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ABSTRACT

When a new dataset is modeled as an attributed graph or users are
not familiar with the data, users may not know what can be re-
trieved from the attributed graph. Sometimes, users may have some
intuition about the query, but how to exactly formulate queries (e.g.
what attribute constraints to use) is still unclear to users. In this
paper, we propose the idea of attributed path summary. In gen-
eral, attributed path summary is a grouping of vertices such that
vertices in each group contain paths from source to destination and
the entropy of attributed values within a group is low and biased
toward the intuition (i.e. preferred attribute values) given by users.
‘We propose a novel 3-phrase approach which stitches key vertices
together to form candidate paths and inflates those candidate paths
into path summary. An extensive case study and experimental eval-
uation using the real Facebook graph that visualizes the path sum-
mary demonstrates the usefulness of our proposed attributed path
summary as well as the superiority of our proposed techniques.

1. INTRODUCTION

Attributed graph is widely used for modeling a variety of
information networks [11, 15], such as the web, sensor networks,
biological networks, economic graphs, and social networks. When
a new dataset is modeled as an attributed graph or users are not
familiar with the data, users may not know what can be retrieved
from the attributed graph. Sometimes, users may have some
intuition about the query, but how to exactly formulate queries
(e.g. what attribute constraints to use) is still unclear to users.

In this paper, we propose the idea of visualizable attributed path
summary. In general, an attributed path summary is a grouping of
vertices such that vertices in each group contain a path from source
to destination and the entropy of attributed values within a group
is low and biased toward the intuition (i.e. attribute values) given
by users. In addition, we argue that a visualizable attributed path
summary can be easily visualized and understood by users.

1.1 Application Scenario
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Social Network: For example, an FBI agent has a social net-
work, but he/she is not familiar with the attribute values and graph
structure of the social network. The agent wants to investigate the
relationship between Duncan and a terrorist leader using the social
network as the FBI believes that social network would contain a lot
of useful insight for investigation. The agent just got an intuition
that people between Duncan and the terrorist leader may live in
the country C' and believe in religion R1,R2. The attributed path
summary query computes a summary of paths from Duncan to the
terrorist leader that are close to the offered attribute values (i.e.
C1,R1 or Rp). The path summary offers insight for the agent to
formulate different path queries for investigation.

Metabolic Network: In metabolic networks, each vertex is a
compound, and an edge between two compounds indicates that
one compound can be transformed into another one through a
certain chemical reaction. Vertex attributes can be features of the
compound; edge attributes can be details of a chemical reaction
between two compounds. A reachability query on metabolic
networks discovers whether compound A can be transformed to
compound B under given path attribute constraints. A biologist
wants to study how to transform compound A to compound B. The
biologist only knows that cost-to-trigger-reaction has to be around
$10. The attributed path summary computes a summary of paths
from compound A to compound B that are close to the offered
attribute value (e.g. cost-to-trigger-reaction~ $10). The path
summary offer insight for the biologist to formulate path queries
for the study.

1.2 Challenges

Nowadays, a big graph with a few million vertices is common,
and that results in an exponential number of paths between any
two vertices. A large number of possible paths between 2 vertices
makes computing path summary a challenging task.

Among a huge number of possible paths between 2 vertices,
which type of path the user prefers is unknown since even the
user is not familiar with the graph, and he/she may not know what
he/she can get from the graph. Therefore, our task is to compute a
path summary for the user.

Computing an effective summary for a user is non-trivial as no
user would prefer to read a lot of text to understand the summary.
Hence, an effective path summary is a summary that can be easily
visualized by users. Visualizing a large portion of the graph is
not feasible as that would overwhelm the user. On the contrary, if
the summary is too concise, the user may not get the information
he/she wants.



1.3 Our Contributions

Our first contribution is to introduce and define the attribute path
summary query on attributed graph problem. We define attributed
path summary to be groups of vertices that contain users’ intuition
as well as satisfy some path properties. The users’ intuition is
expressed as hints for computing the path summary. Users can
offer whatever attribute values that they consider as the hint. These
summaries offer insight to users about the attribute values and
connection between the given source and destination vertices.

