
JVLC

Journal of

Visual Language and

Computing

Volume 2020, Number 2

Copyright ⓒ 2020 by KSI Research Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of the publisher.

DOI: 10.18293/JVLC2020-N2

Journal preparation, editing and printing are sponsored by KSI Research Inc.

 i

Journal of
Visual Language and Computing

Editor-in-Chief

Shi-Kuo Chang, University of Pittsburgh, USA

Co-Editors-in-Chief
Gennaro Costagliola, University of Salerno, Italy

Paolo Nesi, University of Florence, Italy

Gem Stapleton, University of Brighton, UK

Franklyn Turbak, Wellesley College, USA

An Open Access Journal published by

KSI Research Inc.

156 Park Square Lane, Pittsburgh, PA 15238 USA

 ii

JVLC Editorial Board
Tim Arndt, Cleveland State University, USA

Paolo Bottoni, University of Rome, Italy

Francesco Colace, University of Salerno, Italy

Maria Francesca Costabile, University of Bari, Italy

Martin Erwig, Oregon State University, USA

Andrew Fish, University of Brighton, United Kingdom

Vittorio Fuccella, University of Salerno, Italy

Angela Guercio, Kent State University, USA

Erland Jungert, Swedish Defence Research Establishment, Sweden

Kamen Kanev, Shizuoka University, Japan

Robert Laurini, University of Lyon, France

Jennifer Leopold, Missouri University of Science & Technology, USA

Mark Minas, University of Munich, Germany

Brad A. Myers, Carnegie Mellon University, USA

Joseph J. Pfeiffer, Jr., New Mexico State University, USA

Yong Qin, Beijing JiaoTung University, China

Genny Tortora, University of Salerno, Italy

Kang Zhang, University of Texas at Dallas, USA

Journal Production Associate Editors
Jorge-Luis Pérez-Medina, Universidad de Las Américas, Ecuador

Yang Zou, Hohai University, China

 iii

Journal of
Visual Language and Computing

Volume 2020, Number 2

December 2020

Table of Contents

Regular Papers

A Multilayer Graph Approach for Predicting Computer Network Cyber-attacks. ….. 1
Francesco Colace, Muhammad Khan, Marco Lombardi and Domenico Santaniello

Monitoring Evolution of Dependency Discovery Results …………… … 7
Loredana Caruccio and Stefano Cirillo

Auto-Modularity Enforcement Framework Using Micro-service Architecture 17
Hanzhong Zheng, Justin Kramer and Shikuo Chang

Research Notes

CACHE: Contextual Approach for Cultural Heritage Enhancing 23
Francesco Colace, Marco Lombardi and Domenico Santaniello

ViBERT: Visual Behavior Regression Testing ….. ….. . . . ….. 31
Chunying Zhao, Cong Chen, Kang Zhang and Jun Kong

iv

F. Colace et al. / Journal of Visual Language and Computing (2020) 1-6

DOI reference number: 10.18293/JVLC2020N2-006

A Multilayer Graph Approach for Predicting Computer

Network Cyber-attacks

Francesco Colace a, Muhammad Khan b, Marco Lombardi a, Domenico Santaniello a, *

aDIIn University of Salerno, Italy

aNew York University, Abu Dhabi, United Arab Emirates
__

A R T I C L E I N F O

Article History:

Submitted 8.18.2020

Revised 8.25.2020

Second Revision 10.20.2020

Accepted 11.30.2020

Keywords:

Network Security

Knowledge Management

Bayesian Network

Probabilistic Graphical Models

A B S T R A C T

Today's society is heavily oriented towards digitalization, which increasingly affects the management

of cities and services. This process is performed through the use of the Internet of Things (IoT)

paradigm, from which arise problems related to security. In this scenario, based on the continuous

exchange of information on the network, an increasingly significant role is played by systems able to

guarantee data security. Protecting the modern Computer Networks could be a very complex task. In

this paper, a methodology based on three graphic models (Context Dimension Tree, Ontology and

Bayesian Network) is proposed. Three different models are used which use context representation

and probabilistic approaches to predict cyber-attacks. The paper proposes, in fact, the use of Bayesian

networks built through an ontological definition of the problem dropped on a certain context

represented by a Context Dimension Tree. The proposed approach has been experimented in a real

scenario providing satisfactory results.

© 2020 KSI Research

1. Introduction

Modern digitization allowed the development of

increasingly smart environments capable of managing

countless services designed for citizens. Nowadays,

many services designed to improve users' activities are

made available with the use of modern devices. This

process has been made possible through the Internet of

Things (IoT) paradigm [1], which represents a concept

where objects and users are interconnected and

exchange information through the Internet [2]. One of

the particularly interesting issues of this scenario is

represented by systems able to guarantee network

security [3]. In particular, the security is increased

through systems designed to control the network such

as Intrusion Detection Systems (IDSs). IDSs are

systems capable of analyzing every packet which is

exchanged on the network. Those packets, containing

the exchanged information, may contain possible

threats that can compromise the entire network. In

attempting to successfully identify cyber-attacks, these

systems work through a database containing a set of

rules used to identify security violations, basically

comparing the content of the packets with known

violation rules. However, this approach remains

completely vulnerable to possible new types of attacks

and cannot predict what may occur in the immediate

future. Therefore, a further study of systems able to

identify network attacks based not only on comparison

but also on data behavior is needed.

The aim of this paper is to propose a methodology

capable of recognizing and dealing with problems

related to cyber-attacks, ensuring network security. The

proposed methodology exploits different graphic

formalisms (Ontology, Context Dimension Tree) able

to represent and identify problems related to security.

This approach is based not only on the comparison of

known threats but also on the behavior of data on the

network trying to predict potential cyber-attacks.

The paper is organized as follows: section two offers

a general overview of the problem of network security

with reference to related works; section three shows the

proposed methodology; section four evaluates the

performance of the system presented through a case

study application. The article ends with the conclusions.

Journal of Visual Language and Computing

journal homepage: www.ksiresearch.org/jvlc/

*Corresponding author

Email address: dsantaniello@unisa.it

Website: http://docenti.unisa.it/domenico.santaniello

ORCID: 0000-0002-5783-1847

1

F. Colace et al. / Journal of Visual Language and Computing (2020) 1-6

2. Background

Internet has become a very important tool for

institutions such as businesses, universities and public

administration. Beyond this, the modern human being

relies on the internet in many social and personal

professional activities. Over the years, this type of use

has given particular attention to the field of information

security, in particular, the field of network security is

concerned with defending networks from possible

attacks, being able to recognize and classify them in

order to mitigate risks that they involve. When we

connect to the computer network during all our daily

activities, we do it for the purpose of exchanging

information. This operation, in electronic language,

translates into packet exchange; however, these packets

may contain malicious content that we identify with the

name of malware. These malicious packets aim to

establish themselves in our computer devices, extorting

sensitive information and threatening the safety of the

entire computer network to which the device be-longs

[4]. Some of these use self-replicating technologies,

therefore able to self-replicate indefinitely within a

system by sending its replicas with the attempt to infect

the whole system, in some cases, these malwares are

designed to act without establishing any kind of explicit

interaction with the user (worms). For this reason, it is

important to prevent and protect not only users but also

computer networks. A broad category of security

threats falls into the Denial of Service (DoS) class; such

attacks aim to render an IT service unusable, which, as

we said earlier, can be crucial with respect to the formal

fulfilment of imprints, university or public

administration, which the system is called upon to

perform. These types of attacks, in general, can be

classified into three categories: 1) attacks on the system

vulnerability, which involves sending packets to the

most vulnerable system within the network; 2) Band

Flooding, which involves sending a deluge of packets

with the aim of obstructing the connection to the

service; 3) Connection Flooding which aims to establish

a large number of connections that keep the system

busy, preventing connections to be established to users

requesting services. Furthermore, these types of DoS

attacks can be effective exploiting multiple or

distributed sources, thus speaking of DDoS, increasing

their danger and decreasing the possibility of detection

and blocking.

In literature, several papers deal with the problem of

network security in the Internet of Things or Smart City

fields ([5]–[7]). A common approach is to introduce of

a Framework able to analyse networks trying to manage

any attacks or disruption.

Elsaeidy, in this work [8], proposes an interesting

approach based on Deep Learning and user data

behaviour. The aim of the approach is based on

recognitions of patterns, which could predict potential

cyber-attacks. In [9] is proposed an approach based on

artificial intelligence techniques applied in industrial

sector in order to identify any network problems or

threat. The approach takes advantage of attacks trees in

order to identify and design defence strategies.

Moreover, in [10] the Hybrid Attack Graph (HAG) is

presented, which model and combines physical and

software component of attacks necessary for potential

risks picture overview. Furthermore, promising results

are provided in [11] where Data Mining techniques

(Multilayer Perceptron, Naive Bayes and Random

Forest) are used to determine the type of attack.

Starting from this general overview, and taking

advantage of the literature, it seems to be possible to

design an approach able to integrate semantic,

probabilistic and context aware approaches in a single

methodology. The approach proposed in this paper

introduces a multilevel graph approach based con

Ontology, Bayesian Network and Context Dimension

Tree able to perform a complete and detailed analysis

of the network status. Taking as reference the following

articles of literature [12], [13] it was possible to create

a networked ontology of security suitable for the

specific problem under consideration. This tool allows

us therefore to have a detailed classification of the

problem with all the possible relations capable of

generating the inferences useful to our approach.

Although the tree graph approach is not new in the

application of this field [9], [11], the design of a specific

CDT represents a novel approach to the problem. This

tool is able to represent and manage all the possible

contexts of the application do-main dealt with.

Moreover, thanks to the combined use with ontology it

is possible to apply the proposed methodology.

2.1 Intrusion Detection Systems

According to the previous paragraph, to make a

computer network secure, we need to check all the

packets we have exchanged. We therefore need a device

that not only examines packet headers (such as a

firewall, for example) but also performs a thorough and

detailed check of the packet. Intrusion detection system

(IDS), these systems are suspect-driven. Through them,

it is possible, possibly, to prevent access to these

packets [14]. These systems are used to detect a wide

range of attacks, including network mapping, port

scans, DoS and DDoS attacks, worms and viruses,

application vulnerability attacks. Today thousands of

organizations exploit this type of system in their

institutional networks, acting as sensors that work

together exchanging information between each other

and communicating to the network administrator any

suspicious activity. In general, IDS systems are

classified as signature-based or anomaly-based

systems. IDS based on signatures, has a database of

attack signatures, which represents the set of rules

concerning an intrusion activity. Operationally, this

type of system checks each packet that passes through

it, comparing it with the signatures in its database.

2

F. Colace et al. / Journal of Visual Language and Computing (2020) 1-6

Figure 1: The System Architecture.

IDS based on anomalies, on the other hand, collects

traffic information trying to find anomalous flows. In

light of this, the study of a methodology that could assist

these security systems, thus able to recognize possible

threats, suggest possible mitigation interventions and

possibly foresee such phenomena based on the context,

becomes necessary to protect the computer networks

and their users.

3. The Proposed Approach

In consideration of the preceding points, the proposed

methodology is designed to be a predictive approach

capable of adapting to the context. This approach is

useful in various fields [15]–[17]. In particular, this

article presents an application of the proposed

methodology in the field of cyber-attacks. Three graph

approaches such as Ontology, CDT and Bayesian

Network are exploited to detect and predict the

occurrence of events malicious to the network that

would compromise the service and security for users.

Bayesian Networks are particularly useful in the

attempt to predict specific events [18], moreover, they

are able to interface adequately with other graph

approaches. The CDT is a tree able to manage and

customize information present in all possible contexts

[19]. Furthermore, Ontologies are used for the

representation of reality, being particularly useful and

interfaceable with the other two graph approaches used

[20]–[22].

According to the proposed approach, the two graph

approaches, responsible for the representation of the

context (CDT and Ontology), can be combined in order

to obtain a list of constraints useful for the design of the

Bayesian Networks. In detail, a recognition of all

possible context combinations can be made through the

CDT. These combinations of contexts are useful for

extracting relationships through the various nodes

represented through the Ontology view. The

relationships extracted from the Ontological view can

be transformed into useful constraints for the

construction of the structure of the Bayesian Network,

which will be improved through knowledge of the

context.

The figure 1 shows the system architecture, which, by

collecting raw data, uses them to return the appropriate

usage application. In the first phase there is the

collection of data from the IDS and other sensors

allocated in the computer network, which are stored

raw. These data are harmonized and sorted in the pre-

processing phase and stored in a database that powers

the inference engine. Inside the inferential engine are

the three graph views previously described (CDTs,

Ontologies and Bayesian Networks) which provide an

interpretation of the knowledge acquired and collected

in Knowledge Database (KDB).

In practice, the detection of malicious attacks, given a

certain context, could be done through the described

architecture that exploits the right information

characterized by innovative elements based on formal

context representation, knowledge management

organization and inferential engines.

Information management systems require particular

attention to the efficiency of data organization. In this

regard, Ontologies represent a particularly suitable

means for the organization and reuse of shared and

collaborative knowledge, bringing advantages in terms

of overall system efficiency [23]. The proposed system

makes use of Context Awareness, wants to be able to

manage real-time contextual information that could

bring improvements in the identification and predictive

capacity of the system. The CDT is a tree with the

ability to represents all possible contexts, composed of

a root node, a set of leaf nodes interconnected each

other. The CDT’s nodes are divided in 1) Black Nodes,

3

F. Colace et al. / Journal of Visual Language and Computing (2020) 1-6

which represents the dimension nodes of the domain; 2)

White Nodes or concept nodes, which contains all

dimensions values. A Context is specified as an “and”

among different context elements where each element

is defined as an assignment dimension_namei = value:

several context elements, combined with each other,

give rise to a context [24]. The proposed approach,

moreover, takes advantage of probabilistic approach

through Bayesian Networks, which are used to compute

and update the probability of a given event taking

advantage of Bayes' Theorem.

4. Experimental Results

The purpose of this section is to illustrate the

experimental application of the proposed methodology

to a real case. The methodology proposed, as previously

mentioned, combines three approaches to graph (CDT,

Ontology and BN) in order to provide answers in terms

of forecasting events; in particular, in this experimental

case the events refer to network attacks. The proposed

approach is able to combine the CDT and Ontology

views to extrapolate the conceptual relationships, these

relationships are transformed into constraints and are

used to service the construction of the Bayesian

Network. By means of this graph, which contains all the

relations and the relative weights between the available

data, it is possible to predict the occurrence of an event

as the boundary conditions vary.

The experimental phase was conducted through the

use of a dataset containing data from Intrusion

Detection Systems at the service of a university

computer network. The dataset contains over twenty

thousand instances and represents a reduced set of the

monitoring database at service since 2008.In particular,

the dataset used contains over two thousand attempts to

attack, of which only about 5% succeeded in penetrate

the computer network. To perform the analysis of the

proposed approach it was necessary to divide the

dataset into training set (90%) and testing set (10%),

this subdivision was made taking into account a balance

between number and type of events and periods of

intense information communication technologies

activities. The training set is fundamental during the

learning phase of the network structure, instead,

through the test set, the network is validated verifying

if it is able to correctly classify the events present in the

test set. For the purposes of validating the model, an

automatic network learning algorithm was chosen, and

a comparison was made between two cases. The first

case, which involves the use of the learning algorithm

only to define the network structure, and the second

case that use the proposed methodology, which

combines the same automatic learning algorithm with a

list of constraints coming from the combination of CDT

and the Ontological view as described above. The

machine-learning algorithm chosen is Hill Climbing

with score K2 [25], which, among the various selected

algorithms, has provided greater feedback in terms of

Overall Accuracy in reference to our case study. The

results obtained from the experimental case are shown

in terms of Overall Confusion Matrix Accuracy

Precision and Recall. The confusion matrix is a useful

tool for representing the accuracy of statistical

classification, through this matrix it is possible to have

an overall view of the classification ability of the

Bayesian Network built, furthermore it is possible to

calculate several coefficients that help us to understand

reliability of the Bayes Network. The coefficients used

are the Accuracy which represents the proportion of

events correctly classified with respect to all events, the

Precision which can be seen as a measure of accuracy

or fidelity of the forecasts and the Recall which can be

seen as a measure of completeness.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

The analysis was carried out on a dataset of data from

Intrusion Detection System monitoring a university

network. Among the many data available, the following

types of network attacks were selected:

• Denial of Service (DoS)

• Distributed Denial of Service (DDoS)

• Spear Phishing (SPh)

• Web Deface (WD)

• Password Harvesting (PH)

The aim of this experimentation phase, therefore, was

to foresee such attacks, first through a network trained

through a selected learning algorithm, and subsequently

using the proposed methodology.

As shown in Table 1, the confusion matrix of the first

case refers to the matrix learned by means of the

selected learning algorithm. Through this algorithm, it

was possible to obtain a network, which is able to

correctly classify some events, in particular many DoS

attacks. The obtained matrix does not show excellent

results in terms of Overall Accuracy (Table 1) and in

terms of Precision and Recall (Table 3).

Table 1: Confusion Matrix Case1.

The Table 2 shows the confusion matrix obtained

from the Bayesian Network Structure designed by the

proposed approach. In fact, compared to previous case

DDoS DoS WD SPh PH

DDoS 189 87 25 21 79

DoS 77 254 14 65 78

WD 23 94 280 46 45

SPh 45 32 42 172 88

PH 13 96 42 31 209

P
re

d
ic

ti
o

n

Reference

Overall Accuracy : 51,42%

4

F. Colace et al. / Journal of Visual Language and Computing (2020) 1-6

(Table1), there is an increasing of the number of

correctly classified events and a decreasing of

incorrectly classified events.

Table 2: Confusion Matrix Case2.

This improvement can be seen in the increase of

Overall Accuracy, which exceeds 75%, and as

witnessed in Table 3 a significant increase compared to

the previous case in terms of Precision and Recall.

Table 3: Precision and Recall Parameters Case1 and
Case2.

The value of about 76% of Overall Accuracy may

seem a reasonable result, nevertheless, compared to the

performance of modern machine learning algorithms, it

is not a great result in absolute terms of forecasting.

However, another aspect related to the proposed

methodology can be analysed, which can be

fundamental in the attempt to classify the attacks that

actually have been successful. This aspect was analysed

by testing the Bayesian Network, which was learned

through the use of the proposed methodology, through

an ad hoc test dataset, which contains only the cyber-

attacks that penetrated the computer network. In this

case, as can be seen in Figure 2, the system was able to

correctly classify over 60% of the events. The result

obtained was achieved through the system's ability to

understand the context by classifying events, unlike

traditional control tools, according to data behaviour.

This aspect suggests to us that the capacity of the

adopted methodology can be fundamental in further

reducing the percentage of network attacks that have

been successful in the attack of the networks,

intervening especially where the traditional control

system does not recognize the packets as possible

attacks.

Figure 2: Forecast Analysis on Successful Network Attacks.

