
10.18293/DMSVLSS2017-018

Car2Car framework based on DDGP3

Walter Balzano, Vinicio Barbieri, Giovanni Riccardi
Dip. Ing. Elettrica e Tecnologie dell’Informazione

Università di Napoli, Federico II
Napoli, Italy

e-mail: wbalzano@unina.it, vinicio.barbieri@gmail.com, ing.giovanni.riccardi@gmail.com

Abstract— The purpose of this paper is to provide an algorithm
for the detection of free parking stalls within a multilevel garage.
Obviously, we are in the condition where the parking is very
busy. Using devices of the cars On Board Units (OBU) and Road
Side Units (RSU) is possible to determine, with a certain error,
the matrix of distances between all sensors. The way of
information exchange between cars is the VANETs. Starting
from the known position of the RSU and the mutual distance
between all adjacent cars OBU is possible to obtain the position
of all cars applying a Distance Geometry Problem (DGP)
algorithm schema. Unfortunately, the complexity of these
algorithms is NP-hard. Under some conditions, the DGP
algorithm can switch from continuous to discrete and it can be
solved with a sort of branch and pruning algorithm. We are
interested in a DDGP3 that is a Discretizable Distance Geometry
Problem in R3 variant to be used as a starting point for our work.
The resolution of the algorithm is equivalent to the resolution of a
problem of intersection between three spheres. This problem is
non-linear and, in some conditions, it is possible to obtain an
approximate solution with linear techniques.

Keywords – DGP; DDGP; V2V; WiFi positioning; car parking.

I. INTRODUCTION

The DGP consists in seeking the coordinates of a set of
points (vertices) in three-dimensional space starting from the
distances between them.

Let us denote by),,(dEVG a weighted graph, where
each vertex in V content corresponds to a point in space and
there is an edge between two vertices if and only if the distance
between them is known. The graph G represents a DGP type
problem, which in turn is the problem of finding a function

3: RVx (1)

such that for each arc belonging to E (and thus for every pair of
vertices u, v connected by an arch) it is true that

 uvdvxux (2)

In its basic form this is a "constraint satisfaction problem"
the solution of which can be represented as follows:

 VvxX v : (3)

II. RELATED WORKS

The different approach used in [2] and [3] for the solution
of this problem is to treat it as a problem of continuous global
optimization in which the set of constraints is replaced by an
error function Largest Distance Error (LDE) that measures the
difference between the calculated distance and the one known:

},{

21

1
,...,,

vu uv

uvvu
n d

dxx

m
xxxLDE (4)

where m is the number of known distances.

The DGP solution can be obtained by minimizing this
function, which is not convex and contains many local minima.
One of the approaches used to solve the problem is to
approximate the function using a sequence of uniformly
convergent functions; therefore a collection X is a solution if
and only if the LDE error function is 0.

The DGP is applied for the solution of problems of location
in wireless networks in which you know the distance between
sensors (in our case OBU), but do not know their location,
except that for some fixed named anchor (in our case RSU),
then used to solve the problem.

One area in which the DGP is heavily used is Biology
"Molecular Distance Geometry Problem" (MDGP).

The DGP can be treated as discrete as long as certain
conditions are respected, and in particular, given a graph

),,(dEVG and a Total Order of all vertices, we must
consider the following two axioms:

1. We assume that V3,2,1 , they must be a "clique"

(fully reachable graph) and 3: iVi must occur

that these 3 arcs Eiiiiii ,1,,2,,3

2. 2: iVi It must apply strictly the triangle

inequality iiiiii ddd ,11,2,2

If these conditions are verified then the cosine of the angle
of torsion of each quadruple of consecutive vertices can be
calculated

10.18293/DMSVLSS2017-018

Figure 1: Angles of torsion of quadruple of consecutive vertices

(through the intersection of two plans)

A position can be calculated for each one of two corners.

If these assumptions are verified the two possible positions
can be calculated as the intersection of three spheres

Figure 2: The intersection of the three spheres with center i-3, 1-2, i-1

 1S is the sphere with center in 1ix and radius iid ,1

 2S is the sphere with center in 2ix and radius iid ,2

 3S is the sphere with center in 3ix and radius iid ,3

The intersection of the three spheres can be:

1. one point

2. two points

3. a circle

4. empty

The first hypothesis has probability 0, the third hypothesis
is impossible (because of the strict triangular inequalities) and
the fourth hypothesis is impossible (because the parking is very
busy).