Our second contribution is to propose an efficient and effective
approach for finding attributed path summary. Our proposed
approach consist of three phrases. The first phrase efficiently
finds all key vertices that have attribute values belonging to
the hint offered by the user. Including key vertices ensures the
summary would represent paths with attribute values that are close
to the intuition of users. Then, based on those key vertices, a
novel stitching algorithm is proposed to connect the source, the
destination, and key vertices together to form a relatively small
key vertex graph. The stitching algorithm finds paths with a small
variation in attribute values between key vertices so that users can
easily understand the attribute distribution between key vertices.
After that, high-quality candidate paths between the source and
the destination are found on that small key vertex graph efficiently.
Finally, candidate paths are inflated to vertex groups by greedily
including adjacent vertices. Including adjacent vertices would
offer more attribute values choices for users to formulate their
queries.

1.4 Paper Organization

Section 2 talks about related works. Section 3 presents def-
initions and problem statement. Section 4 gives details of our
approach for finding attributed path summary. Section 5 presents
an extensive experimental evaluation for the proposed approach.
We conduct case studies on the Facebook graph that visualize
our path summary results for illustrating the effectiveness of our
proposed path summary. We also conduct experiments to study the
change in entropy and execution time under different parameter
settings. Finally, Section 6 concludes this paper.

2. RELATED WORK

In this section, we present a summary of related works.

2.1 Attributed Graph Summarization

Graph summarization has been extensively studied [10, 13, 13,
17, 14, 16, 4, 7, 12, 3, 2], and various ways of summarizing
graphs have been proposed. Grouping-based summarization meth-
ods [10, 13, 13, 17, 14] takes into account both graph structure
and attribute distributions for aggregating vertices into supernode
and superedges; compression-based summarization methods [16,
4, 7] exploit the MDL principle to guide the grouping of vertices
or the discovery of frequent sub-graphs to form a graph summary;
influence-based summarization methods [12] leverage both graph
structure and vertex attribute value similarities in the problem for-
mualtion so as to summarize the influence process in a network;
pattern-mining-based summarization methods [3, 2] identify fre-
quent graph structural patterns for aggreagate into supernodes so
as to reduce the size of the input graph and as a result, improving

query efficiency. These techniques focus on computing summary
for the whole graph. On the other hand, our techniques focus on
computing visualizable path summary between two vertices that
users are interested in.

2.2 Attributed Graph Clustering

Zhou et al [18] proposed SACluster, which is an attributed
graph clustering algorithm based on both graph structural and
attribute similarities through a unified distance measure. Zhou et
al [18] proposed first to partition a large graph associated with
attributes into k clusters so that each cluster contains a densely
connected subgraph with homogeneous attribute values. Then,
an effective method is used to automatically learn the degree
of contributions of structural similarity and attribute similarity.
Zhou et al [19] further improve the efficiency and scalability of
S ACluster [18] by proposing an efficient algorithm IncCluster
to incrementally update the random walk distances given the edge
weight increments.

One fundamental difference between summarization and cluster-
ing is that former finds coherent sets of vertices with similar con-
nectivity patterns to the rest of the graphs, while clustering aims
at discovering coherent densely-connected groups of vertices [8].
Similar to graph summary, graph clustering only computes a sum-
mary of the whole graph while our techniques focus on a summary
of paths between two vertices.

2.3 Graph Visualization

The size of the graph to view is a key issue in graph visu-
alization [6]. To deal with this, researchers proposed a lot of
techniques in graph drawing [6], such as H-tree layout, radial
view, balloon view, tree-map, spanning tree, cone tree, hyperbolic
view, as well as methods for reducing visual complexity [9], such
as clustering, sampling, filtering, partitioning. We argue that
simply applying those graph drawing technique cannot handle
big attributed graphs with million of vertices and edges as these
methods are too general. For existing visual complexity reduction
methods, how to effectively applying them to our problem needs
further investigation.

