
Interactive Visualization of Robustness Enhancement in Scale-free Networks
with Limited Edge Addition (RENEA)

Armita Abedijaberi1, Nathan Eloe2, and Jennifer Leopold1

1Department of Computer Science, Missouri University of Science and Technology, Rolla, MO USA
Email: {aan87, leopoldj}@mst.com

2School of Computer Science and Information Systems, Northwest Missouri State University,
Maryville, MO USA

Email: nathane@nwmissouri.edu

Abstract

Error tolerance and attack vulnerability of scale-free
networks are usually used to evaluate the robustness of
these networks. While new forms of attacks are developed
everyday to compromise infrastructures, service providers
are expected to develop strategies to mitigate the risk of
extreme failures. Recently, much work has been devoted
to design networks with optimal robustness, whereas little
attention has been paid to improve the robustness of existing
ones. Herein we present RENEA, a method to improve
the robustness of a scale-free network by adding a limited
number of edges. While adding an edge to a network
is an expensive task, our system, during each iteration,
allows the user to select the best option based on the cost,
amongst all proposed ones. The edge-addition interactions
are performed through a visual user interface while the
algorithm is running. RENEA is designed based on the
evolution of the network’s largest component during a
sequence of targeted attacks. Through experiments on
synthetic and real-life data sets, we conclude that applying
RENEA on a scale-free network while interacting with the
user can significantly improve its attack survivability at the
lowest cost.

1 Introduction

One of the most important features of large networks is
their degree distribution, P (k), or the probability that an

DOI reference number: 10.18293/DMSVLSS2017-015

arbitrary node is connected to exactly k other nodes. Many
real-life networks display a power-law degree distribution
with heavy-tailed statistics, which are called scale-free
networks. In a scale-free network the probability that a
node has k links follows P (k) ∼ k(−λ), where λ is
called the degree exponent and its value is typically in the
range between 2 < λ < 3 [1]. Scale-free networks are
created by preferential attachment [2], which means newly
introduced nodes prefer to connect to existing high-degree
nodes. Starting with a small number of nodes, when
a new node is added to the network, considering the
preferential linking, it will connect to other nodes with
the probability proportional to their degree. Coupled with
the expanding nature of many networks this explains the
occurrence of hubs, which hold a much higher number of
links than most of the nodes in the network. Scale-free
topology is widely observed in many communication and
transportation systems, such as the Internet, World Wide
Web, airline networks, wireless sensor networks, and power
supply networks, all of which are essential to modern
society. One of the most important properties in scale-free
networks is the fact that while these networks are strongly
tolerant against random failures, they are fragile under
intentional attacks on the hubs. Intuition tells us that
disabling a substantial number of nodes/edges will result
in an inevitable functional disintegration of a network
by breaking the network into tiny, non-communicating
islands of nodes. However, scale-free networks can be
amazingly resilient against accidental failures; even if 80%
of randomly selected nodes fail, the remaining 20% still
form a compact cluster with a path connecting any two
nodes [2]. In fact, the fragileness of scale-free networks

under intentional attack comes from their heavy-tailed
property, causing loss of a large number of links when a
hub node is crashed. Hence, the heavy loss of network
links quickly makes the network sparsely connected and
subsequently fragmented. However, random failures affect
mainly the numerous small degree nodes, the absence of
which doesn’t disrupt the network’s integrity.

Considering error tolerance and attack vulnerability,
which are two common and important properties of
scale-free networks, extensive research efforts have been
made to study the robustness of such networks which is
defined as the ability of the surviving nodes to remain, as
much as possible, interconnected. On that account it is
important to understand how to design networks which are
optimally robust against malicious attacks, with examples
of terrorist attacks on physical networks or attacks by
hackers on computer networks. However, it is not possible
to abandon the existing networks, which are the result of
years of evolution, and rebuild them from the beginning.
Hence, it is significantly important to study the optimizing
guidelines to enhance the robustness of existing networks in
an interactive environment and incorporate the user’s input
in order to acquire the optimal result at a lower cost.

In this paper, we study the problem of how to improve
the robustness of an existing scale-free network and show
that its attack survivability can be significantly improved
by adding a limited number of edges to it at the lowest
cost. This process is carried out by visualizing the process
and interacting with the user. There will be no impact on
the error tolerance, keeping the degree distribution of the
network as much as possible intact.