5. Conclusions

This paper aimed to introduce and analyse the

performance of a multi-level graph methodology for

cyber-attacks predictions. To perform the analysis was

used a dataset of Intrusion Detection Systems, which

monitor the computer network at the service of a

university institution. The dataset includes over two

thousand attack attempts, of which about 5% defeat the

computer network security systems. The analysis was

conducted using part of dataset to build the Bayesian

Network structure, which was tested with the remaining

part of data. Therefore, was compared the performance

of the Bayesian Network structure built through a

machine learning algorithm and the Bayesian Network

structure built through the proposed methodology.

Furthermore, is evaluated the performance of Bayesian

Network structure learned through the proposed

methodology in predict the cyber-attack events that

defeated the security systems of the networks.

According to the confusion matrices (Table 1 and

Table 2) and the results in terms of Prediction and

Recall (Table 3), the proposed system, compared to a

traditional structural learning algorithm, has been able

to provide good performance in terms of Overall

Accuracy, Prediction and Recall. The results seem not

enough in absolute classification terms; however, the

system strength lies in using graph approaches, which

provide a better description of the problem allowing

prediction and classifying of events based on data

behaviour. In fact, the structure of the network learned

in the second case, that is through our approach, despite

having obtained only about 76% of accuracy, when it

was tested with a dataset containing only the attacks on

the computer network that actually penetrated the

system, is was able to correctly classify over 60% of

these events (Figure 2).

From the analysis of the experimental data, it is clear

that the proposed system does not want to a replacement

of the modern Intrusion Detection Systems but can be

adequately able to support them. In particular, the

capacity of the proposed system lies in intervening

against unknown cyber-attacks that could compromise

the security of the computer network. The main

advantages that can lead the proposed system to

DDoS DoS WD SPh PH

DDoS 358 62 14 11 37

DoS 57 419 20 18 36

WD 18 41 348 39 24

SPh 33 12 24 216 19

PH 7 18 4 23 289

Overall Accuracy : 75,92%

Reference

P
re

d
ic

ti
o

n

DDoS DoS WD SPh PH

Precision 47,13% 52,05% 57,38% 45,38% 53,45%

Recall 54,47% 45,11% 69,48% 51,34% 41,89%

Precision 74,27% 76,18% 74,04% 71,05% 84,75%

Recall 75,69% 75,91% 84,88% 70,36% 71,36%

Case 1

Case 2

5

F. Colace et al. / Journal of Visual Language and Computing (2020) 1-6

improve its efficiency are two: the amount of data and

the use of graph formalisms. In particular, as the

number of data increases, the system is able to build

Bayesian Network structures more reliable and able to

provide more accurate results. The use of graph

formalisms of the proposed approach, such as

Ontologies, enable our system to communicate with

other similar systems, exchanging useful information

and knowledge that could lead the system to a

continuous improvement.

References

[1] K. Ashton, “That ‘Internet of Things’ Thing,” RFiD J., 2009
DOI:10.1016/j.amjcard.2013.11.014.

[2] M. Carratu, M. Ferro, A. Pietrosanto, P. Sommella, and V.
Paciello, “A Smart Wireless Sensor Network for PM10
Measurement,” in 2019 IEEE International Symposium on
Measurements and Networking, M and N 2019 - Proceedings,
2019 DOI:10.1109/IWMN.2019.8805015.

[3] A. Castiglione, F. Palmieri, F. Colace, M. Lombardi, D.
Santaniello, and G. D’Aniello, “Securing the internet of vehicles
through lightweight block ciphers,” Pattern Recognit. Lett.,
2020 DOI:10.1016/j.patrec.2020.04.038.

[4] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher, Internet
Denial of Service: Attack and Defense Mechanisms (Radia
Perlman Computer Networking and Security). Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2004.

[5] A. Essa, T. Al-Shoura, A. Al Nabulsi, A. R. Al-Ali, and F.
Aloul, “Cyber Physical Sensors System Security: Threats,
Vulnerabilities, and Solutions,” in 2018 2nd International
Conference on Smart Grid and Smart Cities (ICSGSC), 2018,
pp. 62–67 DOI:10.1109/ICSGSC.2018.8541316.

[6] S. Chakrabarty and D. W. Engels, “A secure IoT architecture for
Smart Cities,” in 2016 13th IEEE Annual Consumer
Communications & Networking Conference (CCNC), 2016, pp.
812–813 DOI:10.1109/CCNC.2016.7444889.

[7] J. Pacheco and S. Hariri, “IoT Security Framework for Smart
Cyber Infrastructures,” in 2016 IEEE 1st International
Workshops on Foundations and Applications of Self* Systems
(FAS*W), 2016, pp. 242–247 DOI:10.1109/FAS-W.2016.58.

[8] [A. Elsaeidy, I. Elgendi, K. S. Munasinghe, D. Sharma, and A.
Jamalipour, “A smart city cyber security platform for
narrowband networks,” in 2017 27th International
Telecommunication Networks and Applications Conference,
ITNAC 2017, 2017, vol. 2017-Janua, pp. 1–6
DOI:10.1109/ATNAC.2017.8215388.

[9] G. Falco, A. Viswanathan, C. Caldera, and H. Shrobe, “A
Master Attack Methodology for an AI-Based Automated Attack
Planner for Smart Cities,” IEEE Access, vol. 6, pp. 48360–
48373, 2018 DOI:10.1109/ACCESS.2018.2867556.

[10] P. J. Hawrylak, M. Haney, M. Papa, and J. Hale, “Using hybrid
attack graphs to model cyber-physical attacks in the Smart
Grid,” in Proceedings - 2012 5th International Symposium on
Resilient Control Systems, ISRCS 2012, 2012, pp. 161–164
DOI:10.1109/ISRCS.2012.6309311.

[11] M. Alkasassbeh, G. Al-Naymat, A. B. Hassanat, and M.
Almseidin, “Detecting distributed denial of service attacks using
data mining techniques,” Int. J. Adv. Comput. Sci. Appl., vol. 7,
no. 1, 2016.

[12] M. Iannacone, S. Bohn, G. Nakamura, J. Gerth, K. Huffer, R.
Bridges, E. Ferragut, and J. Goodall, “Developing an Ontology
for Cyber Security Knowledge Graphs,” in Proceedings of the
10th Annual Cyber and Information Security Research
Conference on - CISR ’15, 2015, pp. 1–4
DOI:10.1145/2746266.2746278.

[13] A. Oltramari, L. F. Cranor, R. J. Walls, and P. McDaniel,
“Building an ontology of cyber security,” in CEUR Workshop
Proceedings, 2014.

[14] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and K.-Y. Tung,
“Intrusion detection system: A comprehensive review,” J. Netw.
Comput. Appl., vol. 36, no. 1, pp. 16–24, Jan. 2013
DOI:10.1016/J.JNCA.2012.09.004.

[15] F. Clarizia, F. Colace, M. De Santo, M. Lombardi, F. Pascale,
D. Santaniello, and A. Tuker, “A multilevel graph approach for
rainfall forecasting: A preliminary study case on London area,”
Concurr. Comput. Pract. Exp., vol. 32, no. 8, Apr. 2020
DOI:10.1002/cpe.5289.

[16] F. Colace, M. Lombardi, F. Pascale, D. Santaniello, A. Tucker,
and P. Villani, “MuG : A Multilevel Graph Representation for
Big Data Interpretation,” in IEEE 20th International Conference
on High Performance Computing and Communications; IEEE
16th International Conference on Smart City; IEEE 4th
International Conference on Data Science and Systems, 2018,
pp. 1410–1415
DOI:10.1109/HPCC/SmartCity/DSS.2018.00233.

[17] F. Clarizia, F. Colace, M. Lombardi, F. Pascale, and D.
Santaniello, “A Multilevel Graph Approach for Road Accidents
Data Interpretation,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 11161 LNCS, 2018, pp.
303–316 DOI:10.1007/978-3-030-01689-0_24.

[18] P. Weber, G. Medina-Oliva, C. Simon, and B. Iung, “Overview
on Bayesian networks applications for dependability, risk
analysis and maintenance areas,” Engineering Applications of
Artificial Intelligence. 2012
DOI:10.1016/j.engappai.2010.06.002.

[19] M. Casillo, F. Clarizia, G. D’Aniello, M. De Santo, M.
Lombardi, and D. Santaniello, “CHAT-Bot: a Cultural Heritage
Aware Teller-Bot for supporting touristic experiences,” Pattern
Recognit. Lett., Jan. 2020 DOI:10.1016/j.patrec.2020.01.003.

[20] H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware
pervasive computing environments,” Knowl. Eng. Rev., vol. 18,
no. 3, pp. 197–207, 2003.

[21] E. M. Helsper and L. C. Van Der Gaag, “Building Bayesian
networks through ontologies,” ECAI2002, Proc. 15th Eur. Conf.
Artif. Intell., pp. 680–684, 2002.

[22] F. Colace and M. De Santo, “Ontology for E-learning: A
Bayesian approach,” IEEE Trans. Educ., vol. 53, no. 2, pp. 223–
233, 2010.

[23] F. Colace, M. Lombardi, F. Pascale, and D. Santaniello, “A
Multilevel Graph Representation for Big Data Interpretation in
Real Scenarios,” in Proceedings - 2018 3rd International
Conference on System Reliability and Safety, ICSRS 2018, 2019
DOI:10.1109/ICSRS.2018.8688834.

[24] M. Casillo, F. Clarizia, F. Colace, M. Lombardi, F. Pascale, and
D. Santaniello, “An Approach for Recommending
Contextualized Services in e-Tourism,” Information, vol. 10,
no. 5, p. 180, May 2019 DOI:10.3390/info10050180.

[25] G. F. Cooper and E. Herskovits, “A Bayesian Method for the
Induction of Probabilistic Networks from Data,” Mach. Learn.,
1992 DOI:10.1023/A:1022649401552.

6

L. Caruccio and S. Cirillo / Journal of Visual Language and Computing (2020) 7–16

Journal of Visual Language and Computing
journal homepage: www.ksiresearch.org/jvlc

Monitoring Evolution of Dependency Discovery Results
Loredana Caruccio, Stefano Cirillo
University of Salerno, via Giovanni Paolo II, 132 84084 Fisciano (SA), Italy

ART ICLE INFO
Article History:
Submitted 15.10.2020
Revised 11.29.2020
Accepted 12.4.2020
Keywords:
Data stream profiling
Big data visualization
Metadata visualization
Continuous discovery
Relaxed functional dependencies

ABSTRACT
The automatic discovery from data of Functional Dependencies (FDs), and their extensions Relaxed
Functional Dependencies (RFDs), represents one of the main tasks in the data profiling research area.
Several algorithms that deal with the “complex” problem of discovering RFDs have been recognized as
a fundamental tool to automatically collect them starting from data. Moreover, the characteristics of
scenarios involving “big” data require also profiling tasks to evolve towards continuous ones, which
must be capable to dynamically collect and update the set of holding RFDs on the analyzed data.
In this context, one of the most critical scenarios is represented by the possibility to discover RFDs
over data streams. Nevertheless, although the main goal of discovery algorithms is allowing for fast
execution processes, to enable the analysis of the resulting RFDs, it is necessary to also devise methods
to continuously monitor discovery results. Thus, one of the main goals is to reduce the users’ effort
in moving in and out the possible huge quantity of holding RFDs. To this end, in this paper, we
present DEVICE, a tool for continuously monitoring resulting RFDs during the execution of discovery
processes. In particular, it permits to analyze the evolution of results by using a lattice representation
of the search space. Moreover, zooming and filtering functionalities enable the user to focus the
analysis on a specific portion of the search space. The effectiveness of the proposed tool has been
evaluated in a scenario studying the application of different discovery strategies over a well-known
and real-world dataset.

© 2020 KSI Research

1. Introduction
Collecting metadata from big datasets is the goal of the

data profiling research area, in which the discovery of func-
tional dependencies (FDs), and their extensions relaxed func-
tional dependencies (RFDs) represents one of its fundamental
tasks. This kind of semantic property describes relationships
among database attributes, which might be exploited in sev-
eral advanced database operations, such as query optimiza-
tion, data cleaning, and so forth. In particular, RFDs relax
some constraints of canonical FDs by admitting the possi-
bility for a dependency to hold on a subset of data (also re-
ferred to as RFDs relaxing on the extent), and/or by relying
on approximate paradigms to compare pairs of tuples (also
referred to as RFDs relaxing on the attribute comparison) [7].

Although the problem of discovering FDs and RFDs from
data is extremely complex, the recent definition of efficient
algorithms enabled their discovery from “big” datasets. Among
these, it is worth to mention [20, 26, 22] for FD discovery,

lcaruccio@unisa.it (L. Caruccio); scirillo@unisa.it (S. Cirillo)
ORCID(s):

and [15, 25, 4, 7] for RFD discovery. Moreover, recent pro-
posals dealt with incremental or continuous data profiling
scenarios [23, 3, 2]. The latter are particularly useful in cur-
rent application scenarios, such as big data analytic tasks, in
which the possibility to learn predictive models from data
requires to dynamically profile data streams and learn mod-
els from them. To this end, it is necessary to devise methods
and tools capable of visualizing the dynamic evolution of the
discovery results characterizing the profile of a data stream,
and/or of the predictive models of interest. Indeed, a proper
analysis of how RFDs change over time cannot be accom-
plished by looking at such a huge number of holding RFDs
that change very rapidly.

We particularly focus on such kind of scenarios, where
the goal is to get holding RFDs even when the input data
dynamically change over time, permitting the discovery of
RFDs also from data streams. The latter scenario imposes
different emerging research challenges, such as the neces-
sity of enabling user i) to continuously monitor and rapidly
visualize discovery results, ii) to analyze how a discovery
process browses the search space according to data are get-

DOI reference number: 10.18293/JVLC2020N2-007
7

www.ksiresearch.org/jvlc

L. Caruccio and S. Cirillo / Journal of Visual Language and Computing (2020) 7–16

ting in, and iii) to easily interact with specific portions of
the search space, entailing the focus on a specific portion of
results.

To this end, in this paper, we present DEVICE (DEpen-
dencies VIsualizer on lattiCE), which permits to monitor the
set of RFDs extracted from data streams through a lattice rep-
resentation. Moreover, DEVICE enables the user to interact
with the discovery results by zooming on the search space
and/or filtering results according to specific attributes. Fi-
nally, results can be also filtered according to RFD thresh-
old settings. From an architectural point-of-view, DEVICE
is scalable towards all possible (incremental) RFD discovery
algorithms, also thanks to an input driver connector module
devoted to the parsing of input data, so enabling the stan-
dardization of discovery results.

The paper is organized as follows. Section 2 describes
related visualization approaches and tools. Section 3 presents
the theoretical foundations of RFDs and the representation
used to model the search space of the discovery problem.
Section 4 presents DEVICE, whereas Section 5 reports an ex-
perimental case study on the application of different discov-
ery strategies over a real-world dataset. Finally, summary
and future directions are included in Section 6.

2. Related Work
Big data visualization is an important research area in

which themain goal is to provide effective visualization tech-
niques capable to describe data into their “big” and challeng-
ing contexts [21, 13]. In fact, not only the dynamic nature
of data increases the complexity of design choices, but also
the necessity to provide insights to users in real-time and to
enable effective interactions with graphical components.

More specifically, there are several contexts in which it is
important to improve the understanding of algorithm/model
results and characteristics, such as the data mining [12, 11],
data privacy [10, 17], and the deep learning [8]. To this
end, in the literature, many approaches and tools have been
proposed. Among these, it is worth to mention Association
Rules (ARs) visualization approaches, since the concept of
AR is somehow related to that of RFD. Effective examples
are i) the tool in [24], which provides multiple views to vi-
sually inspect the overall set of ARs, and ii) the hierarchical
matrix-based visualization technique presented in [9].

Concerning the discovery of RFDs, the availability of ef-
ficient RFD discovery algorithms yields the necessity toman-
age big result sets of RFDs, most of which differ only for
some values of relaxation parameters. However, recently
such algorithms are becoming capable to scale over big data
sources, but there are no many solutions in the literature
for handling the complexity related to the visualization of
a possible huge number of discovered RFDs. Among these,
one of the most effective platforms for data profiling is the
Metanome project [18], which embeds several algorithms to
automatically discover complex metadata, including func-
tional and inclusion dependencies. Moreover, it embeds var-
ious result management techniques, such as list-based rank-
ing techniques, and interactive diagrams of discovery results.

Another representative scalable platform for analyzing data
profiles is Metacrate [14], which permits the storage of dif-
ferent meta-data and their integrations, enabling users to per-
form several ad-hoc analysis. In this context, the first pro-
posal for visualizing large sets of RFDs is described in [6]. It
presents several metaphors for representing RFDs at different
levels of detail. Starting from a high-level visualization of
attribute correlations, details are interactively revealed, also
including details on the relaxation criteria.

Although all of the above approaches represent effective
tools to visualize and explore properties and metadata after
the execution of mining/discovery algorithms, a recent pro-
posal goes beyond the only result visualization problem [1],
since it allows users to explore how RFDs change over time,
and to perform result comparisons among different time-slots.
The latter approach shares similar goals to our proposal. Nev-
ertheless, it is mainly focused on the analysis of temporal
trends related to the number of discovered RFDs. Instead,
DEVICE is able to represent how discovery results change
into the search space. This characteristic makes it also use-
ful for the analysis of how different algorithms browse the
search space.

3. Background
Before describing the proposed tool we will review some

background definitions on the concept of RFD and the graph
lattice representation.

A relational database schema is defined as a collection
of relation schemas (R1,…, Rn), where each Ri is definedover a set attr(Ri) of attributes (A1,…, Am). Each attribute
Ak has associated a domain dom(Ak), which can be finite orinfinite. A relation instance (or simply a relation) ri of Riis a set of tuples such that for each attribute Ak ∈ attr(Ri),
t[Ak] ∈ dom(Ak), ∀ t ∈ ri, where t[Ak] denotes the projec-tion of t onto Ak. A database instance r of is a collection
of relations (r1,…,rn), where ri is a relation instance of Ri,for i ∈ [1, n].

Aiming to improve the quality of database schemas and
to reduce manipulation anomalies, in the context of rela-
tional databases, functional dependencies (FDs) have been
used as means to guide data normalization processes. In par-
ticular, an FD over database schema is a statementX → Y
(X implies Y) defined between two sets of attributesX, Y ⊆
attr(), such that, given an instance r of , X → Y is sat-
isfied in r if and only if for every pair of tuples (t1, t2) in
r, whenever t1[X] = t2[X], then t1[Y] = t2[Y]. X and Y
represent the Left-Hand-Side (LHS) and Right-Hand-Side
(RHS) of the FD, respectively.

Starting from the canonical definition of FD over 35 ex-
tended definitions have been provided in the literature, which
have been generalized under the concept of relaxed func-
tional dependency (RFD) [7]. In particular, RFDs enable the
consideration of some relaxation criteria, which can lead to
i) the consideration of similarity/difference constraints as at-
tribute comparison method, and/or ii) the possibility that the
dependency might hold for a subset rather than all the tuples.

