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ABSTRACT
The effective design and delivery of assessments in a wide variety of evolving educational environ-
ments remains a challenging problem. Proposals have included the use of learning dashboards, peer
learning environments, and grading support systems; these embrace visualisations to summarise and
communicate results. In an on-going project, the investigation of graph based visualisation models for
assessment design and delivery has yielded promising results. Here, an alternative graph foundation,
a two-weighted hypergraph, is considered to represent assessment results and their explicit mapping
to one or more learning objective topics. The visualisation approach considers the hypergraph as a
collection of levels; the content of these levels can be customized (i.e., filtered) and presented accord-
ing to user preferences. A case study on generating hypergraph models using commonly available
assessment data and a flexible visualisation approach using historical data from an introductory pro-
gramming course is presented.

© 2019 KSI Research

1. Introduction
Assessment remains a core educational activity, even as

environments continue to evolve beyond the traditional class-
room. Blended, flipped, and massive open on-line courses
are supported by a wide range of assessment tools and tech-
niques [10]. Instructors have many options for assessing
the required topics of a course (e.g., CS 100 Introduction
to Computer Science) in a particular offering (e.g., CS 100
Term 1 2019 Section 001) [12]. More traditional material
includes homework assignments and examinations; emerg-
ing material includes question repositories and games. This
rich variety also introduces new challenges to educational
stakeholders (e.g., students, instructors, administrators, ed-

In this work, a topic dependency model for educational assessment
is introduced. The model, based on a hypergraph foundation, is visualised
with a multilevel approach that supports user selected filtering options for
achievements and topic coverage.
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ucation researchers) with respect to evaluating the coverage
of assessment material and communicating achievements.
Students may find it challenging to infer their strengths and
weaknesses with respect to the topics and their relationships,
which can impede their studies. Outside a classroom pro-
gram administrators, course designers, course co-ordinators,
and researchers also face challenges. Administrators find it
challenging to compare the content and difficulty of formal
assessments as well as students’ outcomes across different
offerings of a course. Course designers and co-ordinators
find it challenging to ensure the required topics and their re-
lationships (e.g. questions with a combination of topics T1,
T2 and T3) have been assessed. Educational researchers needto compare the achievement results between control and ex-
perimental groups.

To enable different educational stakeholders to explore,
understand, and communicate insights from educational data
sets, a newfield known as “LearningDashboards" has emerged
[20, 2, 18]. These dashboards employ data sets on students’
engagement and performance that are commonly available
in educational settings to provide interactive visualisation
widgets and techniques in the educational context. A vari-
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ety of traditional plots and charts have been adopted in these
dashboards (e.g., pie, box, histogram, radial) to visualise the
achievements of students. The research typically considers
independent (stand-alone) topics. Additional discussion on
the related work in this area is presented in Section 3.

As part of an on-going research project, the authors of
this paper have explored a collection of topic dependency
models (TDMs) for assessment in which the relationships
among topics are considered [14, 8]. The TDMs use a two-
weighted undirected graphs foundation to formally represent
and visualise a wide variety of assessment data for one or
more topics (i.e., topics and their dependency relationship)
to meet the needs of diverse stakeholders. The collection
consists of a course reference model (to establish the topics
and dependencies covered in a course), in addition to class-
room models, both static and dynamic. As the work pre-
sented in this article leverages these results, a background
section on the original TDM collection is presented in Sec-
tion 2.

In this work, an alternative graph foundation is explored
for the TDM collection, a two weighted hypergraph, referred
to as TDMMH ; the current results focus on static class-
room models. This graph can explicitly visualise the n-ary
topic coverage and achievement inherent in questions (i.e.,
a question can assess 1:N topics). However, visualisations
of their more general n-ary hyperedge relationships may be
more difficult to understand in the broader community. Here,
a method to generate TDMMH using commonly available
assessment data and a flexible approach to address the com-
plexity of the graphs are presented. The visualisation is a
multilevel filtering approach that considers the hypergraph
as a collection of levels. The levels partition a graph based
on the number of nodes associated with the hyperedges. The
content of these levels can be customised (i.e., filtered) and
presented according to user preferences. For example, in-
stead of being presented with the complete hypergraph, the
users can select topics, achievement or number of responses
(e.g., maximum, minimum, range of values) to view part of
it. In addition, the visualisations of the levels can be pre-
sented in either a cumulative or accumulative mode. The
new models are presented using an illustrative example. In
addition, a case study that illustrates how TDMMH can be
applied to provide insight for instructors is presented. This
study uses historical data from a first-year undergraduate level
offering of a course on programming and engineering design
at The University of British Columbia. The case study in-
cludes a comparison of the use of the newly proposed TDMMHwith the original TDM approach.