The organization of this paper is as follows; Section
II provides an overview of related work about robustness
enhancement in scale-free networks. In Section III we
discuss RENEA and its graphical user interface. An
example of running RENEA is presented in Section IV.
Section V focuses on experiments and results. Finally,
conclusions and our plans for future work are presented in
Section VI.

2 Related Work

The main approaches to improve robustness of scale-free
networks, through topology reconfiguration, can be
generally classified into two main categories. The first
category involves rewiring edges of the network and the
second category suggests addition of edges to the network.
Both approaches are carried out in order to obtain a
network structure with better robustness. In this section we
summarize existing works regarding these two approaches
as well as network visualization tools.

2.1 Reconfiguration with Edge Rewiring

In the method proposed in [3], edges are selected
randomly to be removed from the graph or to be added to the
graph. However, this reconfiguration will change the degree
distribution of the graph as well as its diameter, which
is not desirable for the network. Another edge rewiring
method is proposed in [4], in which two edges A-B and
C-D are selected. If A-C and B-D do not already exist
in the network, the rewiring operation replaces A-B and
C-D with A-C and B-D as long as such reconfiguration
does not generate a loop. This rewiring operation obviously
does not change any nodal degree since it converts a random
network into another one with the same degree distribution.
However, for real networks with economic constraints, the
nodal degree conservation is not enough due to the cost. In
fact, the total length of links cannot be exceedingly large
and the number of changes in the network should remain
small. In order to minimize the cost, any swap is accepted,
only if the increase of the robustness is greater than or equal
to a threshold. This procedure is repeated with another
randomly chosen pair of edges until no further substantial
improvement is achieved. This method results in a network
with an onion-like structure [5].

Even though swapping the edges can increase the
network robustness, there are some spatially limited
real-life networks where edges are hard to re-configure, e.g.
power grid networks and the Internet router network. On
the other hand, however, there exist the spatial unlimited
networks such as airline networks and the Internet switcher
network. For spatially unlimited networks whose edges can
be easily re-linked, in the Switch Link (SL) method [6],
the top Pc fraction of the large-degree nodes are defined
as hubs. For each hub, the SL finds two non-hub nodes
connecting it. The edge connected to the first non-hub node
is kept and the edge connecting the second non-hub node
to the first non-hub node is switched. This process will
be repeated until all the links connected to the hub nodes
are addressed. For the spatially limited networks, the SL
method is not economic and feasible since nodes are usually
far from each other. In this case, the split hub (SH) method
is proposed [6]. This method also starts with defining the
top Pc fraction of nodes as hubs and replaces them by a
3-clique which is a complete graph in which every two
distinct nodes are adjacent. Then it connects the non-hub
nodes, that were connected to the original hub node, to the
nodes of the clique randomly.

Edge reconfiguration can change community structure
of a network [7]. The community structure refers to the
functional modules in the network that play an important
role in regards to cascading failures. A network with
a strong community structure has few edges between its
communities. Hence, its structure is more fragile in terms

of attacks on those edges in comparison with networks
with a weak community structure. A method [7] is
proposed to improve the robustness of a network while
preserving its community structure. In this 3-step method,
the importance of nodes is calculated based on their degree.
Step 1 reconfigures each community to have an onion-like
structure [5]. Step 2 swaps edges in such a way that
important nodes only connect to the nodes within the same
community. Step 3 swaps edges to increase the number of
edges between communities. These 3 steps are recursively
applied on the network until its robustness hardly increases.

2.2 Reconfiguration with Edge Addition

The number of possible ways of adding an edge to a
graph with N nodes and L edges is equal to

(
N
2

)
− L. For

large real-life (sparse) networks, it is almost infeasible to
compare all these possibilities and find the optimal edges
to add. Some techniques have been introduced in literature
to add edges to an existing graph based on different criteria.
Three different enforcing strategies are practiced in [8]. The
first method randomly selects a pair of nodes in the network
and establishes a new edge between them. The second
method selects a pair of nodes with the lowest degree in the
network and establishes a new edge between them. Finally,
the last method selects a pair of nodes with the highest
degree in the network and establishes a new edge between
them. According to experiments, the method that prefers
low-degree nodes as candidates for adding edges reinforces
the attack survivability of the network with a lower cost in
comparison with the other methods.