8

L. Caruccio and S. Cirillo / Journal of Visual Language and Computing (2020) 7–16

RFD definition. Consider a relational database schema
, and a relation schema R = (A1,… , Am) of . An RFD
' applied on Dc ⊆ dom(R) is denoted by

XΦ1
Ψ≤"
←←←←←←←←←←←←←←←←←→ YΦ2 (1)

where
• Dc =

{

t ∈ dom(R) |
m
⋀

i=1
ci(t[Ai])}

with c = (c1,… , cm), and each ci is a predicate on
dom(Ai);

• X = B1,… , Bℎ and Y = C1,… , Ck, with X, Y ⊆
attr(R) and X ∩ Y = ∅;

• Φ1 =
⋀

Bi∈X
�i[Bi] (Φ2 = ⋀

Cj∈Y
�j[Cj], resp.), where

�i (�j , resp.) is a conjunction of predicates on Ci (Cj ,resp.) with i = 1,… , ℎ (j = 1,… , k, resp.). For
any pair of tuples (t1, t2) ∈ dom(R), the constraint
Φ1 (Φ2, resp.) is true if t1[Bi] and t2[Bi] (t1[Cj] and
t2[Cj], resp.) satisfy the constraint �i (�j , resp.) ∀
i ∈ [1, ℎ] (j ∈ [1, k], resp.).

• Ψ is a coverage measure defined on dom(R), quanti-
fying the amount of tuples violating or satisfying '. It
can be defined as a functionΨ ∶ dom(X)×dom(Y)→
ℝ+, where dom(X) is the cartesian product of the do-
mains of attributes composing X.

• " is a threshold indicating the upper bound (or lower
bound in case the comparison operator is ≥) for the
result of the coverage measure.

Given r ⊆ Dc a relation instance on R, r satisfies the
RFD ', denoted by r ⊧ ', if and only if: ∀ t1, t2 ∈ r, if Φ1indicates true, then almost always Φ2 indicates true. Here,
almost always is expressed by the constraint Ψ ≤ ".

As an example, in a database of publications, it is likely
to have a similar Affiliation for authors with the same Email
address and similar Name. In particular, the functional de-
termination should tolerate possible exceptions since authors
might change affiliation over the years. This can be modeled
by means of the following RFD:

Name≤4,Email≤0
 (Name, Email, Affiliation)≤0.03
←←←→ Affiliation≤5

where the comparison constraints (�1, �2, and �3) use theedit distance as function, the ≤ as comparison operator, and
4, 0, 5 as thresholds for Name, Email, and Affiliation, respec-
tively. In general, the search space of the dependency dis-
covery strategy can be modeled as a graph representation of
a lattice, which is partitioned into levels where level Li con-tains all attribute combinations of size i. Each node in the
lattice represents a unique set of attributes, and it is linked
to nodes that contain a direct superset or subset of attributes.
In other words, each edge refers to the inclusion relation be-
tween two attribute sets. Thus, a lattice permits to consider

candidate RFDs at each level in terms of lattice’s edges, al-
lowing to represent the LHS and the RHS of an RFD [19].
It is worth to notice that this representation is complete for
FDs and RFDs relaxing on the extent. In fact, to discover RFDs
relaxing on the attribute comparison it is necessary to also
consider all possible dispositions of similarity/distance con-
straints among attributes included in a combination. Never-
theless, for this kind of RFDs we simplified the representa-
tion by visualizing the presence of an RFD as an edge in the
lattice when there exists at least one valid RFD involving the
same attribute combinations.

More formally, let R = A1,… , Am be a relation schema
with m attributes. The corresponding graph representation
of lattice will contain a collection of attribute sets, where
Level 0 contains the empty set, Level 1 singleton sets, one
for each attribute, Level 2 the pair sets, one for each possible
combination of two attributes, and so forth. Finally, the last
level, namely Level M, will contain a single set of all the
attributes from R. A lattice edge links two attribute sets on
two adjacent lattice levels. For instance, letAB andABC be
attribute sets on Level 2 and Level 3, respectively, then the
edge e(AB,ABC) represents the candidate AB → C .

The number of RFDs holding on a given set of data can
be very huge, especially when relaxation criteria settings in-
crease. Thus, aiming to provide compact representation on
where the holding RFDs converge in the search space, we
propose DEVICE, which is described in the next section.

4. A tool for analyzing RFDs during discovery
processes
In this section, we describe DEVICE. It enables monitor-

ing of RFDs validated during the execution of a discovery
algorithm. In particular, we first present the system archi-
tecture (Section 4.1), and then provide details on the visual
interface (Section 4.2), and the interactions that a user can
perform (Section 4.3).
4.1. System architecture

Monitoring the RFD discovery results during the execu-
tion of discovery algorithms is a complex problem. In fact, it
is necessary to deal with several issues that affect the choices
of the system architecture: i) the existing discovery algo-
rithms are based on different technologies and frameworks,
so requiring the integration of at least one module to adapt
the system to the different algorithms; ii) the presence of
multiple visualization components expects frequent updates
in a short time, and iii) the number of dependencies pro-
cessed can be large at any instant of time. For these rea-
sons, we proposed a modular client-server architecture for
enabling users to monitor discovery algorithms during their
executions, and interact with the results through a responsive
visual interface. The architecture of the DEVICE is shown
in Figure 1. In detail, the architecture is composed of sev-
eral standalone modules, which share information with other
ones by exploiting the JSON standard. This type of solution
allows DEVICE to ensure high component modularity and

9

L. Caruccio and S. Cirillo / Journal of Visual Language and Computing (2020) 7–16

<<device>>
:UserClient

<<device>>
:RethinkDB

<<device>>
:RethinkDB	Server

<<database>>
		Realtime	DB

<<device>>
:RethinkDB	Brokers	Container

RethinkDB
Broker	1

RethinkDB
Broker	2

RethinkDB
Broker	3

<<execution	environment>>
:WebServer	{Node.JS}

View

Controller

Model

<<DB	Driver>>
RethinkDB.JS

<<Web	Browser>>

RealTime	
Visualization
Manager

<<protocol>>
HTTP

<<device>>
:Python	Server

Lattice	
Generator

<<protocol>>
HTTP

Figure 1: The system architecture of device.

Figure 2: An example of lattice visualization.

maintainability, with the aim of updating or replacing any
back-end module by simply adapting its output according to
the JSON standard defined for the interaction.

The interface module on the client-side communicates
with two different back-end subsystems. The first one allows
DEVICE to automatically generate a lattice representation in
JSON format by only considering the number of attributes.
The set of nodes contains all the possible combinations of
attributes on the lattice, while the set of edges contains all
the existing links between two nodes of successive levels.
The Lattice Generator Server receives a request containing
the number of attributes for the lattice, creates the JSON, and
returns its representation to DEVICE.

The second subsystem allows DEVICE to communicate
with the discovery algorithms by exploiting a set of distributed
message brokers. In particular, DEVICE is a web application
distributed on multiple Node.JS server instances, which ex-
ploits the scalability of this technology combined with the

speed of the RethinkDB1 real-time database, to create a low
latency and high-performance application. Although the ar-
chitecture ensures flexibility, to make DEVICE compatible
with most FD and RFD discovery algorithms, it has been nec-
essary to integrate several communication modules to adapt
the syntax of the dependencies of each algorithm, and to con-
tinuously monitor the results of each execution. To this end,
the Input Driver Connector receives the dependencies from
the algorithm, manipulates their syntax, and extracts a JSON
version so as to store it in RethinkDB. The latter provides
an internal set of message brokers that continuously store
and send messages to the instance of Node.JS servers. The
Real-Time Visualization Manager listens for messages from
brokers, and decides which visual component manipulates
in the interface.

As said before, the proposed tool is also able to han-
dle continuous discovery algorithms [16] and therefore it re-
quires tomaximize fluidity and tominimize processing times

1https://rethinkdb.com

10

L. Caruccio and S. Cirillo / Journal of Visual Language and Computing (2020) 7–16

Figure 3: The visual interface of device during the execution of a discovery process.

within the visual interface. Thus, all selected technologies
for both client- and server-side support real-time updating of
data.
4.2. RFD Visualization

Due to the possible huge number of holding RFDs on a
given set of processed data, systems for RFD visualization
should enable users to analyze results in a compact way, by
also giving the possibility to interact with them. For this
reason, a static representation of discovery results after the
execution of algorithms limits the analysis of how depen-
dencies evolve over time, which is particularly interesting in
dynamic contexts, like in the case of data streams.

The dynamic representation of a large portion of data re-
quires the application of interactive graphs, capable of high-
lighting how information change over time. Hence, a dy-
namic visual representation of the search space has been im-
plemented through a lattice graph representation. It enables
a compact visualization on how holding RFDs converge into
the search space (see Figure 8). As said before, the lattice
permits to show candidate RFDs through the lattice edges,
which connect attribute combinations differing by an attribute,
so to represent in a compact way the LHS (common attributes)
and the RHS (different attribute) of a candidate RFD. The lat-
tice graph is responsible for displaying information about the
candidate RFDs that have been validated during a discovery
process. As shown in Figure 3, the lattice graph can show
different colors during the execution of a discovery process.
In particular, an edge is green when the corresponding can-
didate RFD has been evaluated and validated by the discovery
algorithm. Instead, it assumes a red color when the RFD has
been evaluated, but it is not valid. Finally, yellow edges rep-
resent candidate RFDs that are being analyzed. Aiming to
emphasize the current validation results, DEVICE also uses
colors for lattice nodes. In fact, a node assumes the same

color as the last analyzed candidate RFD involving it.
It is worth to notice that, although we expect that differ-

ent algorithms produce the same resulting set of discovered
RFDs, when they analyze the same data, it is not obvious
how they move in the search space. Thus, DEVICE enables
the comparison among different discovery algorithms and
the analysis of possible bottlenecks during their execution
on a given set of data.

The visual interface of DEVICE also provides different
gadgets enabling users to interact with the lattice graph. More-
over, the vectorial representation of the graph also permits
to zoom on or move each lattice component without losing
the quality of the representation. Details on how users can
interact with the lattice graph are provided in the following.
4.3. Interaction in depth

As mentioned above, aiming to emphasize the discovery
results to a specific part of the search space, users can inter-
act with the lattice graph by simply zooming on a specific
part of the search space, or by moving its components into
the visual interface. To this end, the user places the mouse
pointer in correspondence with a lattice node and drags it
in another place. Consequently, also edges linked to it are
deformed by following the movement. Moreover, it is pos-
sible to filter out some nodes, so reducing the representation
of the search space, by using the button list on the top-right
of the visual interface (also shown in Figure 4(a)). In par-
ticular, each button represents an attribute of the analyzed
data, and the user can select/deselect each of them to be in-
cluded/excluded during the monitoring process. By default,
all attributes appear in the search space. As an example, Fig-
ure 5 shows how the lattice is changed after the exclusion of
the node A.

Concerning the RFD settings, DEVICE permits to visu-
alize discovered RFDs by filtering results according to spe-

11

L. Caruccio and S. Cirillo / Journal of Visual Language and Computing (2020) 7–16

(a) Button list enabling the filtering of nodes in the lattice.

(b) Slider to define the range for the extent threshold.

(c) Slider to define the range the the comparison thresholds.

(d) Storing and execution icons.

Figure 4: device gadgets to interact with the lattice graph.

cific relaxation parameters. Figure 4(b) highlights a slider
that enables the user in the definition of a specific range for
the coverage measure threshold. In this way, lattice com-
ponents’ colors appear in accordance with the validation of
RFDs having a satisfiability degree that meets the specified
range bounds. Similarly, it is possible to filter out validation
results in accordance with a range of thresholds composing
difference constraints for the relaxation of the attribute com-
parison method (see Figure 4(c)). In particular, the bounds
defined through the slider represent the range of possible
thresholds thatmust appear on each attribute involved in can-
didate RFDs. However, as mentioned above, for sake of sim-
plicity, a lattice edge is colored when at least one candidate
RFD satisfies difference thresholds bounded by the range.
Sliders are particularly useful for the analysis of RFD dis-
covery results. In fact, with simple interactions, the user can
evaluate how the set of holding RFDs can change as the relax-
ation settings are modified. Moreover, it is worth to notice
that the interaction with sliders is enabled on the basis of the
monitored algorithm. For instance, when a FD discovery al-
gorithm is monitored, then sliders are set to [0, 0] and cannot
be modified. In this way, no errors and an exact comparison
method (difference equal to 0) are admitted as RFD relax-
ation settings to represent FDs. In general, the same ranges
are also used by default on both sliders, and it is possible
to interact with them in accordance with the RFD category a
discovery algorithm is devoted.

Figure 5: The visual interface of device after filtering out the
attribute A.

Finally, the icons in Figure 4(d) enable the interaction
with the monitored execution and the downloading of the
lattice graph in several formats. In particular, the first two
icons permit to upload or download the discovery results in a
JSONfile, respectively. The third and fourth icons enable the
user to interact with the monitoring process. More specifi-
cally, the third icon permits to refresh the monitoring, by
cleaning the lattice representation, and the fourth one gives
the possibility to reload the lattice representation of the last
execution of a discovery algorithm. Moreover, the colored
lattice representation can be downloaded as an image in the
.png or .svg format by using the second-last and the last icon,
respectively.

5. Monitoring discovery algorithms
In this section, we show the effectiveness of DEVICE on

different algorithms, by considering two different case stud-
ies on real-world datasets and on real sensor-based streams,
with the aim of analyzing how metadata evolves over time.
Moreover, a demonstration video of DEVICE2 allows us to
show how the users can interact with the tool during moni-
toring processes.
5.1. Case study on a real-world dataset

In order to verify the effectiveness of DEVICE on a real
scenario, we analyzed discovery results on a real-world dataset.
We selected two different discovery algorithms to analyze
how their discovery strategy browses the search space, aim-
ing to extract the holding RFDs.

The first algorithm involved in our evaluation is the ge-
netic algorithm proposed in [5]. This type of algorithm has
the potential to effectively tackle the problems arising in RFDs
discovery, since they are particularly efficient for global searches
in large search spaces by exploiting operations inspired to
natural species evolutions, such as natural selection, crossover,
andmutation. The discovery process starts with a population
of RFD candidates which is randomly generated during the
initialization phase and evolves by stochastically selecting

2https://youtu.be/QC2FjF50A60

12

L. Caruccio and S. Cirillo / Journal of Visual Language and Computing (2020) 7–16

(a) 25% execution of the incremental algorithm (b) 50% execution of the incremental algorithm

(c) 75% execution of the incremental algorithm (d) 100% execution of the incremental algorithm

Figure 6: Monitoring the incremental discovery algorithm during its executions.

multiple candidates from the current population. The algo-
rithm exploits a fitness function to quickly validate each RFD
and select the ones to involve during the evolution phases.

The second algorithm exploits incremental discovery strate-
gies to extract functional dependencies from static and/or dy-
namic datasets [3]. Unlike the genetic algorithm, the incre-
mental approach takes in input a set of candidates valid at
a given instant of time, and returns the dependencies valid
after updating at least one tuple. However, during the initial
execution, the algorithm starts by considering the set of FDs
candidates at the lower level of lattice, i.e. all the FDs with a
single attribute on the LHS, and performs an upward search
strategy of the lattice.

According to the characteristics of the considered algo-
rithms, and to make processes comparable, we set parame-
ters of genetic algorithm to discover canonical FDs. In par-
ticular, we choose the above-mentioned types of algorithms
since they both use several iterations to get results. Never-
theless, their nature is quite different since the genetic algo-
rithm analyzes new RFD candidates at each iteration by al-
ways considering the complete set of tuples; instead, the in-
cremental algorithm analyzes new tuples at each iteration by
considering the RFDs holding at the previous iteration (time-
instant). Our aim is to show the usefulness of DEVICE in
helping users to get insights on how algorithms can explore
the search space.

Although these algorithms have been created with two
different technologies, the Input Driver Connector allowed
us to quickly adapt their output modules to DEVICE. In fact,
this enabled us tomonitor their executions on the same dataset,

and compare how they browse the search space. To perform
our evaluation, we ran each algorithm on the Iris dataset by
automatically storing the screen of the lattice approximately
every 1 second. Each screen represents the status of the lat-
tice at any instant of execution time. For the sake of clarity,
we only report the screens at 25%, 50%, 75%, and 100% of
their executions (Figures 6 and 7).

More specifically, figures 6(a) and 7(a) show the evolu-
tion of the discovery process for the incremental and genetic
algorithms, respectively, at the 25% of their executions. We
can notice the difference between the two discovery strate-
gies. In fact, the genetic algorithm starts to consider candi-
dates in the middle of the lattice, and next perform a random
upward search. However, the incremental algorithm first se-
lects candidates from the lowest level, then goes up by per-
forming a targeted search.

Another relevant difference between the two search strate-
gies concerns the validation strategy of the candidates. In
fact, the genetic algorithm exploits an a posteriori valida-
tion strategy of the RFD candidates, which allows to define
the first valid and invalid dependencies only after 50% of the
execution (Figures 7(b), 7(c), and 7(d)). On the contrary,
the incremental algorithm updates the RFDs validated at the
earliest executions according to the dynamic change of the
dataset, and exploits this information to move on the search
space (Figures 6(b), 6(c), and 6(d)). However, as expected
when algorithms end the executions (Figures 6(d) and 7(d))
they obtain the same set of resulting RFDs.

DEVICE provides a concrete representation of the discov-
ery algorithms, allowing users and domain experts to easily

13

L. Caruccio and S. Cirillo / Journal of Visual Language and Computing (2020) 7–16

(a) 25% execution of the genetic algorithm (b) 50% execution of the genetic algorithm

(c) 75% execution of the genetic algorithm (d) 100% execution of the genetic algorithm

Figure 7: Monitoring the genetic discovery algorithm during its executions.

monitor each execution phase, and to concretely compare the
different search strategies.
5.2. Case study on a real-world data stream

In our last experiment, we show the usefulness of DE-
VICE on a real-world data stream. In particular, we executed
the algorithm in [3] on data from 1, 000 real sensors spread
throughout Italy, made available by the Openweathermap
portal3. These types of sensors share information about the
weather forecast during the day. The data are frequently up-
dated based on global and local weather models, satellites,
radars, and a vast network of weather stations. In particular,
we selected the following 8 attributes from the data stream:

• Temperature represents the temperature value in the
Kelvin scale (K);

• Feels_like represents the human perception of weather
in Kelvin scale (K);

• Sea_level represents the atmospheric pressure on the
sea level (hPa);

• Grnd_level represents the atmospheric pressure on the
ground level (hPa);

• Humidity represents the rate of humidity;
• Date represents the date of the weather forecast;
• Weather represents the weather condition (e.g. Rain,

Snow, Extreme, etc.);
3https://openweathermap.org/

• Clouds_percentage represents the rate of cloud cover.
We considered a single execution of the algorithm on

weather data streams lasting 4 days. The execution involved
over 40, 000 tuples shared by over 1, 000 sensors. During
the test, DEVICE continuously monitored the progress of the
discovery algorithm, also storing the results and its status for
different time intervals. Figure 8 shows the resulting FDs for
each time interval. We can notice that the number of result-
ing FDs has a negative trend since the continuous insertion of
new tuples has lead to many invalidations. Moreover, the al-
gorithm in [3] incrementally discovers FDs, which require to
be validated on the entire stream. This means that the initial
number of FDs, i.e. dependencies involving few attributes,
will probably evolve as the algorithm considers new tuples.
To get some insights on the FD validation trend, DEVICE al-
lows us to interact with its interface and explore the search
space to concretely analyze how FDs evolved in this process.