2. Background: The Original TDM Collection
A collection of TDMs has been presented in the authors’

previouswork [14, 8] to address some of the challenges stake-
holders face that relate to the design, delivery and analysis
of assessments. An overview of the collection is presented
in Figure 1. The TDM collection is revisited in this section
as it provides a foundation for the current work.

2.1. Scenarios of Use
The wide variety of stakeholders interacting with these

models (e.g., students, instructors, and so on) are shown at
the top of the figure; they have roles inside and outside of
the classroom.

The users can select the assessment data of interest. For
example, they may need to explore data from formative (e.g.
assignments) or summative (e.g., examinations) assessments;
the data can be from one or more classes (current or previ-
ous). The course data includes a specification of the course
topics that need to be assessed. The input assessment data
are shown on the left of Figure 1.

A preliminary scenario analysis has identified 40 ques-
tions for the stakeholders. For example, instructors interact
with the models to explore questions such as:

• What topics and their relationships do I need to as-
sess?

• What topics are covered each of the assessments?
• How well are the students performing on the topics?
• How well are the students performing compared to

other (current or previous) classes?
• Who in the class may be at risk of failing the course?
• How have all the topics and their relationships been

assessed?
• How much has the class improved over time on the

topics?
Here, scenarios of use include filtering by topic(s), or

constraints involving achievement or coverage. Additional
filters can be added in a straightforward way. Currently, the
scenarios focus on using the static models; the reference and
dynamicmodels for the TDMMH are planned in futurework.
Two examples, derived from the scenario analysis in [14],
are described below.
Topics. How are the students performing on a specific topic?
One or more topics of interest can be selected in order to
identify topics that may need additional attention. For ex-
ample, an instructor can select one of many topics covered
in a course; the levels are filtered to emphasize the topic(s)
of interest.
Achievements. What topics have poor achievement? A con-
straint for visualising a particular achievement level can be
selected. For example, an instructor can select to view the
minimum achievement scores over all topics in order to iden-
tify those that need additional attention; the levels are filtered
to emphasize the achievement scores of interest.

The users can choose to combine filters. In other words,
they can filter the visualisations based on one or more con-
straints such as selecting both a topic and an achievement
constraint, e.g.,the highest performance involving topic T1.The results are filtered on a level-by-level basis.

When visualising the filtered results, the user can also
choose to view the results in either the cumulative or accu-
mulative mode. In the accumulative mode, only the results
for one level are presented. In the cumulative mode, the re-

70



K. Cooper and H. Khosravi / Journal of Visual Language and Computing (2019) 69–82

Stakeholders

Input
Assessment

Data

Assignments 

…

Define the scope for course assessments
• used by all classes offered for the course
• topics and their dependencies covered
• historical levels of achievements

Topic Dependency Models

Course Assessment Reference Model 

Program
Administrator

Course
Designer

Course
Co-ordinator Instructor StudentEducational

Researcher

Classroom Assessment Visualisation Models
Static and Dynamic

e.g., Compare achievements for a student wrt
the class on a particular assignment.
Explore achievement trends for a student 
using all data available (formative and 
summative).

Labs

Practice
Problems

…

Quizzes

Exams

e.g., Evaluate coverage and achievement of required 
program learning objectives over courses. 

Promote consistency of classes taught by different 
instructors for a course.