It has been suggested [9] that assortative networks (i.e.,
high-degree nodes in the network that are more likely linked
with other high-degree nodes), are more robust than their
disassortative counterparts (i.e., high-degree nodes in the
network that are more likely linked with low-degree nodes).
Thereupon, a method is proposed [9] to enhance robustness
of a network by increasing its assortativity. In this method,
a layer index is assigned to each node based on the degree
of that node. Accordingly, the layer index for nodes with
the lowest degree is 0, for nodes with the second lowest
degree is 1, and so on. Then, the probability of adding
an edge between a random pair of nodes depends on their
layer index difference (i.e., nodes within the same layer are
connected with greater probabilities than nodes in different
layers); this leads to higher assortativity in the network.

The way that nodes are arranged in a graph is considered
as a key factor in overall robustness and efficiency of that
graph [10]. The star structure is efficient (the average
shortest path length is small), yet fragile in case of removal
of the central node. On the contrary, the circle structure
is robust with regard to removal of any single node, yet
inefficient (the average shortest path length is large). The

Node-protecting Cycle method [11] is proposed to combine
the properties of both circle and star structures to improve
robustness and efficiency of a network.

All of the aforementioned edge rewiring and edge
addition algorithms are proposed to improve the robustness
of an existing network. However, these works consider one
aspect in a network and neglect the others. When it comes to
a scale-free network, it is important to take every structural
aspect of the network into consideration. In addition,
feasibility of a proposed re-configuration of a network must
be considered. Having a method to improve the robustness
of a scale-free network against malicious attacks while
keeping its resilience in case of random failures without
disturbing its small-world property at a very low cost is
still an unsolved problem. In a scale-free network with
the small-world property, the distance between any pairs of
nodes is relatively small [12].

2.3 Network Visualization

A number of software tools have been developed to
model, analyze, and visualize data that can be represented
as a graph or a network. Typically, these tools allow the user
to annotate nodes and edges with metadata, and provide
utilities such as random graph generation, calculation of
analytical measures (e.g., centrality, network distances,
PageRank, etc.), and filtering (i.e., viewing only a portion
of the graph based on some criteria). Several of these
viewers were designed for a particular problem domain,
such as finding motifs in gene regulatory networks (e.g.,
GeneNetWeaver [13]). KDnuggets [14] provides a list of
what it considers to be the top 30 network visualization
tools that can be used for a wide variety of network
applications (e.g., in domains such as biology, finance,
and sociology). It is notable that many of these tools are
open-source and can be customized to provide additional
functionality. The software presented herein differs from
other available network visualization tools in the analysis
that it facilitates. To the best of our knowledge, there
are no other visual network analysis tools available for the
purpose of reinforcing robustness of a scale-free network in
an interactive environment.

3 Robustness Enhancement Algorithm

The problem setting we consider in this work is to
modify a given graph’s structure under a given budget to
improve its robustness. The budget is often defined in terms
of the maximum number of edges that can be added to
the network. In practice, the cost of establishing an edge
between a pair of nodes is not zero. For real networks,
with economical constraints, it is preferable to reduce the
overall cost of adding extra edges, keeping the total length

(geographically), as low as possible while still achieving the
same amount of robustness enhancement. The measure of
robustness employed in our algorithm and the edge-addition
strategy along with its graphical user interface are specified
in the following sections.

3.1 Robustness Metric

The definition of network robustness might change
according to a specific application. In this work,
the removal of a node from a network is called a
“node-knockout” or a “node-attack”, and the robustness
of a network is measured by the size of the Largest
Connected Component (LCC) in the network after a
node-attack [5]. To quantify this, we proceed with a series
of node-attacks and subsequently measure the robustness
after each node-removal. Hence, the robustnessR is defined
as:

R =
1

N

N∑
Q=1

S(Q)

where N is the number of nodes in the network and S(Q)
is the fraction of nodes in the LCC after removing Q
nodes. The normalization factor 1/N , makes robustness of
networks with different sizes comparable. The minimum
value ofR is equal to 1/N , where the network is a star graph
and the maximum value of R is equal to 0.5, where the
network is a complete graph. A robust network corresponds
to a large R value. This distinctive measure is not only
simple, but also practical, due to the calculation of the size
of the largest component during all possible system-wide
failures or intentional attacks.