Figure 9 shows the details of the discovery process by
considering three different time intervals, 3, 48, and 96 hours,
respectively. As expected, DEVICE shows that the algorithm
has a large variation in the number of FDs after 3 hours and a
small number of invalid FDs (Figure 9(a)). Moreover, as we
can see, a relevant part of the search space has not been ana-
lyzed. This is due to the fact that the discovery strategy has
already validated some minimal FDs, avoiding the analysis
of candidates that can be directly inferred. Figure 9(b) and
9(c) show that many of the FDs validated after 3 hours, have
been invalidated. Moreover, Figure 9(c) shows that the algo-
rithm also analyzed many of the candidate FDs in the search
space not analyzed before. This is due to the invalidation of

14

L. Caruccio and S. Cirillo / Journal of Visual Language and Computing (2020) 7–16

3 6 12 24 48 96
Time (hours)

15

20

25

30

35

40

45

Nu
m

be
r o

f R
FD

s

Figure 8: Resulting rfds from the executions on real streams.

many dependencies on the right side of the search space. In
fact, after 96 hours, only 14 FDs have been validated.

The evaluation performed on these real-world streams
permits to understand how this kind of tool is able to sup-
port users and domain experts in the analysis of correlations
holding on data streams. In fact, at each instant, an expert
can concretely visualize and evaluate discovery results, and
s/he can also monitor the evolution of holding RFDs over
time. Moreover, the different gadgets embedded in DEVICE
support users to interact with results during the monitoring
process. For instance, the zoom feature (see Figure 9(d))
permits to focus the monitoring only on a specific part of
the search space; instead, the filter feature (see Figure 9(e))
permits to isolate a specific set of RFD candidates. These
two features enable to perform detailed analysis in order to
consider the possibility to re-execute discovery processes on
the same stream configurations, but with a reduced set of
attributes. In general, these kinds of interactions could al-
low users to reduce the complexity of the analysis especially
when they have to monitor big datasets and/or data streams.

6. Conclusion and Future Directions
Information visualization techniques aim, among others,

to facilitate analytical processes and to reduce their interpre-
tation complexity by exploiting, possibly specific or novel,
visual representations. Nevertheless, the current big data
contexts entail several challenging scenarios, where data are
dynamically produced. In particular, in the context of de-
pendency discovery from data streams (i.e., continuous pro-
filing), dynamic data might produce the evolution of many
FDs and/or RFDs. Thus, it is necessary not only to adequate
discovery algorithms to fast execution processes, but also to
allow users to analyze holding RFDs, and how they change
over time. To this end, we have proposed the tool DEVICE,
which relies on a lattice graph representation of the search
space to let users actively visualize holding RFDs in a com-
pact way during the execution of (incremental) RFD discov-
ery algorithms. DEVICE also represents a useful means to
compare different discovery algorithms, and to analyze how
they browse the search space.

In the future, we would like to test the usability of DE-

VICE, by involving domain experts and scientists in the inter-
pretation of discovery results on both incremental scenarios
and algorithm comparison tasks. Thus, based on these re-
sults, we would like to extend DEVICE to better support its
usefulness in the analysis tasks. Moreover, we would like to
lighten the representation of the search space, when it has to
represent big datasets. To this end, we are working on differ-
ent grouping functionalities, which would enable the lattice
graph with the possibility to dynamically change its shape
according to the RFDs validated over time.

References
[1] Breve, B., Caruccio, L., Cirillo, S., Deufemia, V., Polese, G., 2020.

Visualizing dependencies during incremental discovery processes.,
in: Proceedings of theWorkshops of the EDBT/ICDT2020 Joint Con-
ference.

[2] Caruccio, L., Cirillo, S., 2020. Incremental discovery of imprecise
functional dependencies. Journal of Data and Information Quality
(JDIQ) 12, 19:1–19:25.

[3] Caruccio, L., Cirillo, S., Deufemia, V., Polese, G., 2019a. Incremental
discovery of functional dependencies with a bit-vector algorithm, in:
Proceedings of the 27th Italian Symposium on Advanced Database
Systems.

[4] Caruccio, L., Deufemia, V., Polese, G., 2016. On the discovery of
relaxed functional dependencies, in: Proceedings of the 20th Inter-
national Database Engineering & Applications Symposium, IDEAS
2016, Montreal, QC, Canada, July 11-13, 2016, ACM. pp. 53–61.

[5] Caruccio, L., Deufemia, V., Polese, G., 2017. Evolutionary mining
of relaxed dependencies from big data collections, in: Proceedings
of the 7th International Conference on Web Intelligence, Mining and
Semantics, pp. 1–10.

[6] Caruccio, L., Deufemia, V., Polese, G., 2019b. Visualization of (mul-
timedia) dependencies from big data. Multimedia Tools and Appli-
cations 78, 33151–33167.

[7] Caruccio, L., Deufemia, V., Polese, G., 2020. Mining relaxed func-
tional dependencies from data. Data Mining and Knowledge Discov-
ery 34, 443–477.

[8] Chakraborty, S., Tomsett, R., Raghavendra, R., Harborne, D.,
Alzantot, M., Cerutti, F., Srivastava, M., Preece, A., Julier, S.,
Rao, R.M., et al., 2017. Interpretability of deep learning mod-
els: a survey of results, in: 2017 IEEE SmartWorld, Ubiqui-
tous Intelligence & Computing, Advanced & Trusted Computed,
Scalable Computing & Communications, Cloud & Big Data Com-
puting, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), IEEE. pp. 1–6.

[9] Chen, W., Xie, C., Shang, P., Peng, Q., 2017. Visual analysis of
user-driven association rule mining. Journal of Visual Languages and
Computing 42, 76–85.

[10] Cirillo, S., Desiato, D., Breve, B., 2019. CHRAVAT – chronology
awareness visual analytic tool, in: 2019 23rd International Conference
Information Visualisation (IV), IEEE. pp. 255–260.

[11] Costagliola, G., Fuccella, V., Giordano, M., Polese, G., 2008. Moni-
toring online tests through data visualization. IEEE Transactions on
Knowledge and Data Engineering 21, 773–784.

[12] De Oliveira, M.F., Levkowitz, H., 2003. From visual data exploration
to visual data mining: a survey. IEEE Transactions on Visualization
and Computer Graphics 9, 378–394.

[13] Di Rocco, L., Dassereto, F., Bertolotto, M., Buscaldi, D., Catania, B.,
Guerrini, G., 2020. Sherloc: a knowledge-driven algorithm for ge-
olocating microblog messages at sub-city level. International Journal
of Geographical Information Science , 1–32.

[14] Kruse, S., Hahn, D., Walter, M., Naumann, F., 2017. Metacrate: Or-
ganize and analyze millions of data profiles, in: Proceedings of the
2017 ACM on Conference on Information and Knowledge Manage-
ment, ACM. pp. 2483–2486.

15

L. Caruccio and S. Cirillo / Journal of Visual Language and Computing (2020) 7–16

(a) Monitoring interface after 3 hours. (b) Monitoring interface after 48 hours.

(c) Monitoring interface after 96 hours.

(d) Monitoring interface after zooming. (e) Monitoring interface after filtering.

Figure 9: Monitoring the incremental discovery algorithm during its executions on real streams.

[15] Kruse, S., Naumann, F., 2018. Efficient discovery of approximate
dependencies. Proceedings of the VLDB Endowment 11, 759–772.

[16] Naumann, F., 2014. Data profiling revisited. ACM SIGMOD Record
42, 40–49.

[17] Nicolazzo, S., Nocera, A., Ursino, D., Virgili, L., 2020. A privacy-
preserving approach to prevent feature disclosure in an IoT scenario.
Future Generation Computer Systems 105, 502–519.

[18] Papenbrock, T., Bergmann, T., Finke, M., Zwiener, J., Naumann, F.,
2015a. Data profiling with metanome. Proceedings of the VLDB
Endowment 8, 1860–1863.

[19] Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T., Rudolph, J.P.,
Schönberg, M., Zwiener, J., Naumann, F., 2015b. Functional depen-
dency discovery: An experimental evaluation of seven algorithms.
Proceedings of the VLDB Endowment 8, 1082–1093.

[20] Papenbrock, T., Naumann, F., 2016. A hybrid approach to functional
dependency discovery, in: Proceedings of the 2016 International Con-
ference on Management of Data, ACM. pp. 821–833.

[21] Raghav, R., Pothula, S., Vengattaraman, T., Ponnurangam, D., 2016.
A survey of data visualization tools for analyzing large volume of data

in big data platform, in: Proceedings of the 2016 International Con-
ference on Communication and Electronics Systems (ICCES), IEEE.
pp. 1–6.

[22] Saxena, H., Golab, L., Ilyas, I.F., 2019. Distributed discovery of func-
tional dependencies, in: IEEE 35th International Conference on Data
Engineering, IEEE. pp. 1590–1593.

[23] Schirmer, P., Papenbrock, T., Kruse, S., Hempfing, D., Meyer, T.,
Neuschäfer-Rube, D., Naumann, F., 2019. DynFD: Functional de-
pendency discovery in dynamic datasets, in: Proceedings of the 22nd
International Conference on Extending Database Technology (EDBT
’19), pp. 253–264.

[24] Sekhavat, Y.A., Hoeber, O., 2013. Visualizing association rules us-
ing linked matrix, graph, and detail views. International Journal of
Intelligence Science 3, 34–49.

[25] Song, S., Chen, L., 2013. Efficient discovery of similarity constraints
for matching dependencies. Data &Knowledge Engineering 87, 146–
166.

[26] Wei, Z., Link, S., 2019. Discovery and ranking of functional depen-
dencies, in: IEEE 35th International Conference on Data Engineer-
ing, IEEE. pp. 1526–1537.

16

Z. Hanzhong et al. / Journal of Visual Language and Computing (2020) 17-22

DOI reference number: 10.18293/JVLC2020N2-008

Auto-Modularity Enforcement Framework
Using Micro-service Architecture
Hanzhong Zheng, Justin Kramer and Shi-Kuo Chang*

Department of Computer Science, University of Pittsburgh, 6135 Sennott Square, 210 S Bouquet St., Pittsburgh, PA, USA, 15260-9161
__

A R T I C L E I N F O

Article History:
Submitted 10.22.2020
Revised 11.15.2020
Second Revision 12.2.2020
Accepted 12.10.2020

Keywords:
Micro-service
Automatic software development
Service-oriented architecture
Modularity enforcement
Visual software development

A B S T R A C T

The evolution of the software architecture has been progressively shifting to emphasize modularity,
isolation, scalability, agility, and loose coupling. Service-oriented architecture (SOA) has started to
gain popularity in this direction. Micro-services are a lightweight SOA that aim to largely scale
applications while ensuring isolation and distribution. Modularity is sometimes left behind or difficult
to achieve with fine-grained distribution of programmer responsibilities. In this paper, we propose an
automatic modularity enforcement (AME) framework during the software development life cycle
(SDLC) through intermediate representation. Our idea was inspired by automatic software
development for building a scalable application. We implemented this framework to support visual
software development using the Java Spring Boot Micro-service tool.

 © 2020 KSI Research

1. Introduction

Software architecture reflects the definition of all
interacting components in the system for satisfying
customers’ requirements. Nowadays, analytic
applications largely increase the criticality of the
software quality and scalability. In the micro-service
paradigm, scalability and isolation are improved
through dividing a large application service into several
sub-services, which are independently deployed and
communicated through interfaces via standard data
formats and protocols such as XML, HTTP, etc. [1].
Each sub-service implements the partial functionality of
the entire system.

The majority of a software system is divided into
several modules during the design. However,
modularization has always been one of the greatest
challenges in software architecture design. Enforcing
modularization can also be considered as an NP-hard
problem for programmers [2]. Modularization separates
the program’s functionality into several modules. Each
module is independent and interacts with each other.
Inadequate modularization can easily influence the

distribution, persistence, isolation, and even the overall
software quality. For programmers, modularization is a
key but challenging principle. The complexity of
modern software systems makes them much harder for
programmers to understand and maintain, especially
with respect to scalability. Modularization can allow for
decomposition of the software system to reduce the
complexity and improve the maintainability.
Furthermore, modularity can make the application more
tolerant of uncertainty.

To ensure the continuous delivery of trustworthy and
high-quality software systems while reducing the
burdens on programmers, automation in software
development has become important. Many efforts have
been made in recent years in automation of the software
development process under three categories: Rapid
Application Development (RAD) [3] [4], Code
generation [5], and Model-Driven Architecture (MDA)
[6] [7]. In object-oriented programming, modularity
and encapsulation are closely tied to each other and play
dominant roles. Enforcing modularity can limit the
propagation of program errors and establish software
maintainability. The mechanism of automatic module
enforcement (AME) allows the program modules to be
developed in a customized and organized way. AME
sets more constraints in order to keep consistency and
cohesion in the entire software system design. In this

Journal of Visual Language and Computing

journal homepage:

*Corresponding author
Email address: schang@pitt.edu
ORCID: 0000-0003-0426-4030

17

Z. Hanzhong et al. / Journal of Visual Language and Computing (2020) 17-22

paper, we propose an automatic module enforcement
framework that automatically generates and enforces
the modularity in software development from the
software system design. This framework is flexible and
agile for adapting into other programming languages.
The contributions of this paper are as follows:

1. We developed a new time-critical application
design system that specify different interaction
patterns among components in the software system
design.

2. We proposed an automatic modularity
enforcement (AME) framework using the concept of
micro-service architecture to generate and reinforce
the module’s functionality and cohesion.

3. We implemented our framework on a well-
defined experimental system using the Java Spring
Boot developing template.

2. Related Work

2.1 Service-Oriented Architecture (SOA)
Enterprises have increased their demand for flexible,

efficient and extendable architecture paradigms in the
current highly competitive software market. SOA is a
service-based architectural style that usually is viewed
as a black box that may have many underlying services
[8], but brings many significant benefits to Enterprises
in the way of flexibility, agility and high degree of
collaboration between business and IT. The flexibility
of SOA demonstrates how legacy applications can
easily integrate with new applications. SOA has the
ability to quickly respond to ever-changing
requirements and demands. The main goal of SOA is to
support a business process that reflects their
collaboration.

The communications in a SOA commonly utilize
WSDL (Web Service Description Language), UDDI
(Universal Description Discovery and Integration), and
SOAP (Simple Object Access Protocol) among Service

Provider, Service Broker and Service
Requestor/Consumer (Fig. 1). Service Provider offers a

variety of different services that are ready to use.
Service Requestor demands the services. Service
Broker is a service registry for connecting the Service
Provider and Service Requestor.

The limitations of the SOA are also obvious. The
communications between services mainly depend on
message passing, which can easily become
overwhelming when applications require heavy data
exchange. The connections are exponentially increasing
for a server due to transmission protocols, and SOA is
costly in deployment and human resources.

2.2 Monolithic vs. Micro-service
Architecture

The waterfall development model and associated
technology are representations of traditional software
development processes, which usually require a large
team on a monolithic artifact. In the monolithic
architecture, the main concept is “single”: A monolithic
application is built from a single unit, which is self-
contained and independent from other applications.
However, a great service design for a large application
should be stateless and allow the application to scale
vertically. Micro-services arrange an application to be a
collection of loosely coupled, interconnected modular
services where individual services communicate
through REST APIs and lightweight messages. To
achieve this isolation each service should be
independent from other services. Fig. 2 illustrates an
example of a micro-service architecture.

Maintainability, scalability and reliability are the
main drawbacks of the monolithic architecture, and
issues concerning them are proliferated in the current
enterprise market. Micro-services ensure the
continuous delivery and deployment of a large and
complex application associated with scalability,
testability, flexibility and fault tolerance. Service failure
is unpredictable but harmful. Isolation in micro-services
ensure the application continue to operate even if there
is a service failure. Enterprise applications have the
essence to be complex and highly demanding of

Figure 1: Communication structure of SOA

Figure 2: An example of a micro-service architecture

18

Z. Hanzhong et al. / Journal of Visual Language and Computing (2020) 17-22

scalability and responsiveness. The benefits of micro-
services seem to fulfill those requirements and attract
business Enterprises transition from monolithic to
micro-service architecture. As one of the biggest e-
commerce company in Europe, Otto Group started to
build their system using micro-services, which
vertically decomposes their system into four loosely
coupled applications: Product, Order, Promotion and
Search/Navigation [9]. Another example is the Netflix.
Netflix is the top Internet television network in the
world and spent over 7 years on the transition to the
micro-service. The successful transition allows the
video to be displayed on a variety of screen sizes and
platforms [10]. Besides, micro-services can easily
integrate with popular cloud platforms. Amazon web
services and Microsoft Azure both deploy micro-
services on their cloud platforms.

2.3 Software Development Automation
(SDA)

 Software development in general requires large
amounts of human endeavor. The improvement of
computer architectures and networks drives the size of
computer software and their diverse platforms [13]
exponentially, increasing in order to satisfy the
increasing needs of providing more software features.
Automation in software development refers to replacing
repeatable processes and reducing manual intervention,
which accelerates the delivery of high-quality software
products [11]. Automation in the software space
focuses on building both software and testing
automation, which usually takes a significant amount of
time. Application building involves many steps, like
code updating, compiling, and deployment. Software
testing intends to discover bugs, errors, or defects
during the execution of programs or application.

Software projects range from small scale personal
projects to large scale industrial applications. This
triggers the popularity of open software repositories
such as Github, Sourceforge, and Bitbucket. However,
well-maintained software development frameworks,
like Sot, Wala, LLVM, all require a successful build
process of the project repositories. Foyzul Hassan et al.
present a feasible automatic software binding on Java

projects on the state-of-the-art version control
repository [12]. They found that 57% of build failures
can automatically be resolved. Software testing is an
intensive and costly task in the software development
life cycle (SDLC). Automated software testing aims to
reduce the workload through automated testing. Test
automation largely impacts the quality, development
time, and cost of the software to the market [16].
Automated software testing can be unit testing,
functional testing, testing management tools, and so on.

Modularity is an important concept in software
applications. It enhances the reusability of the previous
code. Modules usually are divided based on their
functionality, but they work together for serving a
specified business domain. Modularization is always
the main issue in SDLC and the core task for
programmers [17] [18] [19]. One of the benefits of
micro-services is the enhancement of modularity in the
project to achieve fine-grained distribution of sub-
services. For object-oriented programming,
modularization is necessary for development teams.
The high benefits of modularity certainly associate with
the challenges in software design and implementation.
We propose an automatic modularity enforcement
framework from the software design to the software
implementation process. The implementation of our
framework utilizes micro-services to enforce isolation
and reusability. We also demonstrate that flexibility by
not only automatically creating Java modules, but also
by automatically creating modules in other object-
oriented programming languages. The IC card can
model the interaction patterns for designers to choose,
illustrated in different colors and emoticons with
associated names. Interaction patterns define how
statuses are communicated with other IC cards.