Visualise selected assessment data at one 
point in time (static) or over time (dynamic)
• Individual achievements
• Class achievements
• Single or comparative (side-by-side)

Class data
• current/historical
• real/synthetic
• formative/summative

Course data

Course
Reference
Specification Dynamic Model – exploring trends over time

Static Model – comparing side-by-side 

• select visualization model to use • select assessment data to use

Figure 1: Original TDM model collection: two-weighted undirected graph foundation [14].

sults up to and including the current level of interest are pre-
sented.
2.2. Topic Dependency Models

Based on the requests from stakeholders, the input data
are selected and transformed into visual models. As illus-
trated in the main block of Figure 1, the TDM collection
consists of two kinds of models: Course Assessment Ref-
erence and Classroom Assessment Visualisation (static and
dynamic). The Reference model establishes and communi-
cates the required topics and their relationships for a course
(e.g., a CS1 course is an introductory programming course
covering variables, branching, loops, and so on). It provides
a common foundation for all sections of a course offered
over time (e.g., CS1 Section 001 Term 1 2019 Instructor A.
Smith). The reference model helps to ensure the consistent
coverage of topics by different instructors, clearly communi-
cate the scope of the topics to students, and support admin-
istrative activities related to monitoring learning objective
outcomes.

TheClassroomAssessmentVisualisationmodels present
assessment data within a class and support comparisons of
assessment data between classes at one point in time (static)
and over time (dynamic). The assessment data are selec-
tively visualised, e.g., for the whole class, individual stu-
dents, specific topics, and so on. For example, the user can

choose to visualise static models, in a side-by-side compar-
ison, for a specific assessment (e.g., Assignment 3) for all
of the students in two classes. Alternatively, the user can
choose to visualise dynamic models to explore the progres-
sion of a class over time.

The Reference and Classroom Assessment Visualisation
models share a common graph foundation: a two-weighted
undirected graph. The vertices represent topics in a course;
the edges represent assessment material (e.g., questions) that
address the topics the edges are related to. The weights are
reflected in the visualisation using a colour palette (achieve-
ment) and width (coverage). As the graphs can only repre-
sent edges with up to two vertices, questions involving three
or more topics must be redistributed in the models as combi-
nations, in order to visualise them. For example, a question
covering three topics (e.g., A, B, C) is redistributed with es-
timations into six relationships for visualisation: A,A; B,B;
C,C, A,B; A,C; and B,C.

3. Related Work
The development of TDMMH draws upon the literature

from Learning Dashboards and hypergraph based methods.
These are briefly presented in this section.
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3.1. Learning Dashboards
The learning analytics community continues to actively

investigate approaches that support the exploration of learn-
ing activities by different stakeholders. With the increase in
the use of educational technologies and the advancements in
the areas of learning analytics and educational data mining, a
new field, commonly known as “Learning Dashboards" has
emerged to help make sense of data sets in learning and ed-
ucation [20, 2, 18]. A variety of visualisations such as bar
charts [9], pie charts [23], histograms [16], box plots [1],
radar graphs [17], and skill meters [6] have been adopted to
show the achievements of students for independent (stand-
alone) topics. [20] presents a systematic literature review
on the use of learning dashboards. Based on the findings
of this literature review, the use of graph-based visualisa-
tions in learning dashboards has not received much atten-
tion. In addition, a number of studies provide strong ev-
idence that opening the model to learners, leading to the
notion of Open Learner Models (OLMs) [7], can be effec-
tive in helping students learn [3]. The OLMs commonly
use a set of individual topics as their underlying structure
for modeling learners’ knowledge state, which ignores re-
lationships among topics. An emerging new field applied
methods from process mining and sequential data mining to
educational data [4] to facilitate better understanding of the
educational process. Educational process mining methods
predominantly use graphs, but their main focus in on using
activity logs to visualise students’ learning process in terms
of the time, place, path, pace of learning activities.
3.2. Hypergraph Based Methods

Hypergraphs have been adopted as a foundation for data
analytics and visualisations in a wide variety of domains in-
cluding data warehousing, communication network analy-
sis, geospatial metadata, and cellular biology networks. To
support interactive queries in data warehousing systems, a
framework for developing dashboards called Dashboard-by-
example has been proposed [13]. This framework adopts
hypergraph-based techniques to transform dissimilar, het-
erogeneous data into a homogeneous knowledge space of
clusters and partitions. The framework is flexible, as the
hypergraph-guided data linkages support the exploration and
aggregation of data frommultiple perspectives. For the anal-
ysis of network traffic traces, available in massive commu-
nication logs, a hypergraph based visualisation is proposed
in [11]. The network traffic visualisation approach utilises a
frequent item setminingmethod to identify interesting traffic
patterns in the large amount of data. The patterns are visu-
alised as hypergraphs with explicit, multi-attribute relation-
ships. A framework to comprehensively address all of the
available geospatial metadata standards (i.e., documents) is
proposed in [19]. Geospatial metadata describe geographic
digital data resources such as earth imagery, geospatial databases
and catalogues, and Geographic Information System files.
The framework integrates hypergraphs and topic maps, rep-
resenting the elements and their dependency relationships.
The potential for adopting hypergraphs in the domain of cel-