In our targeted attack scenario, we implicitly admit that
the attacker perfectly knows the network's degree sequence
and thus can cause maximum damage. An intentional attack
is targeted to disrupt the network by removing the most
important nodes; here, we find the most connected node,
remove it along with all the edges incident with it, calculate
S(Q), update the degree sequence for the remaining nodes,
and find the new most connected node to repeat the process
until the network completely collapses. In case of two or
more nodes having the same degree, we simply pick one of
them randomly.

3.2 RENEA

Here we present an algorithm called RENEA to improve
the robustness of a scale-free network by adding a limited
number of edges to it, such that the optimized network,
compared to the initial one, has a significantly higher value
of robustness. We assume that the ‘defender’ knows about

the intention of the ‘attacker’ to cause maximum damage to
the network.

For scale-free graphs there is always a very large
component which is a connected subgraph that contains a
constant fraction of the entire graph's nodes. Resultantly,
one can randomly remove more than 80% of the nodes in
the graph without destroying that component. Hence, the
network will still possess large-scale connectivity [15]. On
the other hand, an attack that simultaneously eliminates
as few as 10–20% of the hubs can cause that component
to disappear suddenly and break the network into several
isolated components. The main idea in our method is to
increase the robustness of a network by adding a limited
number of edges to it, and therefore to increase the lifetime
of the largest component of the graph upon removing
high-degree nodes.

Depending upon the nature of a network, adding an
edge can be very costly and some networks can only afford
a limited number of them. Moreover, in order to keep
other structural properties of networks such as their degree
distribution as much intact as possible, it requires addition
of a limited number of edges to the network. Given that, a
threshold parameter is needed for the algorithm to constrain
the maximum number of edges that can be added to the
network. Furthermore, our iterative algorithm provides the
user with a number of edge-additional candidates during
each iteration and lets them choose the one that causes the
minimum cost in order to be added to the network.

The inputs to our iterative algorithm RENEA are an
undirected, unweighted scale-free network represented as a
graph G(V,E) with |V | = N nodes and |E| = L edges,
the budget δ (maximum number of edges that can be added
to G), and θ (the initial percentage of hubs to remove in
the attack simulation process). The output from RENEA
is a more robust graph G(V,E′) with the same number of
nodes yet more edges (L ≤ |E′| ≤ L+ δ). The steps of the
algorithm are as follows:

0) m = 0 // m is the number of edges added to G
1) Simulate a targeted attack and remove θ percent of hubs
from G.
2) listComps = Sorted list of disconnected components
based on their size, in non-increasing order.
3) comp1 = The largest component in listComps.
4) comp2 = The second largest component in listComps.
5) Select a node x ∈ comp1
6) Select a node y ∈ comp2
7) E′ = {x–y} ∪ E. // add edge x–y to G
8) comp = comp1 + comp2
9) Remove comp1 and comp2 from listComps.
10) Add comp to the beginning of listComps.
11) m = m+ 1
12) Repeat steps 3-11 until |listComps| == 1 or m == δ.

RENEA starts off with simulating an attack on graph
G (line 1). There are two common types of attacks that
can be carried out on a network known as serial-attack
and sudden-attack. In both of these attacks an initial θ
percent of highest-degree nodes are to be removed. In
the sudden-attack, θ percent of highest-degree hubs are
identified and removed at once, whereas in the serial-attack,
which is known to be more damaging, hub removal happens
a bit differently. In the serial-attack, first the highest-degree
hub is removed, then the degree of each remaining node is
recalculated and among them again the highest-degree hub
is removed until θ percent of hubs are discarded. In the
graphical user interface, a user can choose either of these
options to simulate an attack on the network.

Once G is fragmented, all disconnected components
are found, where the number of nodes in each component
determines the size of that component. In order to add the
least number of edges yet gain the highest improvement
in robustness, the single-node components will be ignored.
listComps contains a list of components sorted based on
their size in a descending order (line 2). The first and second
members of listComps, the largest and second largest
components, are called comp1 and comp2, respectively
(lines 3-4).