3. Time Critical Condition Design

Our IC card management system (ICMS) is used for
designing time critical applications. An IC card is a
visual specification scheme for rapidly prototyping the
entities of an application [20]. The ICMS is a visual tool
that allows the creation, edition, visualization, and
exporting of one or more IC cards. The connection of

Figure 3: An IC card example of creating a functionality component for ‘Doctor_Examine’

19

http://otto.de/

Z. Hanzhong et al. / Journal of Visual Language and Computing (2020) 17-22

the ICMS and our auto-modularity enforcer utilizes
XML specification. The ICMS automatically generates
XML specifications. Fig. 3 is an example of the IC card
example that can show the structure. There are 8
interaction patterns: ‘quiet state’, ‘By myself no
interaction’, ‘by Myself with interaction’, ‘By Others
no interaction’, ‘By Others with interaction’, ‘FAN’
(fan-out), ‘App’, ‘Chain’, and ‘Mixed’. The ‘Quiet’
state indicates not working or in a restful state.

 ‘FAN’ indicates the distributed fan-out of a larger
task to a number of smaller tasks. ‘My task’ is the task
assigned to this IC card. The content of the IC card
provides the detailed descriptions of the task. For
example for a brainwave sensor component IC card,
“(1) if 𝑇𝑇𝑐𝑐 > threshold T; calculate two options states:
attention and mediation states; otherwise, keep
collecting the EEG. (2) if medication value > attention
value, send the medication state and value to the
database server; else: send the attention state and value
to the database server.” ‘Name of Other IC’ specifies
the other IC cards that interact with each other.
‘Messages to Other IC’ contains the message format
and message content (e.g. “msg1: raw EEG data, msg2:
user state, value”). After finishing filling out the fields
of the IC card, the designer submits the IC card to the
database, and the IC card database automatically
generates the other designated number of IC cards with
temporary information so that the designer can edit
them at any time. In addition, the XML schema has also
been automatically generated and can be downloaded
for the next component to transform into java modules.

4. Experimental Tool

For our experimental tool, we began with an analysis
of the micro-service architecture. The micro-service
paradigm focuses upon modularity in backend
development by introducing componentization of the
services it defines. These services are broadly defined
within the framework, and the architecture behind these
services varies vastly from one organization to another.
With the growth of the micro-service architecture in
recent years [9], the need for Rapid Application
Development (RAD) [3] [4] in the space has expanded.
Based upon this analysis, we developed a tool to
enhance the reusability, cohesion, and distribution of
micro-service development while reducing coupling.
Our experimental tool is driven by an automatic
modularity enforcement framework based upon the
Java Spring Boot framework. Java Spring Boot
supports the creation of a framework that utilizes fine-
grained distribution of sub-services while allowing for
vast extensibility through Cloud, API, and serverless
interfaces to services.
 We employed Python to engineer a dynamic auto-
generation tool within our Java Spring Boot micro-

service architecture. The Python program allows for
flexible micro-service generation based upon a standard
XML input interface, connecting to our IC card
management system that produces the XML files. With
our Python program, users can specify constant factors
to identify their central repository, the XML file to
target, and the title of their template files. To allow for
extensibility, the Python Auto-Generator provides a
basic method-layer API to process user-defined micro-
services which fit into the templated IC card-based
XML structure. This approach allows users to create
micro-services through the framework of their choice if
basic constraints on input and output are met.

Through the development of the experimental
micro-service Auto-Generator (Fig. 4), it is possible to
automatically generate micro-service components
within a structure that lends itself to extensibility, tight
cohesion, loose coupling, and modularity. The XML
specification, based on the IC card template, serves as
an interface to the Auto-Generator. An XML-based
communication structure informs the Auto-Generator
which micro-services to create, as well as the database
tables to establish for each micro-service. Also, the
Auto-Generator establishes micro-service file
components in a directory structure specified in the
source project directory.

As an example, the fan software structure is illustrated
in Figure 5. This is for the get user location module of
an app. At the top we have track_tracks_service and
under that, as shown in Figure 6, we have two IC cards,
close_closes, and distance_distances. The module (IC
card) track_tracks_service has a database that stores the
location, the latitude, and the longitude. The IC cards
are shown in Figure 6. Once the IC cards are defined,
the ICMS can output an XML specification as shown in

Figure 4: modularity auto-enforcement framework
using micro-service architecture

20

Z. Hanzhong et al. / Journal of Visual Language and Computing (2020) 17-22

Figure 7.
track_tracks_services

 / \
/ \

 distance_distances close_closes
 Figure 5. Fan software structure.

 Figure 6. The IC cards for the fan software structure.
<?xml version="1.0" encoding="UTF-8"?>
<icCardList xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <icCardEntry icEntryId="2804" icEntryName="test">
 <icCard icId="10279" icName="close_closes"
icDescription="finds closest building" icIntPattern="FAN"
icMyTask="finds closest
 building" icTimeCriticalCondition="" icNumberCurrent="1"
icNumberTotal="1">
 <icOther icOtherName="" icOtherMessage=""
icOtherTask="" otherId="-1" />
 </icCard>
 <icCard icId="10277" icName="track_tracks_service"
icDescription="get user location" icIntPattern="FAN"
icMyTask="collect users
 currentlocation" icTimeCriticalCondition="< 30 minutes and
Begin_Table T_ LOCATION(name,lat,longatiude) End_Table"
 icNumberCurrent="1" icNumberTotal="1">
 <icOther icOtherName="send alerts" icOtherMessage="none
" icOtherTask="none " otherId="4784" />
 </icCard>
 <icCard icId="10278" icName="distance_distances"
icDescription="gets the distance to the nearest location"
icIntPattern="FAN"
 icMyTask="get distance" icTimeCriticalCondition=""
icNumberCurrent="1" icNumberTotal="1">
 <icOther icOtherName="none" icOtherMessage="none"
icOtherTask="none" otherId="-1" />
 </icCard>
 </icCardEntry>
</icCardList>

Figure 7. The XML specfication.

Based upon the XML specification of the IC cards,
the AutoGenerator can then create the output modules.
A portion of a module is shown in Figure 8.

package io.pivotal.Micro-services.patients;

import java.io.Serializable;
import java.math.BigDecimal;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;

/**
 * Persistent patient entity with JPA markup. Patients are stored in
an H2
 * relational database.
 *
 * @author Paul Chapman
 */
@Entity
@Table(name = "T_PATIENT")
public class Patient implements Serializable {

 public static Long nextId = 0L;

 @Id
 protected Long id;

 protected String number;

 protected String name;

 protected String address;

 /**
 * This is a very simple, and non-scalable solution to
generating unique
 * ids. Not recommended for a real application. Consider
using the
 * <tt>@GeneratedValue</tt> annotation and a sequence
to generate ids.
 *
 * @return The next available id.
 */
 protected static Long getNextId() {
 synchronized (nextId) {
 return nextId++;
 }
 }

 /**
 * Default constructor for JPA only.
 */
 protected Patient() {
 }

Figure 8. A generated module.

The outputted modules, as demonstrated by the

example module in Figure 8, provide two key functions.
The first function is a set of class variables that define
the database table for the service. The AutoGenerator
establishes a table for the micro-service in the database
for usage based on the template database. Furthermore,
each module provides a method-level API that

21

Z. Hanzhong et al. / Journal of Visual Language and Computing (2020) 17-22

controller classes utilize to manipulate and combine the
data of each service. The core class of the module is
extensible, allowing for the development of ICs within
each core class. The ICs inside of each core class define
the service’s internal communication, logic, and
functions. For example, an IC defined as RegisterUser
may exist within the User Service. The User Service
core class would contain the logic for registering a user,
including CRUD (create, read, update, delete) calls to
the User database. In addition, a Login Controller may
act as a wrapper class around both the User Service and
a hypothetical Authentication Service, which it utilizes
to authenticate a potential user’s information before
registration. Lastly, the outputted module
communicates with an automatically generated
registration server to establish itself as a distributed
micro-service. Connections to the registration server are
based upon a centralized location that is automatically
provided within the creation of each new micro-service.

5. Conclusion

This paper proposes the organization of the
generated micro-service, with clear distinctions
between Software Quality Assurance (SQA) testing,
database creation, data seeding, registration, a web
platform, and service methods. The combination of
these resources is accessed by Java Spring Boot to
compile the micro-service-based software. Based upon
our experimental design, micro-services may be created
in conjunction with the tenets of Rapid Application
Development (RAD) [3] [4]. These micro-services
register with a central server, utilize their independent
databases, and provide APIs to controllers in the
overlying software. Each micro-service interacts with
the registration and web components through structured
channels based upon naming schemas. Thus the
experimental tool provides a basis for our studies
pertaining to auto-modularity enforcement framework
for micro-services.

Our next research goal is to investigate the optimal
organization of the generated micro-services according
to some objective functions to minimize, for instance,
the total development efforts.

References
[1] Dragoni, N., Lanese, I., Larsen, S., Mazzara, M., Mustafin, R.,

Safina,L., 2017. Microservices: How to make your application
scale.

[2] Prajapati, A., Chhabra, J., 2018. Optimizing software
modularitywith minimum possible variations. Journal of
Intelligent Systems 29.

[3] Beynon-Davies, P., Carne, C., Mackay, H., Tudhope, D., 1999.
Rapidapplication development (rad): An empirical review. Eur.
J. Inf. Syst. 8, 211–223.

[4] Berger, H., Beynon-Davies, P., Cleary, P., 2004. The utility of
a rapidapplication development (RAD) approach for a large
complex information systems development., 220–227.

[5] Liao, H., Jiang, J., Zhang, Y., 2010. A study of automatic code
generation, in: 2010 International Conference on Computational
and Information Sciences, 689–691.
doi:10.1109/ICCIS/2010.171.

[6] Newman, M.E.J., Girvan, M., 2004. Finding and evaluating
community structure in networks. Phys. Rev. E. 69, 026113.

[7] Pastor, O., Molina, J.C., 2007. Model-Driven Architecture in
Practice: A Software Production Environment Based on
Conceptual Modeling. Springer-Verlag, Berlin, Heidelberg.

[8] Cloutier, Robert. 2008. Model Driven Architecture for Systems
Engineering. Presentation Slides), Stevens Institute of
Technology, presented at INCOSE International Workshop.

[9] Chapter 1: Service Oriented Architecture (SOA).
msdn.microsoft.com. Archived from the original on February 6,
2016. Retrieved September 21, 2016.

[10] Hasselbring, W., Steinacker, G., 2017. Microservice
architectures forscalability, agility and reliability in e-commerce,
in: 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), 243–246.

[11] Vučković, J., 2020. You Are Not Netflix. Springer International
Publishing, Cham. 333–346.

[12] Ohno, O., Furuhata, Y., Komuro, H., Imajo, T. and Komiya, S.
2002. Automated software development based on composition
of categorized reusable components—construction and
sufficiency of skeletons for batch programs. Electron. Comm.
Jpn. Pt. II, 85: 50-66.

[13] Hassan, F., Mostafa, S., Lam, E.S.L., Wang, X., 2017.
Automaticbuilding of java projects in software repositories: A
study on feasibility and challenges, in: 2017 ACM/IEEE
International Symposiumon Empirical Software Engineering
and Measurement (ESEM), .38–47.

[14] Moran, K., 2018. Automating software development for mobile
computing platforms (doctoral symposium). ArXiv
abs/1807.07171

[15] Wedikian, Z., Ayari, K., Antoniol, G., 2009. Mc/dc automatic
testinput data generation, in: Proceedings of the 11th Annual
Conferenceon Genetic and Evolutionary Computation,
Association for Comput-ing Machinery, New York, NY, USA.
1657–1664.

[16] Kumar, D., Mishra, K., 2016. The impacts of test automation on
software’s cost, quality and time to market. Procedia Computer
Science79, 8–15.

[17] Garousi, V., Elberzhager, F., 2017. Test automation: Not just
for testexecution. IEEE Software 34, 90–96.
doi:10.1109/MS.2017.34

[18] Serme, G., 2013. Modularization of security software
engineering indistributed systems. (modularisation de la
sécurité informatique dansles systèmes distribués).

[19] Mitchell, B.S., Mancoridis, S., 2006. On the automatic modu-
larization of software systems using the bunch tool. IEEE
Trans.Softw. Eng. 32, 193–208.

[20] Hare, E., Kaplan, A., 2017. Designing modular software: A
casestudy in introductory statistics. Journal of Computational
and Graphical Statistics 26.

[21] Chang, S. K., Rajnovic, P., Zalar, M., 2007. IC Card: Visual
specification for rapid prototyping of time-critical applications.
International Journal of Software Engineering and Knowledge
Engineering 17, 557–573.

22

https://doi.org/10.1515/jisys-2018-0231
https://web.archive.org/web/20160206132542/https:/msdn.microsoft.com/en-us/library/bb833022.aspx
https://msdn.microsoft.com/en-us/library/bb833022.aspx
https://doi.org/10.1007/978-3-030-31646-4_13
https://doi.org/10.1002/ecjb.10057

 F. Colace et al. / Journal of Visual Language and Computing (2020) 23-30

DOI reference number: 10.18293/JVLC2020N2-009

CACHE: Contextual Approach for Cultural Heritage

Enhancing

Mario Casilloa, Francesco Colacea,, Marco Lombardia,* and Domenico Santanielloa

aDIIn - University of Salerno, Italy

__

A R T I C L E I N F O

Article History:

Submitted 10.26.2020

Revised 11.18.2020

Second Revision 12.5.2020

Accepted 12.10.2020

Keywords:

Geographic knowledge

Geographic rules

Formal grammar

Smart cities

A B S T R A C T

In the panorama of Italian coastal tourism, there are many unique and unexplored places. These

places, which suffer from the lack of government investment, present the need to be promoted through

low consumption systems and widely used distributed applications.

The present work aims to develop innovative solutions to support citizens and tourists to offer

advanced services, highly customizable, able to allow, through the use of new technologies, a more

engaging, stimulating, and attractive use of information than the current forms. The developed system

is based on graph-based formalisms such as Context Dimension Tree and Bayesian Networks, rep-

resenting the context through its main components and react to it anticipating users' needs. Through

the development of a mobile app, it was analyzed a case study applied in the area of Amalfi Coast (in

Italy). Finally, an experimental campaign was conducted with promising results.

© 2020 KSI Research

1. Introduction

Nowadays, Italian coasts represent one of the most

characteristic and priceless tourist places globally, i.e.,

offering users an important cultural heritage.

Unfortunately, not all sites receive the attention or

financial support necessary to bring out their

uniqueness. Thanks to the advent of new technologies

and the smart cities phenomenon, these places could

finally be protected and promoted. In fact, the adoption

of Future Internet (FI) technology and its most

challenging components, such as the Internet of Things

(IoT) [1] and the Internet of Services (IoS) [2], can

provide the foundation for progress towards unified

platforms that offer a variety of advanced services.

Besides, the constant use of mobile devices to form

interactive and participatory sensor networks, which

allow users to collect, analyze and share local

knowledge, can contribute to developing the smart city

paradigm where the citizen is called to play an active

role [3]. One of the sectors that could potentially benefit

the most is tourism [4]. In such a scenario, places and

objects such as sculptures, buildings, etc. can be

brought into contact with users in a completely new and

stimulating way [5]. In particular, data, which

represents a significant added value, can be processed

to enrich further the system's ability to relate man and

machine. In this regard, one of the main problems is to

model the awareness of the context. This problem can

be solved through the Context Dimension Tree: a graph

formalism representing all possible contexts [6]. The

next step is to predict the possible scenarios to model

the proposals to each user's needs. This further problem

can be addressed through the use of Bayesian Networks

[7]. Bayesian networks represent graph formalisms able

to predict specific events when some variables (in our

case, contextual variables) change [8].

This paper intends to propose a system based on a

"Content/API Economy Platform", characterized by a

strong awareness of the context. The designed system

allows the content-generating actors (Institutions such

as Museums, Communities or companies, and

individuals) and the content user actors (the Institutions

themselves, the service companies and, above all, the

end-users) to operate through a platform-broker that,

through the automatic composition (orchestration) of

services, is able to activate in a controlled way they

access and consumption of the information contained in

Journal of Visual Language and Computing

journal homepage: www.ksiresearch.org/jvlc/

*Corresponding author

Email address: malombardi@unisa.it

Website: http://docenti.unisa.it/marco.lombardi

ORCID: 0000-0002-6103-594X

23

F. Colace et al. / Journal of Visual Language and Computing (2020) 23-30

the Knowledge Base. In fact, the operating modes

include the entire life cycle of the Knowledge Base that

provides for the collection, storage, classification, and

availability of the contents accessible through simple

mobile applications oriented to provide tourists with

richer visiting experiences [9].

In particular, through the identification and

processing of the context of use in which the user

operates, it is therefore essential to define flexible

methods, i.e., to dynamically recommend data and

services that best meet users' situational needs. When

necessary, this approach can tailor the information

extracted to offer the user what may be useful at a given

time.

2. Background

2.1 Context Awareness

The analysis of the context in which we do something

is often more important than what we are doing [10].

This concept represents why search engines are

increasingly trying to understand the real meaning of

individual "keywords" and the context they are placed

and, therefore, the user's intent. For example, if a user

is searching by typing the keyword "Japanese", is the

user looking for a sushi place in the area, or is looking

for language lessons?

In this regard, context-aware computing is used to

indicate the use of computer technology to collect and

analyze data about the reality that surrounds us. The

idea is to create devices and applications that are aware

of their surroundings and analyze the data to create new

exciting use cases [11].

Our smartphones have been collecting contextual

data for years over the network or using their sensors,

such as gyroscopes, or detecting movement. They use

location-based data to power many of the apps we use

daily, from Google Maps to the more recent Uber [12].

Part of the challenge is that non-uniform data from

heterogeneous sources can be challenging to process in

a single system. In fact, data can be stored in various

formats or use a different syntax that can create

disambiguation problems, which could lead to

misinterpretation. Fortunately, while we have access to

and create more data than ever before, we also can use

tools such as artificial intelligence (AI) and machine

learning that can help us process this data [13].

In recent years there has also been much talk about

augmented reality (AR). The resounding success of

Pokémon Go has shown us how powerful this

technology can be when applied correctly. In this

regard, context processing will probably have a knock-

on effect on the field of AR development because it

provides access to new types of data that developers can

exploit [14]. A consequence could be the possibility for

the user to have a digital "sixth sense" available. After

all, this will allow us to increase our understanding of

the world around us and our possibilities, such as the

quality of the air we are breathing or our speed.

The most interesting thing is that context-aware

applications have led to devices that learn to know

ourselves better and anticipate our moves. Google Now,

for example, is specifically designed to provide

information to users by predicting what they want,

based on historical and contextual data [15]. As said,

our smartphones are able to detect a range of

information from available sensors to detect both our

position (GPS) and our movements (accelerometer). To

them are added wearable devices such as Fitbits, which

lead, of course, to a further increase in useful

information. At this point, an analysis of the data can

predict when we will be hungry and how much we

should eat to compensate for our activity or indicate

what we probably like and what our budget is.