The only possibility, therefore, would be the second.

When these two assumptions are verified the LDE error
function can be reduced to a discrete set and solved by the
algorithm BP.

Figure 3: The algorithm BP branch and pruning

To switch from continuous to discrete domain this
algorithm must be based on a real instance and these conditions
must be verified:

 All distances required for the discretization (Axiom 1) are
obtained from the OBU and RSU, so they are independent
from the instance and stored in the VANETs;

 Distances between pairs (i, i + 1) and (i, i + 2) are know;

 Distances between pairs (i, i + 3) may be represented by
intervals:

1. 3, iid is 0: it means that this is a duplicated car

position, there is no branching because it can
only take the same position of its previous copy;

2. 3, iid is exact: the standard discretization

process is applied, and hence two possible
positions for the current car position are
computed;

3. 3, iid is represented by an interval: D sample

distances are taken from the interval and the
discretization process is applied for any chosen
sample distance; 2×D car positions are
generated.

III. C2C FRAMEWORK

Our goal is to provide a complete procedure to find out a
map highlighting the free stalls in a congested multilevel
parking.

Figure 4: Parking Scheme with RSU and OBU

10.18293/DMSVLSS2017-018

 To achieve it we make the following assumptions:

1) All vehicles are equipped with a sensor (OBU);
2) Since each point of observation there are at least 3

fixed sensors (RSU), whose coordinates are known;
3) It is known the structure of the car park and are known

the coordinates of all the parking stalls.

The following flow chart shows the procedures used to
obtain the map of free stalls. At each step the main input data
are passed and the processing results constitute the input for the
next step.

First of all, the algorithm load the map of parking and the
position of Road Side Units (RSU), after that the set of vehicles
registered on VANETs are loaded on memory.

All the information related to the mutual distance between
the car are shared, but the On Board Units (OBU) load just the
nearest.

Figure 5: Workflow to search free stalls

A. Filling Distance Matrix by Radio Signal Strength of OBU
and RSU

The model proposed in [1] allows proper accurate
positioning where there are several vehicles in a small area,
using a smart combination of RSS values transformed in a
distance matrix provided by the V2V/V2I system.

To achieve the goal, we decide to use an external cloud[19]
where to collect the distance vectors calculated by each vehicle.
Such information is collected, and then these constitute the
matrix of the distances which, by exploiting the cloud[20]
computing capacity allows obtaining with a DGP algorithm
map of the parking lot of vacancies.

Our proposal is not to use a cloud, but only assume a
memory buffer on board each RSU able to accommodate
distance carriers sent from the vehicles within a certain
distance. Of course, knowing the structure of the parking lot
and the location of the MSW is easy sizing the required
memory.

Contrary to what was proposed in [1] we haven’t the entire
matrix of distances but only a part of it in each RSU.

When a vehicle enters the car park, in addition to
calculating its distance vector, it requires RSU neighbours of
distance carriers known to them and the map of the park,
including the RSU coordinates and those of each parking stall.

The vehicle asks regularly update the data until it finds a
parking stall and stops the vehicle. The map of the parking,
being static information, once is transferred, as well as vectors
of distances that do not change between a request and the next.

In this way, each vehicle has, at a certain instant, the partial
matrix of the distances, the coordinates of the MSW and the
parking map.

All this information will be processed by a DDGP
algorithm to obtain the map of the parking lot with a list of free
and occupied stalls.

B. Building Ordered graph

The Distance Geometry Problem (DGP) consists in finding

the coordinates of a given set of points nxxx ,...,, 21 in a

three-dimensional space when some of the distances between
pairs of such points are known. Our DGP instance is the set of
vectors of distances received from neighboring RSU.

A vector of distances is considered significant if it contains
more than three distances, sensors having less than three
neighboring sensor could be initially removed from the
network, and the localization problem may be solved for a sub-
network (however, if a sensor has at least three sensors next it
is likely that parking in that area is not congested and you do
not need an algorithm to find a free place).

The graph to which we refer is G = (V, E, d), a weighted
undirected graph associated to an instance of the DGP.

V = set of vertices, where each vertex in V corresponds to
an ci, in our case position of the vehicles and the RSU

E = set of arcs between vertices, there is an edge between
two vertices only if it is known the distance between them (the
weight associated to the edge)

d = set of distances between two vertices

We want to solve our problem by using a variant DDGP3
proposed in [3], this algorithm, depending on orders vertex and
edge density.