The algorithm adds an edge between node x in comp1
and node y in comp2. There exists a list of candidates
whose size is equal to |comp1| × |comp2|. Our user
interface allows the user to pick one edge that can impose
the least cost to the network (lines 5-7). Afterwards, comp1
and comp2 are combined into comp and both are removed
from listComps, and comp is added to the beginning of
listComps (to keep it sorted) (lines 8-10). Variable m
is used to keep track of the number of edges added to G
(line 11). At this point one edge is already added to G
(E′ = E ∪ {x–y}) and m=1. RENEA, as an iterative
algorithm, repeats steps 3-11 until listComps contains only
one component (at the end of each iteration, the size of
listComps decreases by one) or the desired number of
edges are added to G (|E′| = L+ δ) (line 12).

3.3 Edge Removal

Even though applying RENEA on a graph improves its
robustness remarkably, adding more edges to a network
comes with an extra cost. Hence, depending on the nature of
the network, some users may or may not decide to mitigate
the total cost by getting rid of some edges from the graph
yet still have a considerable overall enhancement in the
robustness of the network.

Upon request of the user, our algorithm nominates
some edges to get removed from the graph based on
the betweenness centrality value of them. The edge

betweenness centrality is defined as the number of the
shortest paths that pass through an edge of a network.
An edge with a high edge betweenness centrality score
represents a bridge-like connector between two parts of
a network and the removal of such edges may affect the
communication between many pairs of nodes through the
shortest path between them.

To implement the edge-removal part, first each edge
is associated with an edge centrality value. Then these
values are sorted in increasing order. The user can request
the maximum number of edges that s/he is willing to
remove from the network. Removing edges with high
betweenness, that occupy critical roles in the network, can
force many pairs of nodes to be re-routed on a longer
way in order to communicate with each other. It can
also degrade the overall efficiency of the network in terms
of communication. Hence, the algorithm starts removing
edges with the lowest betweenness value, as long as that
edge-removal does not make the network disconnected,
until the desired number of edges are removed.

3.4 The Graphical User Interface

RENEA is implemented using the Python programming
language using the powerful NetworkX [16] library to
perform graph operations. The Graphical User Interface
(GUI) uses elements of the networx viewer to easily enable
an interactive view of the graph that allows scrolling,
zooming, and moving nodes. The Graph Viewer element
is included in a Tkinter based GUI; Tkinter is the standard
GUI library in Python and is included in a variety of
distributions of the language. This helps to ensure that the
application is as cross platform as possible.

The RENEA user interface [Figure 1] consists of the
following controls: (i) a file chooser to allow the user to
select a file that contains a list of nodes and edges of the
graph, (ii) a text input field to specify the initial value of the
threshold (θ), (iii) a text input field to specify the maximum
number of edges to be added to the graph, (vi) a drop-down
menu to select the desired type of attack on the graph, (vi)
a control button to start the process of adding edges to
the graph to enhance robustness, (v) a text input field to
specify the maximum number of edges to be removed from
the graph, and (vi) a control button to start the process of
removing edges from the graph.

As shown in [Figure 2], a data set has been selected,
and all of its specifications are presented in the GUI such
as the number of nodes, edges, and initial robustness.
The important nodes in terms of their degree (hubs) are
presented using bigger circles. In this GUI the user can
drag and relocate each edge and node, and zoom in/out on
the graph for a closer look.

https://github.com/jsexauer/networkx_viewer/

Figure 1: RENEA GUI

4 A Running Example In RENEA

To demonstrate the basic concepts behind RENEA, here
we walk through a simple example. We start by uploading
a graph in the GUI with 20 nodes, 21 edges, and the initial
robustness of 0.1052. Once the graph is uploaded, all of
its specifications are presented in the GUI [Figure 3]. For
this particular graph, we set ’Threshold’ = 20%, ’Maximum
Edges to Add’ = 3, and ’Attack Method’ = Serial. Once the
user hits the ’Enhance Robustness’ button, the algorithm
runs and suggests a list of edge IDs to be added. The
user can accept or discard the proposed edges [Figure 4].
Once the user accepts these edges they will be added to
graph (they are displayed with thicker lines in blue) [Figure
5]. If the user chooses to delete 3 edges, once they hit
the ’Remove Edges’ button, the algorithm calculates the
betweenness of the edges and nominates a maximum of
three edges with the lowest betweenness whose removal
does not disconnect the graph. These edges are displayed
in red with thicker lines [Figure 6]. The GUI also shows
the amount of decrease in robustness due to edge removal.
Once the user accepts the changes those edges get removed
and the updated robustness along with the final graph is
displayed [Figure 7].