3. PRELIMINARIES
3.1 Problem Statement

DEFINITION 1. [Attributed Graph] An attributed graph [15]
G, is an undirected graph denoted as G = (V, E, A,), where
V is a set of vertices, E C V x V is a set of edges, and
Ay = {A(v)} is a set of dy vertex-specific attributes, i.e. Yv €
V, there is a multidimensional tuple A(v) denoted as A(v) =
(A1 (v), Az(v), ..., A, (V).

DEFINITION 2. [Attribute Hint H] is a set of distinct attribute
values.

H={H,H,,. ,Hy,}
DEFINITION 3. [Contain Function ¢(P;, H)]

1P
&P, H) = Z contain(vj, H)
j=1

1, Vk =1..d, Zf HAk(’U]') € Hy

contain(v;, H) = {O otherwise
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Figure 1: Path Summary (P;-blue, P>-orange)

For example in Figure 1, given that H =
{{USA,SG,JAP},0},Pr = {vl,v3,v13,v14,v18}, and
P, = {vl,v5,v12,v18}, ¢(P1,H) =1+1+140+1=4and
O(Pe,H)=14+14+1+1=4.

DEFINITION 4. [Attributed Path Summary
PSum(G,s,t,l,H)] For an  attributed  graph G,
PSum(G,s,t,l,H) is a set of vertices {Pi,Ps,..., Py}
such that:

1. Y v € P; are connected,
. 3v,v € Py vis adjacent to s and v is adjacent to t,

. VPL',P]‘ EG,i?éj,PiﬁPj =0,

2
3
4. VP, ¢(P H) >,
5. Yv € Py, dist(s,v) + dist(v,t) <1, and
6

. 3P € GAP ¢ PSum(G,s,t,l, H) satisfing condition 1
to 5.

where ¢(P;, H) is the quality of the summary and dist(v,v') is the
shortest distance from v to v’

Continuing the above example, in Figure 1, given that | = 4,
there are two paths Py, P in the attributed path summary. They are
P, = {vl,v3,v13,v14,v18} and P> = {vl,v5,v12,v18}. For
example, all vertices in Py are connected, 3 v3 and v;14 adjacent to
sandt, PL(\P. =0, (P, H) = ¢(P>, H) = 4 = , and for all
v; € P1, Py, and dist(s, v;) + dist(vi, t) < 4.

Problem Statement

[Attributed Path Summary Query ¢,] Given an attributed
graph G = (V, E, A,), source s, destination ¢, attribute hint H,
and lower bound of number of vertices in every P; that contains at
least one attribute value in attribute hint /, g, return an attributed
path summary PSum(G, s,t,1, H).

3.2 Quality of Path Summary

The quality of path summary is defined as the entropy in [18]
and is reformulated in definition 5.

DEFINITION 5. [Path Summary Quality]

dy

entropy(P;) = Z entropy(a;, Pj)

i=1

where

n’L
entropy(a:, Vj) = — Zpijnlo.g2pijn

n=1

and k is the number of P; in PSum, pijn is the percentage of
vertices in P; which have value a,, on attribute a;.

For example, entropy(Country, P1) = —(2log22 + Lloga: +

Lloga1).

4. COMPUTING PATH SUMMARY

In this section, we introduce our path stitching approach for
computing attributed path summary effectively based on attribute
hint.

4.1 Algorithm Design

Our heuristic approach has the following steps and design prin-
ciples.

1. Firstly, we want to find all vertices - key vertices, that are
related to the given attribute hint. The search of key vertices
ensures that all vertices that match any attribute value in the
hint and fulfill the distance requirement (Condition 5, Defi-
nition 4) are used for computing a path summary.

2. Given those key vertices, we perform a concurrency graph
traversal that systematically stitches key vertices, the source,
and the destination. Using stitched key vertices, we find can-
didate paths that go from the source to the destination via
key vertices based on the entropy of attribute values on the
path. Key vertices are vertices that users care and want to
see in the visualized path summary. The stitching algorithm
can effectively connect key vertices so that attribute values
on the path between key vertices are consistent. That offers
a clear view for users to understand the attribute distribution
between key vertices.

