sort Benchmark

One of majar motivations for PIY is to balance loads
among Reducers when data skew happens. Therefore, in
this section, we evaluate PIY by running Sort benchmark,
which represents reduce-input-heavy job, to process the in-
put data with various data skew degrees. In this paper, the
load balancing and data skew degree are measured by the
coefficient of variation, which is represented as COV. The
smaller COV, the better. Figure 4(a) and Figure 4(b) show
COV when running sort benchmark based on 10 GB of syn-
thetic data in homogeneous and heterogenous cluster re-
spectively. We generate a 10GB synthetic data set following
Zipf [1] distributions with varying δ parameters from 0.2 to
1.2 to control the degree of the skew.

As Figure 4(a) shows, the curves of Hadoop-Hash and
SkewTune keep rising when the data skew rate increases,
while the COV of PIY remains very low all the time. This
can be explained as PIY partitions the intermediate data to
all Reducers evenly in homogeneous cluster. The reason
why SkewTune performs worse than PIY is that SkewTune
can only repartition the input data of one straggler at a time,
it could not balance the loads on all Reducers when there
are more than one slow reduce tasks caused by serious skew
data. On account of the Hadoop-Hash partitions data by the
hash code of keys, it is easy to unbalance loads seriously
when data skew happens, which makes it the worst perfor-
mance in Figure 4 (a).

From Figure 4(b), we find the same results as in Fig-
ure 4(a).In addition, while the value of PIY are almost un-
change, the values of Hadoop-Hash and SkewTune at most
of data skew rates are higher than that in homogeneous clus-
ter, and this trend is more obvious when the data skew rate
increases. In other words, the optimization degree of PIY
in load balance in heterogeneous cluster is much more than
that in homogenous cluster. Beside the reasons we have de-
scribed in the prior paragraph, the consideration of hetero-

geneity of PIY made a greater contribution in load balance
among Reducers.

5.4 Execution Time of Sort Benchmark

Figure 4 also shows the execution time of the experi-
ments we have described in Section 5.3. The curves in
Figure 4(c) shows the results in the homogenous cluster.
We can see PIY is faster than Hadoop-Hash and SkewTune
when processing the data with high skew rate. On the con-
trary, when the data skew rate is lower than a certain thresh-
old, PIY does not perform satisfactorily. The reason is that
when the data skew degree is low, e.g. less than 0.28 in
our experiment, the Hadoop-Hash has the shortest execution
time in the homogeneous cluster because of its even parti-
tions of intermediate data without extra overhead. Skew-
Tune produces small overhead on moving unprocessed data
of the slower tasks because there are few stragglers in this
scenario, and this leads to its execution performance be-
hinds the Hadoop-Hash. Furthermore, PIY consumes the
longest execution time because of its extra overhead pro-
duced by sampling data and making partition decision in
map phase. However, as data skew degree increases, the
optimization, which is achieved through balancing load
among Reducers using approx sum subset algorithm, grad-
ually offsets the time spent by the extra overhead. There-
fore, PIY consumes the lowest execution time. Conse-
quently, compared with Hadoop-Hash and SkewTune, PIY
achieves the average improvements in execution time by
16.39% and 4.71%, respectively, and the maximum im-
provements reach 35.62% and 9.90%, respectively, when
the data skew rate is 1.2.

Figure 4(d) shows the fully adaption of PIY to hetero-
geneous cluster. PIY is also the fastest one in most cases.
The threshold, less than which the performance of PIY is
worse than the other two, is 0.17 and it less than 0.28 in Fig-
ure 4(c). On average, PIY can perform 29.4% and 14.84%
faster than Hadoop-Hash and SkewTune, respectively. Spe-
cially, when the data skew is set to 1.2, the improvement
is up to 50.65% and 24.54%, respectively. These values
demonstrate that the degree of improvements PIY makes is
more obvious in heterogeneous cluster than that in homoge-
neous cluster because it considers the computing capacity of
every node during partitioning.