To apply the DDGP3 algorithm it is necessary that the
following condition is verified.

 (The three anchor sensors) {1, 2, 3} included in V are a
"clique" (graph fully accessible), and for each parking
stall occupied xi belonging to V with rank i > 3, there
are 3 vertices j, k , h such that:

o j < i, k < i, h < i,
o (j, i), (k, i), (h, i)∈E
o djh < djk + dkh.

To check the validity of this condition [3] suggests the
following sorting algorithm:

10.18293/DMSVLSS2017-018

High-level algorithm: Reordering Graph Vertices

Input: Vu: Unordered vertices
Output: Vo: Ordered vertices

 1: while(a valid ordering is not found) do
 2: find a 3-clique C in G(Vu, E, d)
 3: place the vertices of C at beginning of new

 order: G(Vo, E, d) = C;
 4: while(Vu - Vo ≠ Ø) do
 5: find the vertex v in Vu - Vo with the largest number
 of adjacent vertices in Vo;
 6: if (l < 3) then
 7: break the while loop: there are no possible

 ordering for this choice of C;
 8: end if
 9: Vo = Vo +{v};
10: end while
13: end while
14: return Vo

If the sorting algorithm found out a solution then we can move
to the next step. We verified that the algorithm can find
solutions if parking is congested (there are few free stalls).

C. Discrete DGP using Branching & pruning

Only after the sort, if the conditions are met, you can apply
the DDGP3 algorithm. However, in order to avoid considering
equivalent solutions that can be obtained from a given solution
by translations or rotations, the first three points can be fixed.
So that the final binary tree has 2n-3 positions. The first three
positions are those of the RSUs closest to the viewer. At this
point, we proceed to the calculation of the position and to the
examination of the solution.

High-level algorithm: B&P
Input: k, n, d.
Output: Position of all vertices.
 1: for (i=1, 2) do

 2: compute the ith position for the vertex k:)(i
kx ;

 3: check the feasibility of the position)(i
kx :

 4: if (the position)(i
kx is feasible) then

 5: if (k=n) then one solution is found;
 7: else
 8: It calls itself with these parameters (k+1, n, d)

 9: end if
 10: else the current branch is pruned
 12: end if
 13: end for
 14: return Position of all vertices

The key points of the algorithm are two: the calculation of
the intersection between the three spheres and check the
feasibility of the 2 solutions found.

For the calculation of intersection points we are considering
whether to use the algorithm proposed by [2] MD-jeep, or the
more general technique proposed by [4]. Both approaches
provide solution within a reasonable elaboration time.

What really makes a difference to the convergence of
branch and prune algorithm is the feasibility check.

The idea is to exploit the condition 3), in fact, knowing the
coordinates of the "center" of each stall, we can say that a point
(intersection of three spheres) is acceptable if its coordinates
fall in turn within a of spheres of radius R (R-value to be
defined) which has the center coordinates (a priori known) of
the stalls.

Assuming C = {(Xc1, Yc1, Zc1) .. (Xcn, Ycn, Zcn)} the set of
coordinates of all “stall’s center”, the check to apply to each
(Xx, Yx, Zx) coordinate is:

d ((Xx, Yx, Zx), (Xci, Yci, Zci)) < R for a (Xci, Yci, Zci) in C

where:
d (A,B): distance from the points A and B
R: radius of the sphere to be fixed (i.e. 0.5 meters)

We chose the sphere only for simplicity of calculation, you
can also think of a box (more realistic).

In addition we suggest eliminating the solutions that
certainly do not make sense, such as those having the Z
coordinate unacceptable. Only the points for which the z
coordinate (height) is compatible with the heights of the
various parking levels are acceptable.

Assuming H = {h1 .. hn} the set of heights of the parking
floors, the check to apply to each Zx coordinate is:

(hi + hmin) < Zx < (hi + hmax) for a hi in H

where:
hmin : minimum height of a vehicle (i.e. 0.2 meters)
hmax : maximum height of a vehicle (i.e. 2 meters)

Knowing the map and the coordinate of each individual

stall, the algorithm replaces the calculated value of coordinates
with the nearest known one.

In this way, the result is much more precise and the
application is more suitable.