lular biology is introduced in [15]; recently, for example,
[21] proposes a framework that adopts hypergraphs and as-
sociated hypergraphs to describe, analyse, and identifymetabolic
network alignments at the full genome level. These align-
ments are used to discover important similarities and differ-
ences between distinctmolecular networks: they revealmap-
pings between components (topological, biological functional)
across different networks.

4. Methodology
This section presents the problem definition, graph foun-

dation (hypergraph, level), analysis metrics, and an illustra-
tive example. The graph generation and visualisation algo-
rithm are presented in Section 5, using the example intro-
duced in this section. A case study demonstrating real life
examples of how TDMMH can practically be used is pre-
sented in Section 6.
4.1. Problem Definition

Based on the related work analysis, a modeling and vi-
sualisation approach based on hypergraphs for educational
assessment does not appear to be available at this time. The
TDMMH (static model) is introduced in this work to help
address this gap. More specifically, the research questions
are:

• RQ1. How can a two-weighted hypergraph be utilised
to model topics, achievements, and coverage in the ed-
ucational assessment problem domain?

• RQ2. How can the two-weighted hypergraph mod-
els representing assessment data be effectively visu-
alised?

• RQ3. How can established graph metrics be used to
quantitatively assess the visual complexity of the hy-
pergraph based visualisations of the models?

• RQ4. What are the strengths and limitations of the
TDMMH in comparison to the original TDM?

4.2. Hypergraph Foundation of the TDMMHIn this section, the formal definition for the two-weighted
hypergraph and the concept of a level are presented.
Definition 1. A two-weighted, undirected hypergraph G =
(V ,H), where V is the set of vertices representing the top-
ics, and H is the set of hyperedges. A hyperedge ℎ ∈ H is
represented as ℎ = (C, c1, c2), where C is the subset of the
vertices being connected, and c1 and c2 represent the two
weighted values for an edge. An edge involving only one
node represents a self-loop.

In this work, the nodes are used represent topics; the hy-
peredges represent the assessment material that covers the
topics. The weight c1 represents the number of learning ob-
jects that are tagged with the topics for the hyperedge; and
c2 represents the represents the performance (e.g., achieve-
ment) on these learning objects. A simple example of a
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Figure 2: Example of a two-weighted hypergraph: definition
and visualisation.

TDMMH visualisation is illustrated in Figure 2. There are
four topics in this example (A, B, C, and D); each topic is
represented by a node. Topic B and Topic C both have self
loops; Topic C is isolated which indicates the topic it repre-
sented is assessed on its own. For Topic B, the edge has a
dark pink colour and a wide width, reflecting the poor aver-
age performance (33%) on the questions answered and the
large number of responses. The hyperedge for Topic C is a
medium green colour and has a medium width; this repre-
sents the good average performance (75%) and a moderate
number of responses to questions. A 2-ary hyperedge exists
between Topics A and D. This edge is dark green and thin,
in representing the excellent performance (100%) on the re-
lated questions and a small number of responses. A 3-ary
hyperedge exists between Topics A, B, and D. This edge is
a brownish pink colour and has a moderate weight, which
represents the moderate average performance (50%) and a
moderate number of responses to questions on these three
topics.

The concept of a level is used in this work to support the
visualisation. For example, in the simple example given in
Figure 2, there are three levels. Level1 is a subset of the
hyperedges with one vertex (i.e., ℎ1, ℎ2), Level2 is a subsetof the hyperedges with two vertices (i.e., ℎ3), and Level3is a subset of the hyperedges with three vertices (i.e., ℎ4).More generally,Leveli is the subset of hyperedges involvingi vertices.
4.3. Analysis Metrics

Abasic collection of structuralmetrics has been selected,
which are well-defined for hypergraphs (e.g., [5, 24]). As
graphs are a special case of hypergraphs, the metrics can be
applied to both hypergraphs and graphs. They are used in
this work to help explore the complexity of the TDMMHvisualisations in Section 5. They are also applied in the com-
parative case study in Section 6 to compare and contrast the
original TDM with the TDMMH .