5 Experiments

5.1 Dataset

In this section, we experimentally examine the
performance of RENEA, and for performance evaluation
comparison, we have also implemented three other
edge-addition algorithms: one to add edges between
randomly selected pairs of nodes, one to add edges between
nodes with high degrees only, and finally one to add edges
between low-degree nodes. For the experiment, we used a
real-life American Airlines dataset which is an unweighted,
undirected, and connected scale-free graph. This dataset
contains 332 airports (nodes) and 2126 flights between
airports (edges) and contains no multi-edges (two or more
edges that are incident to the same two nodes) or self-loops
(an edge from a node to itself).

Figure 2: RENEA GUI after uploading a dataset containing USAir
network; all the specifications of this graph (e.g., number of nodes,
number of edges, and initial robustness) also are displayed.

5.2 Results

We tested RENEA and three other algorithms on the
American Airlines network. We ran each algorithm 10
times and took the average of improvement acquired by
each. For each experiment, we added 20, 30, 40, 50, and
60 edges to the original graph using different algorithms
and computed the obtained robustness. As shown in [Table
1], RENEA significantly outperforms the other algorithms,
accomplishing two times more improvement in comparison
with the other methods. Results show that by adding less
than 3% of edges to the graph, robustness improves up to
70%, whereas the random edge addition can only improve
the robustness up to 35%. [Figure 8] shows how the size of
the biggest component in the American Airlines network is
changing while removing q hubs from the original network.
The size of the largest component after applying RENEA
causes the graph to hold its integrity for a longer time as
opposed to using the other methods. [Figure 9] compares
the degree distribution of the US Air network before and
after adding 50 edges via applying RENEA. Because of
adding a limited number of edges to the graph, the shape
of its degree distribution remains almost the same. The
reason that a scale-free network is robust in terms of random
failure is because having a power-low degree distribution
and adding a limited number of edges to the graph does
not cause severe changes in it. The goal is to keep all the
unique properties of the graph the same while enhancing its
robustness against targeted attacks.

Figure 3: A graph with 20 nodes and 21 edges.

Figure 4: A list of suggested edges to add to enhance robustness.

Figure 5: Graph after adding 3 edges.

Figure 6: 3 edges are nominated to get removed.

Figure 7: After adding 3 edges and removing 3 edges, the overall
robustness improvement is 25%.

6 Conclusion and Future work

Real-life complex networks are known to be resilient in
terms of random failures yet fragile in the terms of targeted
attacks. To enhance their total robustness, one strategy
is to add more edges to the network and the other is to
rewire some qualified edges in the network. Based on the
type of the network either of these methods could be used.
Mostly these strategies accept a change only if it improves
the robustness of the network by a threshold. Hence,
it requires them to compute the robustness of the graph
before and after applying a change which could be very
time-consuming depending on the size of the graph. So they
are not considered efficient in terms of time. Additionally,

Table 1: The performance of RENEA vs. three other algorithms
Algo1, Algo2, and Algo3. Algo1 adds edges randomly, Algo2 adds
edges among low-degree nodes, and Algo3 adds edges among
high-degree nodes. The dataset is an American Airlines dataset
with 332 nodes, 2126 edges and initial robustness of 0.1079. We
added 20, 30, 40, 50, and 60 edges to the original graph and the
averages of total robustness improvement acquired after running
each algorithm are presented.

Initial R
0.1079

20
edges

30
edges

40
edges

50
edges

60
edges

RENEA 26.17% 38.16% 49.94% 55.25% 66.09%
Algo1 11.08% 18.19% 23.20% 30.44% 34.07%
Algo2 11.55% 13.17% 15.42% 21.80% 24.60%
Algo3 10.26% 12.14% 19.09% 21.51% 21.72%

none of these solutions take the nature of the network into
consideration. Thus, their proposed solution is not always a
practical one.