IV. EXPERIMENTAL RESULTS

In order to facilitate the implementation of the simulation
procedure, used to test the algorithm, we have used a
mathematical model [21; 22] under the following simplifying
hypotheses:

10.18293/DMSVLSS2017-018

1. We are considering uniform configurations of
parking stalls on similar floors in order to simplify
the simulation. Multi-level car park with 4 floors
with 250 stalls per floor and.

2. In the real case the sensors are at a distance from
the floor of the parking variable from a few
centimeters up to a little more than one meter. In
the simulations we assume to have all sensors
exactly at the level of the membership plan.

3. A further simplification we did say we have the
sensors in the center of each occupied stall.

4. The distance measurement even if in reality will
be affected by the error simulations we considered
accurate.

We have implemented the procedure in java and performed
tests on a notebook with i5 processor and 8 GB of RAM and
Ubuntu 17.04 operating system.

The problem consists in verifying if a stall is free or is
occupied by a sensor (vehicle).

The procedure takes as input a matrix of distances which
we assume it has been acquired by the sensors, also knowing
the map and the coordinates of each single stall we have the
possibility of replacing the calculated value of the stall
coordinates with the known coordinates of the nearest stall
(within a radius R) to improve the approximation of the
calculated position up to reduce to zero the error

Below is a table summarizing the results obtained in four
test. As will be noted, in the table we do not report the error
columns because, at each step of problem resolution of the
intersection of three spheres (on which is based the whole
algorithm) we obtain the coordinates of two points and choose
the one feasible with respect to the parking structure.

The algorithm identifies a point feasible substitute its
coordinates with coordinates known a priori.

The tests are all performed in cases of high congestion of
the parking lot, and as you can see the convergence of the times
are quite stable and low, in fact, are between 0.11 and 0.19
seconds. These times are encouraging for us and make us think
of a future implementation on mobile devices.

TABLE I. RESULTS OF CAR2CAR ALGORITHM

Tests
Boundary Conditions

Number
of stalls

Number of OBU per
floor (occupied stalls)

Duration

80% occupied stalls
evenly on all floors

1000 200 - 200 - 200 - 200 0.11 sec

80% occupied stalls
with higher density on
the lower floors

1000 244 - 222 - 195 - 139 0.12 sec

90% occupied stalls
evenly on all floors

1000 225 - 225 - 225 - 225 0.15 sec

90% stalls occupied
with higher density on
the lower floors

1000 249 - 242 - 226 - 183 0.19 sec

V. CONCLUSIONS AND FUTURE WORKS

We started from a real problem, the search for a free place
within a multi-level parking lot congested. Taking advantage of
the sensors of the RSUs fixed and mobile units OBUs we
calculated the distances between them, resulting in a matrix of
the partial distances that we used as DGP instance. Placing
particular conditions we solved the problem by using a DDGP3
algorithm. Finally we used a feasibility check that allowed us
to have a rapid convergence of the algorithm.

The network model is a wireless network and each node of
type OBU is able to communicate directly with any other node
of same type and with one of RSU type.

The elaborations are made directly on the OBU in-car, and
then the results are putted in a shared area memory through the
VANETs.

In the future, we will try to improve both the calculation of
the distances and the DGP algorithm. Our goal is to make the
entire procedure usable with the sensors and the ability of
calculation of smart phones.

REFERENCES

[1] Walter Balzano, Fabio Vitale. "DiG-Park: a smart parking availability
searching method using V2V/V2I and DGP-class problem." 31st
International Conference on Advanced Information Networking and
Applications Workshops 2017 - DOI 10.1109/WAINA.2017.104

[2] Mucherino, Antonio, Leo Liberti, and Carlile Lavor. "MD-jeep: an
implementation of a branch and prune algorithm for distance geometry
problems." International Congress on Mathematical Software. Springer
Berlin Heidelberg, 2010.

[3] Mucherino, Antonio, Carlile Lavor, and Leo Liberti. "The discretizable
distance geometry problem." Optimization Letters (2012): 1-16

[4] Coope, I. D. "Reliable computation of the points of intersection of n
spheres in n." ANZIAM Journal 42 (2000): 461-477.

[5] Balzano, Walter, Maria Rosaria Del Sorbo, and Silvia Stranieri. "A logic
framework for c2c network management." Advanced Information
Networking and Applications Workshops (WAINA), 2016 30th
International Conference on. IEEE, 2016.

[6] Lavor, Carlile, et al. "Discretization orders for distance geometry
problems." Optimization Letters 6.4 (2012): 783-796.