In the following definitions,G = (V ,H) is an undirected
hypergraph, v ∈ V , andℎ ∈ H . The order of the hypergraph

G is the cardinality of V, i.e., |V | = n. In other words, the
order of the graph is the number of vertices it has. The size
of the hypergraph G is the cardinality of H, i.e., |H| = m.
In other words, the size of the hypergraph is the number of
hyperedges it has.

Degree metrics can be considered at both the individual
node level and for a hypergraph as indicators of a graph’s
complexity. For an individual vertex the degree is the num-
ber of hyperedges (ingress or egress) the node is contained
in. A node in a graph, denoted G(v), can be contained in
one or more hyperedges. For a hyperedge (ℎj), j ∈ J that
contains the node v, the degree of that node is d(v) = |J |.
In Figure 2, for example, the d(Topic A) is two, as it is con-
tained in two hyperedges ℎ2 and ℎ3. The d(Topic B) is three,as the hyperedge ℎ1 contributes a count of two (egress and
ingress) and ℎ4 also contains the node.

Beyond the individual node degree computations, ad-
ditional degree metrics are considered at the graph level.
These include the total degree of G, denoted by dt(G) =
|H(v)|; the average degree of a graph is the total divided
by the order, i.e., dt(v)/|V |, or |H(v)|/|V |. In addition, the
maximal degree of a hypergraph G is denoted by Δ(G); the
minimal degree is denoted by �(G). For example, the aver-
age, maximal, and minimal degrees of Figure 2 are 2.25, 3,
and 2.
4.4. Illustrative Example

An example based on six students, three formative as-
signments (five questions per assignment), and six topics has
been defined by the authors. The following constraints are
considered for creating the illustrated example:

• The questions must span a range of one to four topics.
• Theremust be a range in the individual student achieve-

ments in the responses (low to high scores).
• There must be a range in the number of responses to

the questions.
• There must be a range in the average scores for the

questions.
• Assessments on groups of topics demonstrate a range

of achievements (very poor to very strong); one or
more questions address the groups of topics.

• The multilevel visualisation algorithm with a list of
filtering options (e.g., selected topic(s), achievement,
cumulative/accumulative mode) can be clearly illus-
trated.

Table 1 presents a sample data set meeting these con-
straints. As input to the TDMMH generation algorithm,
the data are formatted into two CSV files: (1) A student-
question-answer (SQA) file that contains the student identi-
fier, question identifier, and score (correct/incorrect), and (2)
a question-topic (QT) file that contains the question identi-
fier and topics (i.e., tags) it addresses.
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Q Topic List Student ID
S1 S2 S3 S4 S5 S6

Assignment 1
Q1 T1 - 1 - - 0 1
Q2 T3 1 1 1 1 1 1
Q3 T4 0 1 0 1 1 1
Q4 T1, T2 1 1 0 1 1 0
Q5 T1, T4 1 - - 0 1 0
Assignment 2
Q6 T4 0 0 1 0 0 1
Q7 T1, T4 - 0 1 1 0 0
Q8 T4, T5 0 1 0 0 0 1
Q9 T1, T4, T5 0 0 0 0 - 1
Q10 T1, T2 ,T4, T5 0 0 0 1 0 1
Assignment 3
Q11 T1, T4 1 - 0 1 - 1
Q12 T2, T6 0 0 0 0 0 0
Q13 T1, T2, T6 - - 1 1 - 1
Q14 T1, T2, T4, T5 - 0 1 0 0 1
Q15 T2, T4, T5, T6 - 0 0 1 1 1

Table 1
Illustrative example: questions, topic lists, and student re-
sponses. The value 1 indicates the question is answered cor-
rectly; 0 indicates it is answered incorrectly; and - indicates it
is not attempted.

5. TDMMH Static Model
In this section, the approach to generating and filtering

a TDMMH is presented. Section 5.1 presents methods for
generating the graph and Section 5.2 explores filteringmech-
anisms to address the complexity of hypergraph visualisa-
tions. The results are briefly discussed in Section 5.3.
5.1. Generating a TDMMHThis section demonstrates how commonly available in-
put data (student achievements/grades for specific questions)
and the mapping from the questions to the course topics are
transformed into a TDMMH . High-level code and nota-
tion are presented in Algorithm 1. The algorithm consists
of three high level steps: create working dictionaries and
matrices; define the TDMMH graph elements (vertices and
hyperedges); and visualise (i.e., plot) the TDMMH graph.