5.5 Grep Benchmark Testing

To evaluate the performance of PIY when it deals with
the reduce-input-light applications, we run Grep, which is
a light job for reduce, in heterogeneous cluster. We im-
prove the Grep benchmark in Hadoop so that it outputs
the matched lines in a descending order based on how fre-
quently the searched expression occurs. The data set we use



0 0.2 0.4 0.6 0.8 1 1.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Data Skew Rate

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

 

 

Hadoop−Hash
Skew Tune
PIY

(a)COV of Running Sort in Homogeneous Cluster

0 0.2 0.4 0.6 0.8 1 1.2

200

300

400

500

600

700

800

Data Skew Rate

E
xe

cu
tio

n 
T

im
e 

(S
ec

on
d)

 

 

Hadoop−Hash
Skew Tune
PIY

(c)Duration of Running Sort in Homogenous Cluster

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

Query Percentage(%)

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

 

 

Hadoop−Hash
Skew Tune
PIY

e)COV of Running Grep in Homogeneous Cluster

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Data Skew Rate

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

 

 

Hadoop−Hash
Skew Tune
PIY

(b)COV of Running Sort in Heterogeneous Cluster

0 0.2 0.4 0.6 0.8 1 1.2

200

300

400

500

600

700

800

Data Skew Rate

E
xe

cu
tio

n 
T

im
e 

(S
ec

on
d)

 

 

Hadoop−Hash
Skew Tune
PIY

(d)Duration of Running Sort in Heterogeneous Cluster

0 10 20 30 40 50 60 70 80 90 100
100

150

200

250

300

350

400

450

500

550

600

650

Query Percentage (%)

E
xe

cu
tio

n 
T

im
e 

(S
ec

on
d)

 

 

Hadoop−Hash
PIY
Skew Tune

(f)Duration of Running Grep in Heterogeneous Cluster

Figure 4: Evaluation of PIY running benchmarks In Hadoop Clusters

is the full English Wikipedia archive with a total data size
of 10 GB. Because the behaviour of Grep depends on how
frequently the search expression appears in the input files,
we tune the expression and make the input query percent-
ages vary from 10% to 100%. Figure 4(e) and (f) show that
PIY gets the best performance of COV and job execution
time at all time due to the accuracy of PRS and the con-
sideration of heterogeneity. Specially, in Figure 4(e), PIY
gets the best COV when the query percentage is lower. This
is because the PRS in PIY is good at searching unpopular
words in the archive and generates better sampling results.
As the query percentage increases, the distribution of the re-
sult data becomes increasingly uniform, so the performance
gap rapidly closes.

5.6 Optimization In Shuffle Phase

To verify that the BASH algorithm used by PIY can de-
crease the amount of data transmission in shuffle phase, we
record the execution of each phase in MapReduce of Sort
job in the heterogenous cluster. Without losing general-
ity, we illustrate the duration time when δ is 0.8 in Figure
5(a). The native Hadoop starts the shuffle tasks when 5%
map tasks finish, therefore, we divided MapReduce into 4
phases, which are represented as Map(Seperate), Concur-
rent Map and Shuffle, Shuffle(Separate), and Reduce. Con-
current Map and Shuffle denotes the overlap period in which
the shuffle tasks begin to run and map tasks have not to-
tally finished. Therefore, the duration of Map phase equals
the sum of Map(Separate) and ’Concurrent Map and Shuf-
fle’. Similarly, the duration of Shuffle phase, whose fill
patterns are red in Figure 5, equals to the sum of Shuf-

fle(Separate) and ”Concurrent Map and Shuffle”. Specially,
because PIY executes PRS in Map phase, its duration of
Map phase should contain additional time costed by PRS,
which is represented as Sampling in Figure 5. From Fig-
ure 5(a), we can see the duration in shuffle phase of PIY
is 105+7=112 seconds, which is less than the SkewTune
(107+19=126) and Hadoop-Hash (105+39=144), the im-
provement are 126−112

126 = 11.11% and 22.22%.