One of the most relevant potentials that come from

contextual processing is how it can help us build

artificial intelligence that speaks and can understand the

environment and interact with the "senses" in a similar

way to humans. Of course, we are still far from this

goal. We will need a continuous joint development of

machine learning and deep learning technologies to

continue to progress together with context-aware

computing [16]. All the data produced and available

will be useless and counterproductive if we cannot

process them. Context-aware technologies are based on

both hardware to collect data and software to make

sense of them.

Thanks to their virtual assistants, current leaders in

this field are companies like Google, Apple, and

Amazon. Google, Siri, and Alexa are always listening

and using what they grasp to provide context-aware

services. After all, if they are not listening to

instructions, they cannot react to commands, so they are

equipped with a certain amount of built-in contextual

computing. In addition to listening to our instructions,

devices like Google Home, Apple HomePod, and

Amazon Echo monitor our home environment [17].

They can turn on the lights when we enter the rooms

and adjust the temperature according to the weather

conditions.

Ultimately, the main thing to remember is that new

context-aware technologies can make our lives more

comfortable, operating in an environmentally friendly

way. However, it is the way we use them to offer added

value in society, visible even in the long term.

2.2 Context-Aware Computing for Tourism

In the world of tourism, the advantages of using

context-aware applications lead to an inevitable

enhancement of cultural heritage [18]. This opportunity

is linked to visitors' enormous flow, whose management

is not easy and is closely related to the proper

development of the tourism chain. The latter involves

24

F. Colace et al. / Journal of Visual Language and Computing (2020) 23-30

both public and private operators who together are able

to organize the processes necessary to achieve the

objective in economic and social terms.

First of all, tourists express the need to have explicit,

updated, and exhaustive references to enjoy a complete

cultural heritage experience with all the necessary

services (for example, local transport, catering,

accommodation, information, and guides). On the other

hand, the agencies and public administration want to

increase the economic and social weight of the cultural

heritage of their pertinence through the increase of

presences and services. Finally, operators in the sector

express the need for greater economic returns from

interaction with the flow of visitors interested in the

enjoyment of cultural heritage through engagement and

relationship mechanisms dedicated to this segment of

customers.

In general, the considerable amount of existing

material on cultural heritage, which far exceeds the

physical space available in museums or archaeological

sites, and the growing interest in collections accessible

to a wide audience have led institutions and

professionals to increasingly adopt web-based and

mobile tools to present their collections and services,

meeting the needs of interested visitors [19].

Currently, with the convergence of the Internet,

wireless technology, and the growing adoption of the

Web as a platform for publishing information, the

visitor is able to take advantage of services and material

related to cultural heritage before, during, and after the

visit, having different purposes and requirements at

each stage. Therefore, cultural heritage exploration

becomes a continuous process, starting the visit before

reaching the place of interest and, ideally, never-ending.

In fact, the user is able to plan and anticipate his or her

travel itinerary, visit the site in person, and then revisit

the places of interest using the material shared online.

It is clear that the enormous amount of information

available must be filtered, customized, and

contextualized to allow the individual user to access it

easily. The contextualization of data and services

related to cultural heritage requires a system that can

model the user (for example, based on his/her interests,

knowledge, and other personal characteristics), as well

as contextual aspects, thus selecting the most

appropriate content.

In particular, it should be remembered that museum

visitors differ from each other. Their visiting to the

museum is made up of the physical, personal, and socio-

cultural context and aspects related to identity.

Therefore, they can enormously benefit from systems

that take into account personal and contextual

characteristics. Moreover, visitors' behavior may not

remain constant during the visit, requiring an ongoing

adaptation. Besides, since tourism is a social activity,

adaptation to individuals is not enough, and groups and

communities also need to be shaped and supported,

taking into account mutual interests and previous

everyday experiences.

The challenges faced by researchers and developers

of context-aware applications concern how to model

and represent the user and the context of the visit and

how to retrieve the available information [20]. In fact,

extensive Web-based collections are difficult to identify

and carry the risk of overloading users. As said, visitors

are extremely heterogeneous and require different types

of information and different levels of detail. Finally, in

general, users of cultural heritage and tourists are often,

and for a short time, visitors to a place unknown to

them. On the one hand, this means that they have a

constant need to find the relevant information; on the

other hand, providing them with adequate answers is

challenging since their interests and needs are not

known from the beginning.

In this field, context-aware computing techniques

can guide the selection of data and services based on the

context and interests of the user or groups, protecting

them from information overload [21]. Besides,

contextualization and customization can be used to

adapt the presentation of information on the device, thus

facilitating its exploration.

However, for these purposes, heritage information

must be represented, through the use of ontological

models, in a format that can be interpreted by a

processing system (computer, smartphone, etc.) that can

be combined with the interests, preferences, and, in

general, the recipient's current context [22].

3. Motivating Example

The system aims to recommend a wide range of

services, which can help users during a travel

experience. The system is able to help users manage the

time and all the resources at his disposal in the best

possible way, i.e., revealing what is around him and

satisfying current and future needs.

The intention is to improve a tourist's experience and

quickly project him/her into the new world in which

he/she lives. It is crucial, in fact, for a person who is in

a place to visit, to have the opportunity to orient

themselves among the points of interest that place

offers, and to know its history in order to have a

conscious vision of the cultural attractions present. As

soon as he or she arrives in a new place, therefore, a

tourist will need to know, in general terms, the

characteristics of the place and the reasons why it is

worthy of interest. Through the services provided, they

can immediately obtain a description and then go into

all the details. Moreover, a trip does not always allow

tourists to have the right time to thoroughly visit the

chosen destination. In these cases, the tourists are faced

with the difficult selection of the attractions that will

then actually be visited. In this scenario, the tourist will

be able to take advantage of the knowledge acquired

25

F. Colace et al. / Journal of Visual Language and Computing (2020) 23-30

previously to visit the most important historical points

and visualize the impressions that these have left in

other visitors, automatically detected by, for example,

Sentiment Analysis techniques. Another classic

situation is to be faced with the planning of one's

activities and visits; in this case, through the proposed

system, tourists will be able to obtain dynamic

itineraries based on their tastes and the parameters

related to the current context: during the planning of the

itinerary, the system must always adapt to dashboards

measuring the resources that the user has made

available (for example, time, budget, number of

members of the visiting group, age, etc.). This system

will be able, therefore, not only to perceive the whole

context but also to react to it, giving appropriate

answers to the user in terms of services. Imagine, for

example, that the weather for the entire duration of the

trip is terrible. In this case, the system has the ability to

discard a priori the attractions that are outdoors and

propose only "indoor services.

In this tourist scenario, the platform can be declined

in mobile applications of type "Trip Designer", which

build a travel itinerary by collecting from predefined

folders the various steps of which the itinerary itself is

composed, or through a chatbot, which maintains,

through techniques of natural language processing and

context recognition, a logical discourse with the user in

order to respond to specific tourist needs [23]. The

platform will not only have to provide a simple list of

the data found on that place but will have to present

them in such a way that the user can be an active part of

it in order to scrutinize its past, present, and future,

behaving like a modern tourist guide, also taking

advantage of social networks, for years now an integral

part of everyday life and containers of immense

information. For all these reasons, it must enclose the

set of functionalities oriented to the construction of an

ecosystem to share and consult content describing the

tourist/cultural heritage, exploiting, as said, a

Knowledge Base.

4. System Architecture

As highlighted above, we want to propose a system for

the automatic selection of services adaptive to the

context and its users' needs.

The characteristics of the proposed architecture

(Figure 1) mainly concern the information content that

is available to end-users through the orchestration of

services, proposing three different points of view:

• Representation of the Context;

• Data Management and Organization;

• Inferential Motors.

4.1 Context Representation

First of all, it is intended to convey to different

categories of users, at a specific time, useful

information in a given context; in practice, it is intended

to create a system with a high degree of Context-

Awareness. Knowledge of the context in which the user

finds himself allows, in fact, to offer a wide range of

services that can help the user during daily, work or

private life, managing the time and resources at

disposal, revealing what is around and satisfying their

needs. The real-time knowledge of the context in which

the user finds himself, through its representation in the

form of graphs, allows, therefore, to offer highly

personalized services ("tailored") able to take into

account countless aspects as well as, for example, the

mood of the user through an analysis of Affective

Computing. For this reason, the application fields can

be the most diverse: cultural heritage, tourism, e-

learning, etc.

Context Awareness must be understood as a set of

technical features able to give added value to services

in different application segments. Context-Aware

Computing applications can exploit, in our case, these

features to present context information to the user or to

propose an appropriate selection of actions [24]. In

order to obtain a better representation of the various

features, therefore, context representation formalities

will be adopted, able to define, in detail, the needs of

the user in the environment in which he is acting,

through an approach such as: Where, Why, When,

How. Everything will be declined through the state-of-

the-art technologies present in the sector.

In particular, the representation of the context can

occur through formal models of representation, such as

the Context Dimension Tree (CDT). The latter is able

to describe all the possible contexts that can be had

within an application domain, through the definition of

a tree consisting of a trio <r; N; A> where with r you

indicate its root, with N you represent the set of nodes

of which it is composed and with A the set of arcs that

join these nodes. In detail, the nodes inside the CDT are

divided into two categories, that of dimension nodes

and that of concept nodes. The first type of node

describes a possible dimension of the application

domain; the second, vice versa, represents one of the

possible values that a dimension can assume. The

children of the root node, which constitute the top

dimension, are all dimension nodes, and for each of

them, a subtree may exist; the leaf nodes must be

concept nodes. A dimension node can have, for

children, only concept nodes and, in the same way, a

concept node can have, for children, only dimension

nodes. Defined, at this point, each "context element" as

an assignment "dimension=value", a context will be

indicated as a combination, through the use of an and,

of different context elements.

Based on the use of this type of representation, the

proposed methodology consists of three main phases:

26

F. Colace et al. / Journal of Visual Language and Computing (2020) 23-30

• the design phase of the contexts tree, in which

to identify the context elements that are

significant for the application considered;

• the definition phase of partial views, in which

to associate to each of them a different portion

of data;

• the composition phase of the global views, in

which to process the answers to the queries.

Figure 1: System Architecture

27

F. Colace et al. / Journal of Visual Language and Computing (2020) 23-30

4.2 Data management and representation

In this scenario, therefore, data represent the key to

building and enabling innovative services; therefore, we

intend to create a Knowledge Base (KB) to collect,

process and manage information in real-time. In this

regard, as Knowledge Management Systems (KOS), we

refer to some well-known schemes such as

Taxonomies, Thesauri, or other types of vocabularies

that, together with Ontologies, represent useful tools

that allow modeling the reality of interest in concepts

and relations between concepts. The resulting

advantages are many: the use of Ontologies, for

example, allows to fix a series of key concepts and

definitions related to a given domain, which can be

shared, providing the correct terminologies

(collaborative knowledge sharing). Moreover, an

ontology allows complete reuse of the knowledge

encoded in it also within other ontologies or for their

completion (non-redundancy of information) [25].

Electronic computers' interpretation enables the

automatic treatment of knowledge, with considerable

benefits (Semantic Web).

4.3 Inferential Engines

Finally, the system, designed to be in continuous

operation, will have to continuously collect data from

various sources and process them immediately to

provide accurate services according to users and events.

These, detected and analyzed, will have to be translated

into facts associated with specific semantic values: it is

necessary, therefore, to use an inferential engine able to

conclude by applying some rules on the reported facts.

Summarizing, the need for a user can be solved in a

given context by using the right services provided. The

latter is characterized by innovative elements of

recommendation based on the formal representation of

the context, management, and organization of

knowledge, inferential engines.

In particular, it is possible to define a need

𝑁𝑖 through the following function:

𝑠𝑖 = 𝐹𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑢𝑗 , 𝑐𝑘)

Where:

𝑆 = {𝑠1, 𝑠2 … , 𝑠𝑖} represents the set of possible

services that can be provided by the platform

𝑈 = {𝑢1, 𝑢2 … , 𝑢𝑖} represents the set of possible user

features

𝐶 = {𝑐1, 𝑐2 … , 𝑐𝑖} represents the set of all possible

contexts in a certain application domain.

5. Experimental Results

In order to provide a validation of the proposed

methodology, a prototype was developed. The

prototype is implemented through a hybrid mobile app

and a server-side component implementation. The

developed App is designed to support tourists (users)

visiting Campania's coastal area (South of Italy

Region). Only some user preferences and interests were

considered in the first phase of methodology validation,

and only the main services and points of interest have

been identified. The experimental phase involved 60

volunteers aged between 21 and 55 who were unknown

from the study's main purpose. The prototype was

installed on the mobile device of each participant, and

after an interaction phase, the system proposes a

questionnaire covering several sections:

A. Presentation

B. Usability

C. Performance

D. Recommendation

E. Reliability

Each section presents two assertions associated with

five possible answers according to the Likert scale: I

totally disagree - TD, I disagree - D, undecided - U, I

agree - A, I totally agree - TA. The answers to the

questionnaire have been collected in Table 1.

Table 1: Questionnaire answers

Section
Answer

TD D U A TA

A 0 16 22 53 29

B 5 0 24 50 41

C 6 8 12 58 36

D 4 0 8 62 46

E 6 7 13 60 34

Table 1 shows that the users agree or strongly agree

that the system provides a satisfying and reliable

recommendation and contextual information and

appropriate services on the site and its points of interest,

meets the tourist's needs and experiences. Therefore,

users show an excellent appreciation for the app: they

appreciated the contents and services proposed in

general.

Also, further analysis was conducted involving a

smaller number of participants to evaluate the system's

ability to recommend. In the first experimental phase,

three pathways (P1, P2, and P3) and two activities (A1

and A2) were selected to be recommended to users.

This experimental phase was divided into three steps. In

the first phase, the users respond to an aptitude test.

According to these tests, the users were divided into

macro-groups for aptitude similarity. Subsequently, a

training set was created, consisting of about 75% of the

participants belonging to each macro-group. In the

second phase, the training set users were able to

experience the system's suggestions and interact with it.

In this phase, the system could learn about the system.

In the third and last phase, the users belonging to the

test set group have brought to experiment with the

prototype's suggestions and evaluate if the type of path

28

F. Colace et al. / Journal of Visual Language and Computing (2020) 23-30

or activity suggested by the system was inherent to the

context presented. The results were collected in the

form of a confusion matrix in Table 2.

Table 2: Confusion matrix

According to Table 2, the overall accuracy of the

system is higher than 71%. This result is very

encouraging and could improve over time, based on the

increase of experimental data available.

Figure 2: Questionnaire answers trend

6. Conclusion and Future Works

This paper aimed to introduce a framework that can

support tourists during each phase of the travel

experience in the coastal area south of Italy. The system

was designed to provide highly customizable and

tailored services, making a tailored and unique

experience. The innovation of the recommender system

presented lies in the use of a high degree of context-

awareness.

The proposed architecture could be used in several

contexts and applications. The experimental results

show that the system is able to recommend a high

degree of reliability with results. In addition, the

experimental campaign shows users positive feedback

in-service presentation, usability, and performance

shown. Future developments include improvements to

the developed prototype and enlargement of the

experimental campaign.

References

[1] K. Ashton, “That ‘internet of things’ thing,” RFID J., vol.

22, no. 7, pp. 97–114, 2009.
[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and

M. Zaharia, “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50–58, Apr. 2010

DOI:10.1145/1721654.1721672.

[3] G. Annunziata, F. Colace, M. De Santo, S. Lemma, and M.
Lombardi, “Appoggiomarino: A context Aware app for e-

citizenship,” ICEIS 2016 - Proc. 18th Int. Conf. Enterp. Inf.

Syst., vol. 2, pp. 273–281, 2016.
[4] F. Colace, M. De Santo, M. Lombardi, and D. Santaniello,

“CHARS: a Cultural Heritage Adaptive Recommender

System,” in Proceedings of the 1st ACM International
Workshop on Technology Enablers and Innovative

Applications for Smart Cities and Communities -

TESCA’19, 2019, pp. 58–61
DOI:10.1145/3364544.3364830.

[5] F. Amato, V. Moscato, A. Picariello, F. Colace, M. De

Santo, F. A. Schreiber, and L. Tanca, “Big data meets
digital cultural heritage: Design and implementation of

SCRABS, a smart context-aware browsing assistant for

cultural environments,” J. Comput. Cult. Herit., 2017
DOI:10.1145/3012286.

[6] F. A. Schreiber, C. Bolchini, C. A. Curino, E. Quintarelli,

and L. Tanca, “Context information for knowledge
reshaping,” Int. J. Web Eng. Technol., 2009

DOI:10.1504/ijwet.2009.025015.

[7] F. Colace, M. Lombardi, F. Pascale, and D. Santaniello, “A
multi-level approach for forecasting critical events in smart

cities,” in Proceedings - DMSVIVA 2018: 24th

International DMS Conference on Visualization and Visual
Languages, 2018 DOI:10.18293/DMSVIVA2018-002.

[8] F. Colace, M. De Santo, M. Lombardi, R. Mosca, and D.

Santaniello, “A multilayer approach for recommending
contextual learning paths,” J. Internet Serv. Inf. Secur., vol.

10, no. 2, pp. 91–102, 2020
DOI:10.22667/JISIS.2020.05.31.091.

[9] Y. Ioannidis, K. El Raheb, E. Toli, A. Katifori, M. Boile,

and M. Mazura, “One object many stories: Introducing ICT
in museums and collections through digital storytelling,” in

Proceedings of the DigitalHeritage 2013 - Federating the

19th Int’l VSMM, 10th Eurographics GCH, and 2nd
UNESCO Memory of the World Conferences, Plus Special

Sessions fromCAA, Arqueologica 2.0 et al., 2013

DOI:10.1109/DigitalHeritage.2013.6743772.
[10] A. K. Dey, “Understanding and Using Context,” Pers.

Ubiquitous Comput., vol. 5, no. 1, pp. 4–7, Feb. 2001

DOI:10.1007/s007790170019.
[11] B. Schilit, N. Adams, and R. Want, “Context-Aware

Computing Applications,” in 1994 First Workshop on

Mobile Computing Systems and Applications, 1994, pp. 85–
90 DOI:10.1109/WMCSA.1994.16.

[12] O. Flores and L. Rayle, “How cities use regulation for

innovation: the case of Uber, Lyft and Sidecar in San
Francisco,” Transp. Res. Procedia, vol. 25, pp. 3756–3768,

2017 DOI:10.1016/j.trpro.2017.05.232.

[13] R. Law, G. Li, D. K. C. Fong, and X. Han, “Tourism
demand forecasting: A deep learning approach,” Ann. Tour.

Res., vol. 75, pp. 410–423, Mar. 2019

DOI:10.1016/j.annals.2019.01.014.
[14] P. A. Rauschnabel, A. Rossmann, and M. C. tom Dieck,

“An adoption framework for mobile augmented reality

games: The case of Pokémon Go,” Comput. Human Behav.,
vol. 76, pp. 276–286, Nov. 2017

DOI:10.1016/j.chb.2017.07.030.