3. Finally, given the candidate paths, we perform a candidate
path inflation for computing the path summary. Candidate
path inflation includes vertices close to vertices in candidate
paths into the candidate paths. That allows users to under-
stand attribute distributions around key vertices. When users
are considering what attribute constraint to use for their at-
tribute graph queries, they can consider attribute values on
candidate paths as well as attribute values close to the candi-
date path as an alternative.

Algorithm details are presented in below sections with concep-
tual examples.

4.2 Finding Key Vertices

We first introduce the concept of key vertex (Definition 6). Then,
we present two steps that exploit existing approach to efficiently
find all key vertices.

DEFINITION 6. [Key Vertex vk] is a vertex that has at least

one attribute value belonging to an attribute value in the attribute
hint H.

Vi=1.d,Yj =1.d, 34;(v*) € H;

where H; € H

The first step is to retrieve all key vertices. Traditional indexes
that support range query (e.g. B+ tree) can be used to index
each attribute. Given H, for each non-empty S; € H, we query
the corresponding index for a set of vertices that have attribute



values in S;. Then, we do a union of all these vertices and get the
key vertex set Vj. After that, all vertices v that does not satisfy
dist(s,v) 4 dist(v,t) < [ are filtered out.

For example, in Figure 1, if the hint contains only
Country = USA, all vertices with attribute value
Country = USA (e.g. wvi1,vs,vs,v18) are retrieved from
the precomputed index (e.g. B+ tree).

4.3 Finding Candidate Path

After all key vertices are found, the second step is to find
candidate paths that satisfy constraints in Definition 4.

4.3.1 Stitching Algorithm

Since key vertices are essential (so as to satisfy condition 4 in
Definition 4) for paths in path summary, we do not want to find
candidate paths that do not contain any key vertex. The idea of the
stitching algorithm is to connect s — ¢ and key vertices so as to
form candidate paths. During the graph traversal, entropy and hop
distance values are taken into account.

Algorithm 1 is the pseudo code of the stitching algorithm. The
stitching algorithm first puts s, ¢, and all key vertices (lines 7-13)
into the priority queue. Each node in the priority queue contains
the current vertex, a key vertex, parent of current vertex, the
distance from a key vertex to the current vertex, and the entropy
of path from a key vertex to the current vertex, where the entropy
value is used to determine the priority.

Then, the graph is traversed starting from each of the key
vertices. When the algorithm reaches a visited node cur.v (line
16), if key vertex of current node’s parent (keyl) is not equal
to the key vertex of curent node (key2) (line 19), the path from
keyl to key?2 is recovered and put into PathM ap (line 21), edges
between vertice keyl and key2 are added in to KeyVertexG
(lines 22-23), and the algorithm continue (line 22); when the
algorithm reaches a non-visited node (line 25), parent and key
vertex of current node is saved (line2 26-27) and current node
becomes visited (line 28).

After that, adjacent neighbors of cur.v that satisfy the upper
bound distance constraint (line 30) are put into the priority queue
(line 33), where the entropy of the path from the key vertex to
cur.v as well as the distance are taken into account. Finally, the
graph traversal continues until the priority queue becomes empty.

A conceptual example will be presented in Section 4.3.3.

4.3.2 Candidate Path Search

After executing the stitching algorithm, KeyVertexG and
Path are found. The path search algorithm is used to find
paths from s to t via key vertices in the key vertex graph -
KeyVertexG. The actual path are recovered using path after
s — tin KeyVertexG are found. Both entropy and distance from
s are taken into account in the priority queue. We set priority as
entropy + current distance/l if current distance < I
otherwise, we set priority as entropy + current distance, in
order to pennalize path in KeyVertexG that are longer than [.

Algorithm 2 is the pseudo code of the path search algorithm.