Through plenty of experiments, we can see that com-
pared with Hadoop-Hash and SkewTune, the improvement
degree PIY achieves in shuffle phase is in proportion to the
number of reducers until the degree reaches the peak value.
In our experiment, the peak improvement degree is achieved
when each node can run at 6 map tasks and 4 reduce tasks
concurrently. Compared with the original configuration (6
map tasks and 2 reduce tasks), this modification should in-
crease the number of Reducers because the native Hadoop
determines which nodes are Reducers according to the com-
puting resource (container in Yarn) in each reducer. The
results are shown in Figure 5(b). We can easily find the du-
ration in shuffle phase of PIY is 89+9=98 seconds, which is
much less than 119 seconds for SkewTune, 143 seconds for
Hadoop-Hash, the improvement is up to 119−98

119 = 17.65%
and 31.47%, which are larger than Figure 5(a). This can
be explained as with the number of Reducers increases, the
BASH algorithm finds much input data whose map and re-
duce tasks are able to be scheduled to the same DataNode.
This results in decreasing the amount of data transmission
in shuffle phase. However, when we configure each node
to run at most 6 map tasks and 6 reduce tasks concurrently,
compared with SkewTune and Hadoop-Hash, the improve-
ment caused by PIY are reduced to 12.35% and 19.11%,



(a)δ = 0.8, Reducer task number = 2

(b)δ = 0.8, Reduce task number = 4

Figure 5: The Execution Time Of Each Phase

respectively. How to find the optimal Reducer number is
a problem about the tradeoff between the computing par-
allelism degree and the network transmission amount, and
this is our future works on PIY.

5.7 PIY in parallel image processing

Table 2: the size of sample images

image name size(in bytes)
CARTOSAT-1 1342552576

CARTOSAT-2A 4259355002
CARTOSAT-2B 9204661322

With the need of processing large-sized images increases
rapidly, parallel image processing technologies, such as
MapReduce, are widely used to shorten the execution time.
In this section, we present the experiments conducted for
images with large sizes approximately from 1.3 Gigabytes
to 9.1 Gigabytes the Chinese Remote Sensing (IRS) satellite
series. The sample data sets are shown in Table 2.

We conduct histogram [7] operation on native Hadoop,
HIPI [14], which is a open-source Hadoop Image Process-
ing Interface, and PIY. Compared with native Hadoop, HIPI
processes image without requiring the additional coding be-
cause it implements Java Image Processing Library. His-

Figure 6: Execution Time Of Histogram

togram operation counts the frequency of the pixel intensity
in an entire image, which is similar to counting the words
in the file. In our implementation, the map function splits
the large-sized image into several pieces. One piece is pro-
cessed by one map task, which collects the count of the
pixel (gray) value. Reduce function completes the aggre-
gation of the collected numbers from the map functions. To
increase the amount of input data in reduce phase, we add
TeraSort operation in histogram and finally output the pixel
intensity result in descending order. We implement his-
togram operation in a 5-node heterogeneous cluster, which
is composed of the three types of physical computers de-
scribed in Section 5.1. Specifically, one first type node acts
as master, 2 nodes for each of other two types act as slaves.

As is shown in Figure 6, PIY gets the shortest execu-
tion time when processing all 3 different large-sized images.
The execution time is reduced by 11.2%. The reasons are
described as follows. First, the distribution of the frequency
of the pixel intensity in an large-sized image is not even in
general, i.e., the pixel intensity values are skew. Different
with native Hadoop and HIPI, PIY considers the data skew
by balancing the loads on Reducers. Second, the PRS sam-
pling method helps PIY to realize more accurate distribu-
tion of the pixel intensity than the other two frameworks.
Third, heterogeneity consideration helps PIY achieve the
fastest process speed.

6 Conclusion

This paper proposes PIY to mitigate data skew in
MapReduce system. Using the parallel reservoir sampling
method we proposed, PIY achieves the distribution of in-
termediate data accurately with negligible overhead. PIY
tries to reduce the network traffic in shuffle phase by de-
creasing the transmission amount of data on those nodes
acting as both Mapper and Reducer. PIY also considers
the heterogeneity of the computing resource when balanc-



ing load among Reducers. Performance evaluation in both
synthetic and real workloads demonstrates that the result-
ing performance improvement is significant. Compared
with some other popular strategies, the improvement PIY
achieved reaches 35.62% and 50.65% in homogeneous and
heterogeneous clusters, respectively. PIY can also be used
in parallel imagine processing to reduce the execution time.

ACKNOWLEDGMENT

This work was supported in part by National Natural
Science Foundation of China(No.61272353, No.61428201)
and China Postdoctoral Science Foundation(2016M
600912), Program for New Century Excellent Talents in
University (NCET-13-0659), Beijing Higher Education
Young Elite Teacher Project(YETP0583).