[15] S. Thakur, “Personalization for Google Now,” in
Proceedings of the 10th ACM Conference on Recommender

Systems, 2016, pp. 3–3 DOI:10.1145/2959100.2959192.

[16] D. Li, X. Chen, Z. Zhang, and K. Huang, “Learning Deep
Context-Aware Features over Body and Latent Parts for

Person Re-identification,” in 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 7398–7407 DOI:10.1109/CVPR.2017.782.

[17] V. Kepuska and G. Bohouta, “Next-generation of virtual

personal assistants (Microsoft Cortana, Apple Siri, Amazon
Alexa and Google Home),” in 2018 IEEE 8th Annual

Computing and Communication Workshop and Conference

(CCWC), 2018, pp. 99–103
DOI:10.1109/CCWC.2018.8301638.

P1 P2 P3 A1 A2

P1 58 8 2 7 1

P2 7 39 9 4 5

P3 0 6 45 5 7

A1 8 5 4 40 1

A2 0 6 3 4 51

Overall Accuracy : 71,69%

Reference

P
re

d
ic

ti
o

n

29

F. Colace et al. / Journal of Visual Language and Computing (2020) 23-30

[18] R. Logesh and V. Subramaniyaswamy, “Exploring Hybrid

Recommender Systems for Personalized Travel
Applications,” 2019, pp. 535–544 DOI:10.1007/978-981-

13-0617-4_52.

[19] J. Lu, D. Wu, M. Mao, W. Wang, and G. Zhang,
“Recommender system application developments: A

survey,” Decis. Support Syst., vol. 74, pp. 12–32, Jun. 2015

DOI:10.1016/j.dss.2015.03.008.
[20] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C.

Efstratiou, “Developing a context-aware electronic tourist

guide,” in Proceedings of the SIGCHI conference on
Human factors in computing systems - CHI ’00, 2000, pp.

17–24 DOI:10.1145/332040.332047.

[21] D. Gavalas, C. Konstantopoulos, K. Mastakas, and G.
Pantziou, “Mobile recommender systems in tourism,” J.

Netw. Comput. Appl., vol. 39, pp. 319–333, Mar. 2014

DOI:10.1016/j.jnca.2013.04.006.
[22] F. Colace, M. De Santo, S. Lemma, M. Lombardi, A. Rossi,

A. Santoriello, A. Terribile, and M. Vigorito, “How to

Describe Cultural Heritage Resources in the Web 2.0 Era?,”

in Proceedings - 11th International Conference on Signal-
Image Technology and Internet-Based Systems, SITIS

2015, 2016 DOI:10.1109/SITIS.2015.50.

[23] M. Casillo, F. Clarizia, G. D’Aniello, M. De Santo, M.
Lombardi, and D. Santaniello, “CHAT-Bot: a Cultural

Heritage Aware Teller-Bot for supporting touristic

experiences,” Pattern Recognit. Lett., vol. 131, pp. 234–
243, Jan. 2020 DOI:10.1016/j.patrec.2020.01.003.

[24] P. G. Raverdy, O. Riva, A. De La Chapelle, R. Chibout, and

V. Issarny, “Efficient context-aware service discovery in
multi-protocol pervasive environments,” in Proceedings -

IEEE International Conference on Mobile Data

Management, 2006 DOI:10.1109/MDM.2006.78.
[25] M. Chang, G. D’Aniello, M. Gaeta, F. Orciuoli, D.

Sampson, and C. Simonelli, “Building Ontology-Driven

Tutoring Models for Intelligent Tutoring Systems Using
Data Mining,” IEEE Access, vol. 8, pp. 48151–48162, 2020

DOI:10.1109/ACCESS.2020.2979281.

30

C. Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

DOI reference number: 10.18293/JVLC2020N2-010

ViBERT: Visual Behavior Regression Testing

Chunying Zhaoa,*, Cong Chenb, Kang Zhangc and Jun Kongd

aSchool of Computer Sciences, Western Illinois University, USA
bIndependent Scholar
cDepartment of Computer Science, The University of Texas at Dallas, USA
dDepartment of Computer Science, North Dakota State University, USA
__

A R T I C L E I N F O

Article History:
Submitted 12.1.2020
Revised 12.7.2020
Second Revision 12.9.2020
Accepted 12.18.2020

Keywords:
Software Visualization
Program Comprehension
Behavior Regression Testing

A B S T R A C T

Regression testing is a type of software testing that aims at identifying faults caused by code changes.
Regression testing is important especially during software evolution and maintenance. As developers
integrate programs or make updates to a software system, they need to make sure the changes do not
adversely affect other parts of the system. Using dynamic analysis, behavioral regression testing
(BERT) is one of the techniques proposed to solve the problem by re-executing test cases that target
the affected area. It compares the behavior of a program before and after the changes upon certain test
cases. This paper proposes Visual BEhavioral Regression Testing (ViBERT), a visualization approach
to comparing the behavioral differences between the new and old versions of a program in regression
testing. We build a prototype called SoftLink, a visual environment that shows correlation/difference
between two versions of a program behavior. SoftLink displays call graphs of two executions on angled
parallel planes in a 3D space, and constructs correlations between them. It provides developers with
an intuitive interpretation of the testing results. A case study is presented.

 © 2020 KSI Research

1. Introduction

Software visualization is defined as “the use of the
crafts of typography, graphic design, animation and
cinematography with modern human computer
interaction and computer graphics technology to
facilitate both the human understanding and effective
use of computer software” [38]. Visual clues such as
color, shape, and metaphors ease the cognitive load of
understanding software systems [7][40]. Numerous
research has been proposed and various tools have been
built to visualize different aspects of software systems,
such as static program structures [11][17][21], dynamic
program executions [8][14][16][29], software
evolution[6][9], and debugging results [12].

Regression testing is an important type of software
testing. During a software development and

maintenance process, software may go through many
changes due to system integration or software updates.
Each change may introduce unwanted faults to
software. Regression testing re-executes existing test
cases after the source code is changed in order to
determine whether the modified version has introduced
regression faults into the previous working version [26].
Regression testing techniques heavily rely on the
quality and sufficiency of test cases. Testers have to
compromise between making thorough testing and
lowering the cost. Numerous testing selection and
prioritization approaches have been proposed
[10][25][26][31][32][33].

Behavioral regression testing (BERT) [28][37]
addresses this dilemma by identifying behavioral
differences between two versions of a program through
dynamic analysis. Since two consecutive revisions of a
program usually do not differ significantly, BERT can
reduce the number of test cases needed while achieving
promising results. Behavioral regression testing relies
on comparing the behavioral differences between two
versions of a program through dynamic analysis to
identify unforeseen side effects.

Journal of Visual Language and Computing

*Corresponding author
Email address: c-zhao@wiu.edu (Chunying Zhao)
congchenutd@gmail.com (Cong Chen)
kzhang@utdallas.edu (Kang Zhang)
jun.kong@ndsu.edu (Jun Kong)

journal homepage: www.ksiresearch.org/jvlc/

31

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

Inspecting the differences between versions of
program executions is tedious and error prone. To
strengthen the effectiveness of BERT, this paper
proposes Visual BEhavioral Regression Testing
(ViBERT), a visual approach for comparing program
behaviors in regression testing. We have built a semi-
automatic tool called Softlink. It is a visual environment
that displays and compares two or more program
executions in a 3D space. It provides multiple
viewpoints and directly shows the correlations between
execution traces. The novelty of our approach is that it
not only visually shows the differences and
commonalities of two consecutive executions, but also
provides a mental image of the location of the
behavioral differences within the context of method
calls. Our work enhances BERT with a visual
representation. To our best knowledge, no studies have
been conducted on comparing execution traces using
3D visualization in regression testing.

The rest of the paper is organized as follows. Section
2 illustrates a motivating example. Section 3 presents
the overview of the approach. Section 4 describes how
the execution traces are collected and abstracted.
Section 5 shows the construction of SoftLink. Section 6
explains a case study and analyzes the results. Related
work is reviewed in Section 7. Section 8 concludes the
paper and presents our future work.

2. A Motivating Example

In this section, we present a motivating example to
show how visualization can enhance BERT. The class
Money is a Java package of JUnit4 library illustrating
how to write unit tests with Junit [5]. As shown in
Figure 1, Money.equals() is a method of Money that
determines whether two monies are equal or not.

public boolean equals(Object anObject) {
 if (isZero())
 if (anObject instanceof IMoney)
 return ((IMoney)anObject).isZero();
 if (anObject instanceof Money) {
 Money aMoney = (Money)anObject;
 return aMoney.currency().equals(currency())
&& amount() == aMoney.amount();
 }
 return false;
}

Figure 1: Original version of Money.equals().

Figure 2 shows the JUnit test cases for testing the
method Money.equals().

public void testMoneyEquals() {

01 assertTrue (!f12CHF.equals(null));
 Money equalMoney = new Money(12, "CHF");
02 assertEquals (f12CHF, f12CHF);
03 assertEquals (f12CHF, equalMoney);
04 assertEquals (f12CHF.hashCode(),
 equalMoney.hashCode());
05 assertTrue (!f12CHF.equals(f14CHF));
}

Figure 2: Test cases in Money for Money.equals().

We deliberately remove the statement
aMoney.currency().equals(currency()) && as shown in
Figure 3, simulating a situation that a developer changes
the code but introduces an error: the program omits
checking currency when it compares two monies.

public boolean equals(Object anObject) {
 if (isZero())
 if (anObject instanceof IMoney)
 return ((IMoney)anObject).isZero();
 if (anObject instanceof Money) {
 Money aMoney = (Money)anObject;
 return aMoney.currency().equals(currency())
&& amount() == aMoney.amount();
 }
 return false;
}

Figure 3: Modified version of Money.equals().

After running the test on the modified version, JUnit
failed to catch the bug. The original Junit test cases are
not sufficient to catch the error because the monies in
the test cases have the same type of currency, such as
f12CHF and f14CHF.

By visually comparing the runtime behaviors of two
versions of the program, however, developers can easily
identify the behavioral variations. Figure 4 correlates
the behavior of two versions of the program on two 2D
planes. There are observable differences in the visual
presentation. The red circles drawn by hands on the left
plane indicate the method invocations (currency())
executed in the original code but not executed in the
modified version. With this visual hint, developers can
easily locate the code affected by the modification and
further check whether these behavioral variations are
caused by errors or intended modifications. To further
illustrate our approach, a case study has been conducted
on an open-source program in Section 6. The initial
results provide shows that our approach reveals the
behavioral variations of the systems under study with a
visual presentation.

32

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

Figure 4: Visual representation of the Money executions. The left plane presents the original version, and the right one
denotes the modified version. The purple correlations lines show the mapping between these two executions.

3. Visual Behavioral Regression Testing
(ViBERT)

3.1 Approach Overview

Behavioral regression testing (BERT) has been used
as an effective technique to identify behavioral
differences between two versions of a program through
dynamic analysis. Since two consecutive revisions of a
program usually do not differ significantly, BERT can
greatly reduce the number of test cases needed while
achieving promising results. BERT typically works as
follows [28]:

1) Analyze the changes between two versions and
automatically generate a large number of test cases
that cover the changed parts of the code.

2) Run the generated test cases on the old and new
versions of the code and identify differences in the
tests’ outputs.

3) Analyze the identified differences and presenting
them to the developer.

BERT analyzes behavioral differences by comparing
the program outcomes. SoftLink complements BERT
by visualizing behavioral variations. SoftLink can work
seamlessly with existing BERT tools, and display the
correlations between consecutive versions. As an
enhancement to BERT, ViBERT works in the following
steps:
1) Insert AspectJ instrumentations to the test suite

automatically generated in Step 1 of BERT that
focuses on the changed parts of the program.

2) Run Step 2 of BERT and generate traces for the two
executions to be compared.

3) Use SoftLink to visualize the correlations between

two versions of program executions and highlight
their differences.

3.2 Design Characteristics

As a software visualization tool, SoftLink is
specifically tailored to correlation visualization.
SoftLink visualizes abstracted call graphs on 2D planes
in a 3D space. SoftLink takes advantage of the benefits
of angled and paralleled views. As the viewpoint is
changed, the arrangements of planes can be
dynamically updated accordingly, in a similar fashion
as a camera model. Planes with corresponding
correlations interesting to the user always face the user
as depicted in Figure 5.

Figure 5: Auto-orienting views.

We design the visual features of SoftLink following
the general functional requirements proposed by Kienle
and Müller [23]:

 Views (linked static views and dynamically
synchronized views): SoftLink incorporates three
views: a 3D correlation view, a modulation view,
and a source code view. These views are linked
such that the change of one view automatically
triggers the changes of the others. Moreover, these
views, especially the 3D correlation view, are

X

Z

Y X

Z

Y

33

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

dynamically synchronized with the underlying
data.

 Abstraction: To effectively visualize complex
software systems, a visualization tool should
support adjustable granularities (i.e. abstraction
levels) and provide sufficiently detailed
information on demand. We use a multi-level
abstraction on execution traces to enable in-dept
exploration of program. In SoftLink, nested
method calls can be folded or unfolded
corresponding to the change of the abstraction
level.

 Search and Code Proximity: Finding text strings
in the source code corresponding to objects in the
visual representation is considered “absolutely
essential” [23]. SoftLink provides a query function
with a search bar, where users can easily locate
source code to their interests.

 Automatic Layout: SoftLink uses a multi-plane
presentation to visualize multiple executions. It
automatically displays execution planes in the 3D
space. Planes are dynamically angled towards the
user so that both individual executions and their
correlations have the best exposure.

 History/Undo: SoftLink has an interactive
interface that allows the user to click on visual
objects while navigating in the 3D space.
Iteratively, upon each click, a new nested plane
visualizing the detailed information is popped up.
All the upper-level planes are kept on the screen to
show the browsing history.

4. Execution Traces

4.1 Execution Trace Collection

Obtaining execution traces is the first step to correlate
executions. We choose AspectJ[2], a Java
implementation of aspect-oriented programming, to
intercept program execution metadata, because it can
non-intrusively extract runtime traces with a high level
of flexibility and expressiveness.

Using the following aspect in Figure 6, we record
each method call’s signature along with the name of the
object it belongs to and the time the program enters and
leaves the method.
public aspect Trace {
 pointcut allCalls() : execution(* *.*(..));
 before() : allCalls() {
 String signature =
thisJoinPointStaticPart.getSignature().toShortString();
 if(!signature.isEmpty()) {
 String log = "-> "+ signature+ "$" +
Thread.currentThread().getName()+ "*" +
System.currentTimeMillis() + "$";
 System.out.println(log);
 }
 }

 after() : allCalls() {
 String signature =
thisJoinPointStaticPart.getSignature().toShortString();
 if(!signature.isEmpty()) {
 String log = "<- "+ signature+ "$" +
Thread.currentThread().getName()+ "*" +
System.currentTimeMillis() + "$";

 System.out.println(log);
 }
 }
}

Figure 6: Definition of Aspect

The plain-text trace log captured by this aspect is then
imported to SoftLink, and automatically transformed to
call graphs specified in GraphML [3], an XML-based
graph presentation. In Softlink, we enhance our
previous work on program abstraction [43] and built an
Abstracer to perform such transformation.

4.2 Execution Trace Representation and
Abstraction

Execution traces need to be properly represented and
abstracted before being analyzed as otherwise the user
can be misled by partial information or overwhelmed by
too much trivial information. Proper abstraction at
various granularities makes it possible to display a large
volume of program data on limited visual space. When
comparing program executions, we identify equivalent
substructures in two abstracted call graphs. We
represent the call graph G(N,E) in a tree structure that
consists of multiple caller-callee chains built from the
GraphML runtime trace.

Definition 1: A call graph G(N,E) is a directed node-
link graph, where the set of nodes N denote methods and
the set of edges E represent method invocations.

Each edge directs from a caller to a callee. Each
method invocation is annotated with two parameters:
the depth and the length of the call chain. The depth here
refers to the depth of the call chain through which we
adjust the granularity of the visualization. The length of
a call chain is defined as the number of nodes in the path
from the root to the leaf in a call graph, which is used to
prune short call chains in Abstracer. Each directed edge
is annotated with the number of method call repetitions.
For instance, there are three call chains in the call graph
of Figure 7: a-b, a-c-d, and a-c-e. The lengths of each
call chain are 2, 3, and 3, respectively. The depth of
each method is as follows: depth(a) = 1, depth(b) =

 a
 b

 c
 d

 e

Figure 7: An example for abstraction

34

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

depth(c) = 2, depth(d) = depth(e) = 3.

Abstracer, the abstraction engine integrated into
SoftLink, is used to remove less significant information
not to be shown in the graphical representation, such as
method calls that contribute little to the comprehension
of program behavior. We consider three criteria for
execution abstraction:

 Continuous repetitions. Continuously repeated
method invocations can be collapsed to one
occurrence. Such repetitions mostly manifest
themselves as loops. For instance, in a sequence of
method calls EABCABCF (a letter represents a
method call), the call sequence ABC is considered
duplicated. Thus, only one occurrence of ABC is
shown in the call graph. We can label the
corresponding edge in the call graph with the
number of repetitions. Noncontiguous repetitions
are not collapsed because they may belong to
different abstraction levels.

 Depth of methods in a call chain. This type of
abstraction relies on the depth threshold depth (an
integer specified by the user). Methods whose
nesting depths in the call chain are deeper than this
threshold can be collapsed. For instance, given
depth =3, the methods with a depth of 4 or more are
collapsed, and not shown in the abstracted
scenario. Low-level methods provide detailed

information for high-level abstract events and can
be unfolded if the user lowers the abstraction level.

 Short call chains. A long call chain including
more method invocations may represent a
significant function of a program. SoftLink uses
parameter length as a threshold to specify the
minimum length of call chains. Method
invocations with call chains shorter than length are
pruned. SoftLink abstracts the call graph by
traversing it and collapse methods according to the
customizable parameters depth and length.

5. SOFTLINK

5.1 Overview

Figure 8 shows the interface of SoftLink that includes
three views: a 3D correlation view, a modulation view,
and a source code view. The controls of SoftLink are on
the menu bar. The user can use the file menu to import
trace logs and specify the number of executions to be
correlated. The action menu includes commands for
specifying trace abstraction levels and constructing
correlations. SoftLink first loads the selected plain-text
trace files and transforms the files into call graphs in
GraphML. It trims the call graphs based on the
abstraction parameters set by the user. Call graphs are
displayed on individual 2D planes, similar to sequence

Figure 8: Three views of SoftLink.

3D correlation view

Source code view

Modulation view

35

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

diagrams. Then, the correlations are visualized in the
3D correlation view. The 3D scene is automatically
rendered when the user changes the abstraction level.

5.2 Views in SoftLink

The 3D correlation view is built using Java3D. Each
brown sphere represents an object. Green spheres
represent methods. Horizontal green lines indicate the
calling relationship between methods. Purple lines
represent the correlations between two executions.
These colors are selected to achieve some contrast
against the background. This 3D scene provides users
with multiple viewpoints to observe the relationship
between executions. Users can choose to observe the
differences or commonalities.