Algorithm 1 Stitching Algorithm

1:
2
3:
4.
5.
6
7

8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

33:
34:
35:

procedure STITCHING(G, Vi, s, t, 1)

Array < bool > wisited
Array <int > parents
Array < Array < int >> KeyVertexG
Array < int > keys
prioritysueue < node > qu > lower entropy first
node sre(s, s, s,0,0) >
(vert., keyVert, parent, dist, entropy)
qu.push(src)
node dest(t,t,t,0,0)
qu.push(dest)
for all v* € V;, do
node n(v®,v* v* 0,0)
qu.push(n)
while lqu.empty() do
cur < q.pop()
if visited[cur.v] == true then
keyl < keys[parents[cur.v]
key2 < cur.keyVert
if keyl == key2 then > it is just a cycle but not
meeting of 2 traversals from diff KeyVertex
continue
PathMap <+ ComputePathBetween(keyl, key2)
KeyVertexGlkeyl].push(key2)
KeyVertexGlkey2].push(keyl)
continue
else visited[cur.v] == false
parents[cur.v] < cur.parent
keys|cur.v] < cur.keyVert
visited[cur.v] < true
for all v € G[cur.v].adj do int v = topology[cur.v][i];
if dists[v] + dist[v] > [ then
continue
en < CompEntropy(cur.keyVert, cur.w) +
(cur.dist +1)/1
node n(v, cur.keyVert, cur.v, cur.dist + 1, en)
qu.push(n)
return (KeyVertexG, Path)




Figure 2: Stitching Algorithm (left) and Candidate Path (right)

Algorithm 2 finds shortest path from s to ¢t on KeyVertexG
based on entropy value (line 5). After a path p is found, p is
removed from KeyVertexG (line 7). The algorithm continues
until no more path can be found.

4.3.3 Conceptual Example

Figure 2 illustrates the concept of stitching algorithm and
candidate path search. Suppose vs and wvis are key vertices
retrieved from the index and v1 and v1g are s and ¢ respectively.
vs expands to vi, and edges from v; to vs and vs to v1 are put
into KeyVertexG. vs also expands to viz. w15 expands to
v17 and vi2. When v1s expands to vi2, vi2 was occupied by vs
already. Hence, we can put edges vis to vs and vs to vis into
KeyVertexG. After that, vi5 expands to vis , and edges from
v15 to v1g and vig to vis are put into KeyVertexG. Given the
KeyVertexG, candidate paths from s to ¢ are found based on
entropy values, and those candidate paths will be used for path
inflation in the next phrase.

Algorithm 2 Path Search Algorithm

1: procedure PATHSEARCH(K eyVertexG, s, t, 1, a)

2 boolean PathFound + true

3 Array < Path > CandPath

4 while PathFound == true do

5: p < FindShortestPath(KeyVertexG, s,t,1, &)
6: if p! = () then
7

8

9

0

1

RemovePath(p, KeyVertexQ)
CandPath.push_back(p)
else
PathFound < false
return CandPath

4.4 Candidate Path Inflation

After all candidate paths, CandPath are found, the candidate
paths are used to form path summary. We developed the path
inflation algorithm which greedily includes vertices into path
vertex groups.

Algorithm 3 is the pseudo code of the path inflation algorithm.
Firstly, all vertices in the CandPath are put into a priority queue
which uses entropy as the priority (lines 4-8). Then, the vertex
cur in the candidate path with the lowest entropy are popped
from the priority queue (line 10). If cur was not visited before,
cur is included in the path group PathSummary[cur.PathlD]
(line 14). After that, all adjacent vertices of cur that satisfy
dists[v] + disti[v] > | or (cur.dist + 1) * 3 > dists[t] (line
19) are pushed into the priority queue with entropy(cur.P U v)
as cost. (cur.dist + 1) * 3 > dist,[t] is included so as to prevent
vertices that are too far away from vertices in CandPath are

Figure 3: a Candidate Path (left) and a Vertex Group P; (right)

included in the path summary. The algorithm terminates when the
priority queue becomes empty.

Figure 3 illustrates the concept of candidate path inflation. Given
that vi — vs — wv12 — vig — vi7 — vig is the candi-
date path. The path inflation algorithm first puts all vertices (i.e.
Vs, V12, Vie, v17) in the candidate path into the priority queue with
entropy of the candidate path as priority. Firstly, vertices that are
adjacent to vs, v12, Vie, v17 are included into the candidate path.
Then, other vertices that are adjacent to vertices (e.g. v4, vg) in the
candidate path are gradually included in the candidate path until
the distance constraint. Finally, we will get a subgraph shown in
Figure 3 (right).