References

[1] L. A. Adamic and B. A. Huberman. Zipfs law and the inter-
net. Glottometrics, 3(1):143–150, 2002.

[2] Q. Chen, J. Yao, and Z. Xiao. Libra: Lightweight data skew
mitigation in mapreduce. IEEE Transactions on parallel and
distributed systems, 26(9):2520–2533, 2015.

[3] B. Gufler, N. Augsten, A. Reiser, and A. Kemper. Load bal-
ancing in mapreduce based on scalable cardinality estimates.
In Data Engineering (ICDE), 2012 IEEE 28th International
Conference on, pages 522–533. IEEE, 2012.

[4] H. H. Hong Zhang and L. Wang. MRapid: An efficient short
job optimizer on hadoop. In the 31st IEEE International
Parallel Distributed Processing Symposium (IPDPS). IEEE,
2017.

[5] H. Huang, L. Wang, B. C. Tak, L. Wang, and C. Tang. Cap3:
A cloud auto-provisioning framework for parallel process-
ing using on-demand and spot instances. In Cloud Comput-
ing (CLOUD), 2013 IEEE Sixth International Conference
on, pages 228–235. IEEE, 2013.

[6] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi. Leen:
Locality/fairness-aware key partitioning for mapreduce in
the cloud. In Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference
on, pages 17–24. IEEE, 2010.

[7] J. N. Kapur, P. K. Sahoo, and A. K. Wong. A new method for
gray-level picture thresholding using the entropy of the his-
togram. Computer vision, graphics, and image processing,
29(3):273–285, 1985.

[8] C. Kumar. Approximation algorithm project. arXiv preprint
arXiv:1401.2393, 2014.

[9] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skew-
resistant parallel processing of feature-extracting scientific
user-defined functions. In Proceedings of the 1st ACM sym-
posium on Cloud computing, pages 75–86. ACM, 2010.

[10] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skew-
tune: mitigating skew in mapreduce applications. In Pro-
ceedings of the 2012 ACM SIGMOD International Confer-
ence on Management of Data, pages 25–36. ACM, 2012.

[11] J. Liu, F. Liu, and N. Ansari. Monitoring and analyzing big
traffic data of a large-scale cellular network with hadoop.
IEEE Network, 28(4):32–39, 2014.

[12] V. Subramanian, H. Ma, L. Wang, E.-J. Lee, and P. Chen.
Rapid 3d seismic source inversion using windows azure
and amazon ec2. In Proceedings of the 2011 IEEE World
Congress on Services, SERVICES ’11, pages 602–606.
IEEE, 2011.

[13] V. Subramanian, L. Wang, E.-J. Lee, and P. Chen. Rapid
processing of synthetic seismograms using windows azure
cloud. In Cloud Computing Technology and Science (Cloud-
Com), 2010 IEEE Second International Conference on,
pages 193–200. IEEE, 2010.

[14] C. Sweeney, L. Liu, S. Arietta, and J. Lawrence. Hipi: a
hadoop image processing interface for image-based mapre-
duce tasks. Chris. University of Virginia, 2011.

[15] J. S. Vitter. Random sampling with a reservoir. ACM Trans-
actions on Mathematical Software (TOMS), 11(1):37–57,
1985.

[16] L. Wang, S. Lu, X. Fei, A. Chebotko, H. V. Bryant, and
J. L. Ram. Atomicity and provenance support for pipelined
scientific workflows. Future Generation Computer Systems,
25(5):568–576, 2009.

[17] Z. Xiao, W. Song, and Q. Chen. Dynamic resource allo-
cation using virtual machines for cloud computing environ-
ment. IEEE transactions on parallel and distributed sys-
tems, 24(6):1107–1117, 2013.

[18] Y. Xu, W. Qu, Z. Li, Z. Liu, C. Ji, Y. Li, and H. Li. Balancing
reducer workload for skewed data using sampling-based par-
titioning. Computers & Electrical Engineering, 40(2):675–
687, 2014.

[19] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
I. Stoica. Improving mapreduce performance in heteroge-
neous environments. In Osdi, volume 8, page 7, 2008.

[20] H. Zhang, L. Wang, and H. Huang. Smarth: Enabling multi-
pipeline data transfer in hdfs. In Parallel Processing (ICPP),
2014 43rd International Conference on, pages 30–39. IEEE,
2014.