[7] Balzano, Walter, et al. "A Logic-based Clustering Approach for
Cooperative Traffic Control Systems." International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing. Springer International
Publishing, 2016.

[8] Balzano, Walter, Aniello Murano, and Fabio Vitale. "V2V-EN–Vehicle-
2-Vehicle Elastic Network." Procedia Computer Science 98 (2016): 497-
502.

[9] Lavor, Carlile, et al. "On a discretizable subclass of instances of the
molecular distance geometry problem." Proceedings of the 2009 ACM
symposium on Applied Computing. ACM, 2009.

[10] Abdelhamid, Sherin, Hossam S. Hassanein, and Glen Takahara.
"Vehicle as a mobile sensor." Procedia Computer Science 34 (2014):
286-295.

[11] Sładkowski, Aleksander, and Wiesław Pamuła, eds. Intelligent
Transportation Systems–Problems and Perspectives. Vol. 32. Springer,
2015.

[12] Balzano, Walter, Maria Rosaria Del Sorbo, and Domenico Del Prete.
"SoCar: a Social car2car framework to refine routes information based
on road events and GPS." Computer and Information Technology;
Ubiquitous Computing and Communications; Dependable, Autonomic
and Secure Computing; Pervasive Intelligence and Computing
(CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference on.
IEEE, 2015.

10.18293/DMSVLSS2017-018

[13] Y. Allouche, M. Segal, “Cluster-based beaconing process for VANET”,
Vehicular Communications Volume 2, Issue 2, April 2015, Pages 80–94.

[14] Allouche, Yair, and Michael Segal. "Cluster-based beaconing process
for VANET." Vehicular Communications 2.2 (2015): 80-94.

[15] Huang, Chi-Fu, Yuan-Feng Chan, and Ren-Hung Hwang. "A
Comprehensive Real-Time Traffic Map for Geographic Routing in
VANETs." Applied Sciences 7.2 (2017): 129.

[16] Sanguesa, Julio A., et al. "RTAD: A real-time adaptive dissemination
system for VANETs." Computer Communications 60 (2015): 53-70.

[17] Milojevic, Milos, and Veselin Rakocevic. "Distributed road traffic
congestion quantification using cooperative VANETs." Ad Hoc
Networking Workshop (MED-HOC-NET), 2014 13th Annual
Mediterranean. IEEE, 2014.

[18] Monteil, Julien, et al. "Distributed and centralized approaches for
cooperative road traffic dynamics." Procedia-Social and Behavioral
Sciences 48 (2012): 3198-3208.

[19] Amato, F., Moscato, F. Exploiting Cloud and Workflow Patterns for the
Analysis of Composite Cloud Services (2017) Future Generation
Computer Systems, 67, pp. 255-265. DOI: 10.1016/j.future.2016.06.035

[20] Amato, F., Moscato, F. Pattern-based orchestration and automatic
verification of composite cloud services (2016) Computers and
Electrical Engineering, 56, pp. 842-853. DOI:
10.1016/j.compeleceng.2016.08.006

[21] Amato, F., Moscato, F. Model transformations of MapReduce Design
Patterns for automatic development and verification (2016) Journal of
Parallel and Distributed Computing. DOI: 10.1016/j.jpdc.2016.12.017

[22] Amato, F., Moscato, F. A model driven approach to data privacy
verification in e-health systems (2015) Transactions on Data Privacy, 8
(3), pp. 273-296.

[23] Oka, Hiroaki, and Hiroaki Higaki. "Multihop data message transmission
with inter-vehicle communication and store-carry-forward in sparse
vehicle Ad-hoc networks (VANET)." New Technologies, Mobility and
Security, 2008. NTMS'08.. IEEE, 2008.

[24] Smith, David J. Reliability, maintainability and risk: Practical methods
for engineers including reliability centred maintenance and safety-related
systems. Elsevier, 2011.

[25] Li, Wenfeng, et al. "On reliability requirement for BSM broadcast for
safety applications in DSRC system." Intelligent Vehicles Symposium
Proceedings, 2014 IEEE. IEEE, 2014.

[26] Monteil, Julien, et al. "Distributed and centralized approaches for
cooperative road traffic dynamics." Procedia-Social and Behavioral
Sciences 48 (2012): 3198-3208.

[27] Sanguesa, Julio A., et al. "RTAD: A real-time adaptive dissemination
system for VANETs." Computer Communications 60 (2015): 53-70.