Algorithm 3 Path Inflation Algorithm
1: procedure PATHINFLATION(G, CandPath, s, t,1)
2 prioritysueue < node > qu
3 Array < bool > visited
4 for all p € CandPath do

5: for allv € pdo

6.

7

8

entropy < Compute Entropy(p)
node n(v,i,v,0,l, entropy)

: qu.push(n)
9: while lqu.empty() do
10: cur <+ qu.pop()
11: if visited[cur.v] == true then
12: continue
13: visited[cur.v] < true
14: PathSummary[cur.pathl D].push(cur.v) 1> assign
v into that path group
15: for all v € G[cur.v].adj do
16: if dists[v] + disti[v] > L or (cur.dist +1) %3 >
dists[t] then
17: continue
18: en = Compute Entropy(PathSummary[cur.pathl D], v)
19: node n(v, cur.pathl D, cur.dist +

1, cur.l, cur.keyVertez, en)
20: qu.push(n)

21: return PathSummary > return Path Summary

5. EVALUATION

All experiments were performed under 64-bit Linux Ubuntu
14.04 on a machine with an Intel 4GHz CPU (4-core), 16 giga-
bytes of memory, and 1 terabyte solid state drive with 512k block
size. All our implementations are in C++ without parallelism.

We first introduce the graph dataset and attributes that we used
for the experiments. Then, we present the result of our case studies.
Finally, we look at the change of change of path summary quality
(i.e. change of entropy) along with the change in the expected num-
ber of key vertex [ and the number of hints H.



Table 1: Dataset and Parameter

Real Graph Num of Vertex | Num of Edge
fb-bfsl [5] 1.18m 29.78m
Parameter Default Vary

Exp. Num of Key Vert. | 6 3,6,9,12

Num of Hint 3 1,3,6,12

5.1 Datasets

We used a real social network dataset fb-bfsl [5], which has
1.63m vertices and 15.14m edges, for our experiments. To control
the number of attributes and attribute domain sizes, we generate
attributes (Table 2) based on vertex attributes in facebook graph-
API[1].

Table 2: Attributes

Vertex Attribute Domain Size,Distribution (1,0)
AgeGroup 10, gau(5,2.5)
Education 5, gau(3,1.25)
Gender 2, uni.
HomeCountry 100, gau(50.25)
Interested in 3, uni.
Languages 50, gau(25,12.5)
Relationship Status | 2, uni.

Religion 20, gau(10,5)
Work 50, uni.

Political 10, gau(5,2.5)

5.2 Case Study

Figure 4 and 5 are four case studies using the fb — bfsl [5]
graph. Each of the figures contains a visualization of one of the
paths in the path summary. At the top of each figure, we can see
the key vertices (man icon) from source to destination. Below
each key vertex is the attribute value of the key vertex that matches
attribute value in the hint. Attribute value summaries of the
path between every two key vertices are shown above the edges
between every two key vertices. The pie chats below the path are
the summaries of attribute value found by the inflation algorithm.
This attribute value summary summarizes the attribute value near
to the key vertices.

Case 1: For the first case study in Figure 4(a), we set the expected
number of key vertex [ = 6, the number of hint H = 3, and the
hint contains attribute Country = AUS, Religion = M, and
Work = Service. We can see there are 6 key vertices (including
source and destination), which match our expected number of key
vertices. Furthermore, the summaries of attribute values on the path
between every two key vertices are concise. That gives users a
clear idea of attribute values between key vertices. From the pie
charts, we can see that other (green) occupies a large portion of
the pie. That tells users that attribute values close to the path are
inconsistent and probably having large attribute value domain.