The first six steps of Algorithm 1 transform the data in
the SQA.csv and QT.csv files into working dictionaries and
matrices. In Steps 1, 2, and 3 of the algorithm, three dic-
tionaries are created, QDict, SDict, TDict, to map array
and matrix indices to question, student, and topic identifiers.
In Steps 4, 5, and 6, three working matrices are created: T,
A, and R. The information on topics assigned to each ques-
tion is represented in matrix T , in which tij = 1 indicates
that question i is tagged with topic j and tij = 0 indicates
that question i is not tagged with topic j. The correctness of
the answers provided by the users are represented in matrix
A, where aij = 1 indicates that user i has answered ques-
tion i correctly, aij = 0 indicates that user u has answered
question i incorrectly, and aij = n indicates that user u has
not attempted question i. Matrix R is used to keep track of
attempted questions, where rij = 1 if user i has attempted
question i and zero otherwise. Figure 3 illustrates the data

Algorithm 1 Generating a TDMMH

Require: SQA.CSV , QT .CSV , filters
Create dictionaries and matrices for efficient index-
ing

1: QDict← CreateQDict(SQA.CSV )
2: SDict← CreateSDict(SQA.CSV )
3: TDict← CreateTDict(QT .CSV )
4: T ← CreateT (QT .CSV ,QDict, TDict)
5: A← CreateA(SQA.CSV , SDict, QDict)
6: R← CreateR(SQA.CSV , SDict, QDict)

Compute the Graph Elements: Vertices and Edges
7: V List← ComputeV (TDict)
8: HList← ComputeH(T ,A,D, TDict)

Create and visualise the Graph
9: TDMStatic ← CreateTDM(V List,HList)
10: V isualise(TDMStatic, f ilters)

stored in the dictionaries (QDict, SDict, TDict) and the
matrices (T , A, R).

Steps 7 and 8 in Algorithm 1 establish the graph vertices
and hyperedges. V List stores the list of the vertices of the
TDMMH graph andHList stores the list of its hyperedges.
The coverage and competency associated with an edge are
both computed using T , A and R within the ComputeH
function. The coverage (Cov) associated with a hyperedge
among a set of vertices V = vj , ..., vk is computed based
on the number of attempts that have been made on questions
that are tagged with exactly topics that are included in V . It
is computed using the following formula:

Cov(V ) =
∑

i∈QDict
(
∏

j∈V
tij

∏

j∉V
(1 − tij))

∑

u∈SDict
rui (1)

The outer summation loops through all of the questions.
For a question i, (∏j∈V tij

∏

j∉V (1 − tij)) results in one if
question i is tagged with exactly the topics that are included
in V and zero otherwise. Together, these two parts iden-
tify questions that are tagged with exactly topics that are in-
cluded in V . The inner summation then counts the num-
ber of attempts that have been made on such a question. In
the given example, Cov({T1, T4}) has coverage of 13, whichconsists of contributions of 4 from Q5, 5 from Q7, and 4
from Q11.The achievement (Acℎv) associated with a hyperedge
among a set of vertices V = vj , ..., vk is computed as the
success rate of answering questions that are tagged with ex-
actly topics, which are included in V . It is computed using
the following formula:

Acℎv(V ) =
∑

i∈QDict(
∏

j∈V tij
∏

j∉V (1 − tij))
∑

u∈SDict aui
Cov(V )

(2)
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Figure 3: Illustrative Example Data Organization. The data
represented in Table 1 are loaded and transformed into three
dictionaries: QDict, SDict and TDict (Steps 1, 2, and 3 in
Algorithm 1). The dictionaries and the input files are used to
create three working matrices: T, A, and R (Steps 4, 5, and 6).
These matrices are used to create the graph elements (Steps 7,
8). The TDMMH model is created (Step 9) and subsequently
visualised (Step 10) (refer to Figure 4).