The modulation view shows the hierarchical
packaging structure of the program in a force-directed
layout using the E-spring Algorithm [24]. High-level
organizations of system modules represent the
composition of a system and are commonly visualized
using the tree structure in a node-link graphical format.
Each sub-package is a child node of its parent package,
while tree leaves represent files. This modulation view
gives developers an overview of the program structure.

The source code view provides a fast access to
methods in the source file corresponding to the visual

entity that the user is interested in. Having spotted
desired information in the 3D visual representation, the
user might need to check the corresponding source code.
The source code view of SoftLink is synchronized with
the visual representation in the 3D correlation view by
highlighting the queried method in red. The file path of
the searched method is shown in the status bar in the
source code view.

5.3 Iterative Multi-level Nested Visualization

5.3.1 Zooming and Rotatable Scene

SoftLink provides efficient interaction and navigation
capabilities. In the current implementation, mouse is
used for picking and rotating individual planes and
visual objects in the 3D correlation view. SoftLink
allows the user to move or rotate each single plane to
any angle around any axis in 3D space. The keyboard is
used to control the entire 3D scene, such as zooming,
rotating, and moving the user’s viewpoint. To provide
customizable views, when the viewpoint moves, each
individual plane in the scene can be adjusted
accordingly to the viewpoint.

5.3.2 Iterative Multi-level Nested Visualization

Program execution is hard to visualize if all the
method invocations need to be displayed. Even if only
a portion of a software system is executed, the collected

POPUP PLANE

Figure 9: Visual representation of correlations between two executions.

OBJECT

CORRELATION

METHOD CALL

36

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

traces can be millions of lines, making it
incomprehensible. To address this limitation, SoftLink
utilizes multi-level abstraction and iterative drill-down
visualization as in Figure 9. When the user clicks a
visual object representing a method, the nested
interactions within that method are shown in a popup
plane attached to the clicked method. Iteratively, the
visual objects on the newly popped plane can also be
unfolded upon the user’s click. By drilling down
through multiple planes, the user can get more detailed
information. This capability is particularly suitable for
a system equipped with an eye-tracker [22].

6. Case Study

We applied ViBERT on an industrial software
package, Joda-Time [4], a Java date and time library.
Joda-Time 1.6.2 has about 4615 classes in the source
code, and 4080 classes in the testing code. We select a
number of real bugs detected and fixed in the
development process of Joda-Time.

Both BERT and ViBERT focus on the changes
between two adjacent revisions, we select two revisions
of Joda-Time to simulate the regression testing.
Suppose revision ri fixes a bug in revision rj, we can
interpret that revision rj introduces the bug in revision
ri, and use this bug to simulate a real regression fault.
We apply ViBERT to identify the regression faults in
the changes between revisions of the program.

The Subversion repository[1] of Joda-Time contains
about 1610 revisions. We search the history for the
revisions that have fixed bugs in previous revisions. 156
version pairs <ri, rj> are found, where revision ri fixes
certain bugs in revision rj. Finding regression faults in a
software’s history is time consuming, requiring a
manual process:

(1) Search the revision history for a bug that has been
fixed.

(2) Locate the revision and the source code where the
bug first appears.

(3) Examine whether the interface of the source code
has been changed between the revision that introduces
the bug and the revision before it. If the interface is not
changed, then the bug is considered a regression fault
that was introduced by the new revision.

The selected revision pair is <r1576, r1577>.
Revision r1577 fixes a bug in the method
AbstractDuration.toString() in revision r1576. This
method produces wrong output for negative inputs.
Putting these two revisions in a regression testing
setting, we take revision r1577 as the old version
without the bug, and revision r1576 as the new version
that introduces bugs.

To catch the bug using regression testing, developers
first study the changes the new version has made to the
source code, and then create test cases targeting the
changes. A test suite containing nine JUnit test cases for
the method AbstractDuration.toString() is defined as

shown in Figure 10:

public void testToString() {
01 assertEquals("PT0S",

 new Duration(0L).toString());
02 assertEquals("PT10S",

 new Duration(10000L).toString());
03 assertEquals("PT1S",

 new Duration(1000L).toString());
04 assertEquals("PT12.345S",

 new Duration(12345L).toString());
05 assertEquals("PT-12.345S",

 new Duration(-12345L).toString());
06 assertEquals("PT-1.123S",

 new Duration(-1123L).toString());
07 assertEquals("PT-0.123S",

 new Duration(-123L).toString());
08 assertEquals("PT-0.012S",

 new Duration(-12L).toString());
09 assertEquals("PT-0.001S",

 new Duration(-1L).toString());
}
Figure 10: Test cases in Joda-Time for Duration.toString().

We first run the existing JUnit test suite on the new
version of the program, the test suspends at test case 07,
indicating that the actual output is not expected. By
observing the changes that the new version has made to
the source code, we can conclude that the program
behavior starts to differ when the length of the output is
greater than 8 (or 7 if the output is a positive number).
In the given test suite, however, starting from test case
04, the lengths of the expected outputs are all greater
than 8. The program actually behaves differently since
test case 04. Therefore, although running the existing
test suite can eventually capture the bug, it could have
revealed the change earlier (from test case 04 instead of
test case 07).

By exploring the behavioral variations of these two
revisions, ViBERT intends to detect this potential
problem, and alerts developers with visual hints. We
run the test cases on both versions and compare their
differences. As an enhancement to behavioral
regression testing, we use visual representations to
show behavioral difference. We obtain the execution
traces by embedding AspectJ instrumentations into
JUnit testing code. Then, ViBERT visualizes the
correlations between the two executions. Figure 11
shows the result in SoftLink. The left plane represents
revision r1577, and the right one represents r1576. The
numbers correspond to the test cases in Figure 10.

The left plane successfully runs all the test cases. The
right plane shows only 7 test cases, because the test
stops at test case 07. We notice that since test case 04,
two executions exhibit different behaviors due to the
changes to the code. The method calls to
“appendPaddedInteger” in the right panel (revision:
r1576) do not exist in the left panel (revision: r1577).
Via visual inspection, developers can identify the

37

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

influence of the changes to the program behavior, and
further analyze whether those changes introduce new
errors.

As shown in the case study, ViBERT shows the
differences between two executions using visual
representations. It displays where are the differences
and the context of the differences in the execution. In
this experiment, we use one revision pair as one
example. Other revision pair can be compared in a
similar fashion. In software testing, there are many test
coverage criteria and metrics. It is worthwhile to note
that as Behavior Regression Testing focuses only on
comparing method invocations in program executions,
not all types of program errors can be identified by
behavior regression testing.

7. Related Work

7.1 Program Behavior Comprehension

Numerous researchers have focused on visualizing
program executions. Comprehensive surveys of
dynamic analysis and software visualization [15][35]
are available. Traditionally program behaviors are
represented as node-link diagrams in a two-dimensional
space. Examples include UML sequence diagrams [10],
space-time diagrams, and call graphs [42].

Researchers utilize essential visual elements such as
color, shape, and a variety of visual layouts to represent
software information. Popular layouts include trees (e.g.
tree map [34][39]), tables, graphs and diagrams.

TraceVis [30] visualizes executed program instructions
by sequentially displaying microprocessor instructions
in a 2D plane. It supports queries, different levels of
zooming, and annotations on colorful blocks.
GAMMATELLA [27] visualizes executions in three
levels in 2D: a file level represented in a miniaturized
view, a system level using a tree map, and a statement
level. MetropoIJS [34] visualizes static and dynamic
aspects of largescale program written in Javascript with
Treemaps. These approaches, however, focus on the
visualization of single execution scenario and do not
support a comparison of different program executions.
Our study complements previous research by applying
existing successful layouts on individual 2D planes in
SoftLink.

Apart from 2D visualization, more 3D software
visualization environments are built through virtual
realities. Metaphors such as cities were used to
represent software systems [11][36]. Fittkau et al. [20]
designed controlled experiments to compare the trace
visualization tools EXTRAVIS [14] and ExplorViz in
program comprehension tasks. EXTRAVIS uses
circular bundling and a massive sequence view, and
ExplorViz uses the city metaphors. Scalability in
software visualization are commonly addressed by
using multiple levels of abstraction [19][41].

7.2 Regression Testing and Visualization

Regression testing aims at uncovering new errors
after changes are made to a software system. The
increasing size of software systems makes thorough

(01)

(02)

(03)

(04)

(05)

(06)

(07)

(08)

(09)

(01)

(02)

(03)

(04)

(05)

(06)

(07)

Figure 11: ViBERT on revision pair <r1577, r1576> of Joda-Time. The left plane visualizes revision r1577, and the right one presents r1576.

38

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

regression testing a costly endeavor. In addition to
traditional test selection and prioritization techniques,
researchers have applied visual analytics to regression
testing. Engström et al. [18] utilize a heat map (mosaic
visualization) to show test history and test covered
items. Chen and Ince [13] design a tabular visual
representation of regression test results. Different colors
are assigned to the blocks on the table and fisheye
enlarges the rows of users’ interest.

BERT [28][37] is a differential testing technique that
identifies behavioral differences between two versions
of a program through automatically generated test cases
and dynamic analysis. Different from previous testing
work, ViBERT compares dynamic program behavior
and complements the BERT technique with a visual
tool SoftLink.

8. Conclusion and Future work

Regression testing aims at identifying unnoticed
faults caused by changes to software. Behavioral
regression testing uses dynamic analysis to compare
new and old versions of a program in regression testing.
This paper has proposed ViBERT, a visual approach to
comparing program behavior. Specifically, we had built
a 3D environment that allows developers to view the
correlations and differences between two versions of
program executions. In contrast to other visualization
tools, our approach focuses on consecutive behavior
comparison. It helps users to interpret the behavioral
differences within the context of the executions.

Our future work is to conduct a usability study and
gather more feedbacks from users. We also plan to
integrate this environment with popular IDEs, such as
Eclipse and IntelliJ. More experiments on larger
software systems will also be conducted. Another
possible extension is that the viewpoint-oriented
representation can be enhanced with an eye tracker. The
position of the pupil in the eye-tracking controller
screen is mapped to that in the visual space. We can use
the eye tracker to capture the user’s visual focus, and as
the viewer’s focus moves, the orientations of planes will
be automatically updated accordingly.

References

[1] Apache Subversion. http://subversion.apache.org/

[2] AspectJ.https://www.eclipse.org/aspectj/

[3] GraphML. http://graphml.graphdrawing.org/

[4] Joda-Time. http://joda-time.sourceforge.net/

[5] JUnit. http://www.junit.org/

[6] Alexandru C. V., Proksch S., Behnamghader P. and Gall H. C.,
“Evo Clocks: Software Evolution at a Glance,” Working
Conference on Software Visualization (VISSOFT), 2019, pp.
12-22.

[7] Ball T. and Eick S. G., “Software Visualization in the Large”.
Computer, vol. 29,1996, pp. 33-43.

[8] Beck F., Siddiqui H. A., Bergel A. and Weiskopf D., “Method
Execution Reports: Generating Text and Visualization to
Describe Program Behavior”. IEEE Working Conference on
Software Visualization, 2017, pp. 1-10.

[9] Behnamghader P., Alfayez R., Srisopha K., and Boehm B.,
“Towards Better Understanding of Software Quality Evolution
through Commit-Impact Analysis”. IEEE International
Conference on Software Quality, Reliability and Security
(QRS), 2017, pp. 251-262.

[10] Briand L.C., Labiche Y., He S., “Automating Regression Test
Selection based on UML Designs”. Information and Software
Technology, Vol. 51, No.1, 2009, pp. 16-30.

[11] Capece N., Erra U., Romano S., and Scanniello G., “Visualising
a Software System as a City Through Virtual Reality”.
Augmented Reality, Virtual Reality, and Computer Graphics,
2017, pp. 319–327.

[12] Castro D. and Schots M., “Analysis of Test Log Information
through Interactive Visualizations”. International Conference
on Program Comprehension, 2018, pp. 156-166.

[13] Chen R. and Ince T., “Visualizing Regression Test Results”.
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=B6B
26126F10004A55199CC40E57E896D?doi=10.1.1.366.3623&
rep=rep1&type=pdf.

[14] Cornelissen B., Holten D., Zaidman A., Moonen L., Wijk J. J.
v., and Deursen A. V., “Understanding Execution Traces Using
Massive Sequence and Circular Bundle Views”. IEEE
International Conference on Program Comprehension, 2007, pp.
49-58.

[15] Cornelissen B., Zaidman A., Deursen A. V., and Moonen L., “A
Systematic Survey of Program Comprehension through
Dynamic Analysis”. IEEE transaction on Software engineering,
Vol 35, No. 5, 2009, pp. 684-702.

[16] Cornelissen B., Zaidman A., and Deursen A. V., “A Controlled
Experiment for Program Comprehension through Trace
Visualization”. IEEE Transactions on Software Engineering,
Vol.37, No.3, 2011, pp.341-355.

[17] Eick S. C., Steffen J. L. and Sumner, E. E., “Seesoft - a tool for
Visualizing Line Oriented Software Statistics”. IEEE
Transactions on Software Engineering, Vol. 18, No. 11,1992,
pp. 957-968.

[18] Engström E., Mantylä M., Runeson P. and Borg M.,
“Supporting Regression Test Scoping with Visual Analytics”.
IEEE 7th International Conference on Software Testing,
Verification and Validation, 2014, pp. 283-292.

[19] Feng Y., Dreef K., Jones J. A., and Deursen A. V., “Hierarchical
Abstraction of Execution Traces for Program Comprehension”.
International Conference on Program Comprehension, 2018, pp.
86-96.

[20] Fittkau F., Finke S., Hasselbring W. and Waller J., “Comparing
Trace Visualizations for Program Comprehension through
Controlled Experiments”. IEEE International Conference on
Program Comprehension, 2015, pp. 266-276.

[21] Lanza M. and Ducasse S., “Polymetric views - a lightweight
visual approach to reverse engineering”. IEEE Transactions on
Software Engineering, Sep. 2003, Vol. 29, No. 9, pp. 782–795.

[22] Jbara A. and Feitelson D. G., “How Programmers Read Regular
Code: A Controlled Experiment Using Eye Tracking”. IEEE
International Conference on Program Comprehension, 2015, pp.
244-254.

[23] Kienle H. M. and Müller H. A., “Requirements of Software
Visualization Tools: A Literature Survey”. 4th IEEE
International Workshop on Visualizing Software for
Understanding and Analysis, 2007, pp. 2-9.

[24] Kumar P., Zhang K., Wang Y., "Visualization of Clustered
Directed Acyclic Graphs without Node Overlapping". 12th
International Conference on Information Visualization, 2008,
pp. 38-43.

[25] Mostafa S., Wang X., Xie T., “PerfRanker: Prioritization of
Performance Regression Tests for Collection-intensive
Software”. International Symposium on Software Testing and
Analysis, 2017, pp. 23-34.

[26] Nardo D. D., Alshahwan N., Briand L. C., Labiche Y.,
“Coverage-based Regression Test Case Selection, Minimization
and Prioritization: a Case Study on an Industrial System”.

39

C.Zhao et al. / Journal of Visual Language and Computing (2020) 31-41

Software Testing, Verification, and Reliability, Vol 25, No.4,
2015, pp. 371-396.

[27] Orso A., Jones J. A., Harrold M. J., and Stasko J.,
“GAMMATELLA: Visualization of Program-execution Data
for Deployed Software”. 26th International Conference on
Software Engineering, pp. 699-700, 2004.

[28] Orso A. and Xie T., “BERT: BEhavioral Regression Testing”.
International Workshop on Dynamic Analysis, pp. 36-42, 2008.

[29] Reiss S. P., “Visual Representations of Executing Programs”.
Journal of Visual Languages and Computing, vol. 18, pp. 126-
148, 2007.

[30] Roberts J. and Zilles C., “TraceVis: An Execution Trace
Visualization Tool”. 1st Workshop on Modeling,
Benchmarking and Simulation, 2005, pp. 31-38.

[31] Rothermel G., Harrold M. J., “Analyzing Regression Test
Selection Techniques”. IEEE Transactions on Software
Engineering, Vol.22, No.8,1996, pp. 529-551.

[32] Rothermel G., Elbaum S. G., Malishevsky A. G., Kallakuri P.,
Qiu X., “On Test Suite Composition and Cost-effective
Regression Testing”. ACM Transaction on Software
Engineering and Methodology, Vol. 13, No.3, 2004, pp.277-
331.

[33] Rothermel G., “Improving Regression Testing in Continuous
Integration Development Environments”. keynote at
ESEC/SIGSOFT FSE 2018.

[34] Scarsbrook J. D., K.L. KO R., Rogers B., Brainbriage D.,
“MetropolJS: Visualizing and Debugging Large-Scale
JavaScript Program Structure with Treemaps”. International
Conference on Program Comprehension, 2018, pp.389-392.

[35] Teyseyre A. R. and Campo M. R., “An Overview of 3D
Software Visualization”. IEEE Transactions on Visualization
and Computer Graphics, Vol. 15, No. 1, 2009, pp. 87-105.

[36] Wettel R. and Lanza M., “Codecity: 3D Visualization of
Largescale Software”. Companion of 30th International
Conference on Software Engineering, 2008, pp. 921–922.

[37] Wei J., Orso A., and Xie T., “Automated Behavioral Regression
Testing”. 3rd International Conference on Software Testing,
Verification and Validation, 2010, pp. 137-146.

[38] Stasko J. T., Brown M. H., Domingue J. B., Price B. A.,
Software Visualization: Programming as a Multimedia
Experience, MIT Press, 1998.

[39] Yang Y.L., Zhang K., Wang J.R., and Nguyen Q.V., “Cabinet
Tree: An Orthogonal Enclosure Approach to Visualizing and
Exploring Big Data”. Journal of Big Data, Springer, 2:15,
December 2015.

[40] Zhang K., ed., Software Visualization - From Theory to
Practice. Boston: Kluwer Academic Publishers, 2003.

[41] Zhao C., Zhang K., Hao J., and Wong W. E., “Visualizing
Multiple Program Executions to Assist Behavior Verification”.
3rd IEEE International Conference on Secure Software
Integration and Reliability Improvement, 2009, pp. 113-122.

[42] Zhao C., Kong J. and Zhang K., “Program Behavior Discovery
and Verification: A Graph Grammar Approach”. IEEE
Transactions on Software Engineering, Vol. 36, No. 3, 2010, pp.
431-448.

[43] Zhao C., Zhang K., and Lei Y., “Abstraction of Multiple
Executions of Object-oriented Programs”. ACM symposium on
Applied Computing, 2009, pp. 549-550.

40

41

Journal of

Visual Language and

Computing

Volume 2020, Number 2

	JVLC2020toc.pdf
	JVLC Editorial Board
	Journal Production Associate Editors

	Blank Page
	Blank Page
	paper08.pdf
	A B S T R A C T
	1. Introduction
	2. Related Work
	2.1 Service-Oriented Architecture (SOA)
	2.2 Monolithic vs. Microservice Architecture
	2.3 Software Development Automation (SDA)

	3. Time Critical Condition Design
	4. Experimental Tool
	References

	Blank Page