Case 2: For the first case study in Figure 4(b), we set the
expected number of key vertex [ = 6, the number of hint
H = 3, and the hint contains attribute Education = Primary,
Interested In = Men, and Politic = B. We can see there are
6 key vertices (including source and destination), which matches
our expected number of key vertices. Furthermore, the summaries
of attribute values on the path between every two key vertices are
concise. That gives users a clear idea of attribute values between
key vertices. From the pie charts, we can see that the top-2 attribute
values (blue and red) in each attribute occupies a large portion of
the pie. That tells users that attribute values close to the path are
consistent and that helps users to efficiently construct their queries.
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Figure 4: Path Summary (Expected Num of Key Vertex=6,
Num of Hint=3)
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Figure 5: Path Summary (Expected Num of Key Vertex=3,
Num of Hint=1)

After we study path summary with 6 key vertices and 3 hints,
we try to look at cases with less key vertices and hints.

Case 3: For the first case study in Figure 5(a), we set the expected
number of key vertex [ = 3, the number of hint H = 1, and the
hint contains attribute Age = 20 — 30. We can see there are 3
key vertices (including source and destination), which matches our
expected number of key vertices. Furthermore, the summaries of
attribute values on the path between every two key vertices are also
concise. From the pie charts, we can see that the top-1 attribute
values (blue) in each attribute occupies a large portion of the pie.
On the contrary, the ” other” attribute value (green) only occupies
a small portion. That tells users that attribute values close to the
path are very consistent.

Case 4: For the first case study in Figure 5(b), we set the expected
number of key vertex [ = 3, the number of hint H = 1, and the
hint contains attribute Fducation = Master. We found similar
result as in Figure 5(a).

5.3 Query Formulation Using Path Summary
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In order to connect source and destination via vertices that satisfy
attribute hint, we suggest users take into account major attribute
values and alternative attribute values when they are formulating
queries.

Major Attribute Values: Major attribute values are attribute val-
ues that appear on the path between key vertices. For example,
in Figure 4(b), "Edu.:Sec.,PhD., Int. In: W, Politic: B,EI" are
major attribute values between destination and the last key ver-
tex. By putting these attribute values into the query, key vertices
can be connected. However, based on users preferences, they may
not always want to include these major attribute values. Continue
with the example in Figure 4(b), users may not want to include
"Edu.:Sec.,PhD" into the query. If that is the case, users can con-
sider the alternative attribute values.

Alternative Attribute Values: Alternative attribute values are at-
tribute values displayed in the pie charts. They are the distribution
of attribute values near to paths between key vertices. Continue
with the example in Figure 4(b), if users do not prefer to have
"Edu.:Sec.,PhD" in the query, they may consider to replace it by
"Edu.: Uni". Based on the "Education" pie chart, there are 33.3%
of vertices has attribute value "Edu.: Uni" near to the paths be-
tween key vertices. Therefore, conceptually, choosing "Edu.: Uni"
is similar to rerouting the path between the destination and the last
key vertex.

5.4 Change of Entropy

The default expected number of key vertex and number of hint
are 6 and 3 respectively. We randomly generate 200 pairs of source
and destination and measure the average entropy and execution
time.

Figure 6(a) shows the change of entropy along with [. We can
see that for both CandPath and PathSummary, the entropy
does not really increase with [. Although it seems that a longer path
would contain more vertices and is more likely to contain different
attribute values, this intuition is not supported by Figure 6(a).
Since large [ offers more opportunity for the algorithm to search
for s — t paths with similar attribute values, the increase in path
length does not directly imply an increase in entropy.

Figure 6(b) shows the change of entropy along with . We can
see that for both C'and Path and PathSummary, the entropy in-
creases with H. That is contributed by the fact that more attribute
hints mean more attribute are involved, which makes the consis-
tency of attribute values lower.

6. CONCLUSION AND FUTURE WORK

In this paper, we study the problem of computing effective path
summary for attributed graphs. We first define a meaningful defi-
nition for path summary on attribute graphs that takes into account

user’s intuition on attribute values as well as path structure prop-
erties. Then, we propose an effective 3-phrase algorithm that finds
key vertices, stitches key vertices, and searches for path summary.
Finally, case studies on the Facebook graph that visualize our path
summary results illustrated the effectiveness of our proposed path
summary. In the future, we plan to further reduce the number of
path in the path summary by proposing the approach that can effec-
tively merge similar paths together so as to further reduce the effort
that users need for understanding the path summary.
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