In this work, we presented RENEA, an iterative
algorithm that is designed to enhance the overall robustness
of a scale-free network against malicious attacks by adding
a limited number of edges to it. Adding new connections
to the nodes arbitrarily and without any constraint can
change the nodal degree of the graph and disturb other
structural properties of it. We also presented a user interface
for RENEA that allows the user to see the effect of the
changes to the network. In addition to the excellent
performance of RENEA, the fact that it does not compute
the robustness during each iteration, makes it work very
fast to communicate with the user. During each iteration,
RENEA suggests the best edges such that adding them
can best increase the robustness of a graph, and the user,
considering the cost, can accept or reject them. Finally, if
the user also wants to remove some edges from the graph
to mitigate the overall cost, RENEA nominates the ones
with low betweenness centrality value whose removal does
not make the graph disconnected. Our future work will
be focused on performing formal studies of the usefulness
and usability of the user interface as well as further
improvement in the performance of RENEA.

References

[1] Cohen, Reuven, and Shlomo Havlin. ”Scale-free
networks are ultrasmall.” Physical review letters 90.5
(2003): 058701.

[2] Barabsi, Albert-Lszl, and Rka Albert. ”Emergence of
scaling in random networks.” science 286.5439 (1999):
509-512.

Figure 8: X-axis represents the number of removed nodes and
Y-axis represents the size of LLC in the American Airlines network
before and after reconfiguration. The line in red shows the
performance of RENEA.

Figure 9: X-axis represents degrees of nodes and Y-axis represents
how many nodes share the same degree. After adding 50 edges
to the US Air network, its degree distribution remains almost the
same.

[3] Beygelzimer, Alina, et al. ”Improving network
robustness by edge modification.” Physica A: Statistical
Mechanics and its Applications 357.3 (2005): 593-612.

[4] Xiao, S., et al. ”Robustness of scale-free networks
under rewiring operations.” EPL (Europhysics Letters)
89.3 (2010): 38002.

[5] Schneider, Christian M., et al. ”Mitigation of malicious
attacks on networks.” Proceedings of the National
Academy of Sciences 108.10 (2011): 3838-3841.

[6] Ze-Hui, Qu, et al. ”Enhancement of scale-free network
attack tolerance.” Chinese Physics B 19.11 (2010):
110504.

[7]] Yang, Yang, et al. ”Improving the robustness
of complex networks with preserving community
structure.” PloS one 10.2 (2015): e0116551.

[8] Zhao, Jichang, and Ke Xu. ”Enhancing the robustness
of scale-free networks.” Journal of Physics A:
Mathematical and Theoretical 42.19 (2009): 195003.

[9] Wu, Zhi-Xi, and Petter Holme. ”Onion structure and
network robustness.” Physical Review E 84.2 (2011):
026106.

[10] Chan, Hau, Shuchu Han, and Leman Akoglu.
”Where graph topology matters: the robust subgraph
problem.” Proceedings of the 2015 SIAM International
Conference on Data Mining. Society for Industrial and
Applied Mathematics, 2015.

[11] Li, Li, et al. ”Enhancing the Robustness and Efficiency
of Scale-free Network with Limited Link Addition.”
TIIS 6.5 (2012): 1333-1353.

[12] Wang, Xiao Fan, and Guanrong Chen. ”Complex
networks: small-world, scale-free and beyond.” IEEE
circuits and systems magazine 3.1 (2003): 6-20.

[13] Schaffter, Thomas, Daniel Marbach, and Dario
Floreano. ”GeneNetWeaver: in silico benchmark
generation and performance profiling of network
inference methods.” Bioinformatics 27.16 (2011):
2263-2270.

[14] KDNuggets. Top 30 Social Network
Analysis and Visualization Tools, June 2015.
http://www.kdnuggets.com/2015/06/top-30-social-netw-
ork-analysis-visualization-tools.html. Accessed March
28, 2017.

[15] Callaway, Duncan S., et al. ”Network robustness
and fragility: Percolation on random graphs.” Physical
review letters 85.25 (2000): 5468.

[16] Schult, Daniel A., and P. Swart. ”Exploring network
structure, dynamics, and function using NetworkX.”
Proceedings of the 7th Python in Science Conferences
(SciPy 2008). Vol. 2008. 2008.

	Introduction
	Related Work
	Reconfiguration with Edge Rewiring
	Reconfiguration with Edge Addition
	Network Visualization

	Robustness Enhancement Algorithm
	Robustness Metric
	RENEA
	Edge Removal
	The Graphical User Interface

	A Running Example In RENEA
	Experiments
	Dataset
	Results

	Conclusion and Future work