The numerator of this formula count the number of cor-
rect answers given to questions that are tagged with exactly
topics included in V . The formula is similar to how Con(V )
is computed, but instead of using ∑

u∈SDict rui to count the
number of attempts made on questions that are tagged with
exactly topics included in V , ∑u∈SDict aui is used to com-
pute only the number of correct answers. Dividing this num-
ber byCov(V ) produces the rate of correctly answering ques-
tions tagged with only topics in V . In the given example
Acℎv({T1, T4}) is computed as 2+2+3

13 = 7
13 = 0.54. Note

that Cov and Acℎv of a single topic j can be computed via
the same two formulas by using V = vj .Step 9 of Algorithm 1 creates the graph model based
the V List and HList computed in steps 7 and 8 of the al-
gorithm. The lower part of Figure 4 presents the V List,
HList, and two-weighted hypergraph model created for the
illustrative example.
5.2. Visualising a TDMMHStep 10 of Algorithm 1 visualizes the model according
to the user selected filtering options and display mode. The
TDMMH approach supports filtering combinations includ-
ing one or more topics as well as one or more achievement
conditions.

Figure 4: Complete TDMMH for the data set provided in
Table 1 using Algorithm 1 (no filtering, default cumulative
mode). The example does not have questions that involve five
or six topics.

Three straightforward visualisation examples are presented
in this section for illustrative purposes: no filtering (default
cumulativemode), filtering by one topic (accumulativemode),
and filtering by an achievement condition (cumulativemode).

To accomplish the visualisation step, the levels in the
graph are first identified based on the structure of the graph.
The filters selected by the user are then applied to the levels.
Lastly, the filtered levels are displayed in accordance with
the mode (accumulative, cumulative).

The illustrative example (with six nodes) has six levels.
Table 2 illustrates the levels before any filtering is done. For
example, Level1 is the subset of hyperedges {ℎ1, ℎ2, ℎ3}.
5.2.1. Example 1 (no filtering)

This example illustrates the situation in which no filter-
ing options are selected by the user and the default cumula-
tive mode is used. In step 10 of Algorithm 1, the levels for
the graph are first identified (refer to Table 2).

If the user does not select any filters, then all of the levels
are displayed by default in the cumulative mode, including
all topics, achievements, and coverage of the learning ob-
jects. In this situation, the filtered levels are the same as the
original levels, i.e., Leveli and Level′i are the same (refer to
Example 1 in Table 2).

The default cumulative mode is used, which results in
the visualisation in Figure 4.

The metrics associated with this example are presented
in Table 3. The row corresponding to the visualised model
are emphasized with the lightgray colour; intermediate as-
sessments are not highlighted. In the cumulative visuali-
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Level Level Example 1 Example 2 Example 3
ID Membership Level’ Membership

(no filtering)
Level’ Membership:
Topic is T1

Level’ Membership: Achievement
is ≤ 20% OR ≥ 80%

Level1 {ℎ1, ℎ2, ℎ3} {ℎ1, ℎ2, ℎ3} {ℎ1} {ℎ2}
Level2 {ℎ4, ℎ5, ℎ6, ℎ7} {ℎ4, ℎ5, ℎ6, ℎ7} {ℎ4, ℎ5} {ℎ4, ℎ7}
Level3 {ℎ8, ℎ9} {ℎ8, ℎ9} {ℎ8, ℎ9} {ℎ8, ℎ9}
Level4 {ℎ10, ℎ11} {ℎ10, ℎ11} {ℎ10} ∅
Level5+ ∅ ∅ ∅ ∅

Table 2
Illustrative Example: Levels before and after filtering (Examples 1, 2, and 3).

Example �(H)
(min)

Δ(H)
(max)

E
(avg)

Order Size

Example 1 (no filtering, default cumulative mode)
Level 1’ 2 2 2.00 3 3
Level 2’ 1 2 1.60 4 5
Level 3’ 1 2 1.20 2 5
Level 4’ 1 2 1.20 2 5
Levels 1’ 2 2 2.00 3 3
Levels 1’-2’ 1 4 2.33 7 6
Levels 1’-3’ 2 6 3.33 9 6
Levels 1’-4’ 2 7 4.67 11 6
Example 2 (filter on topic, accumulative mode)
Level 1’ 2 2 2.00 1 1
Level 2’ 2 2 1.33 2 3
Level 3’ 2 2 1.20 2 5
Level 4’ 1 1 1.00 1 4
Example 3 (filter on achievement, cumulative mode)
Level 1’ 2 2 1.00 1 1
Level 2’ 1 2 2.00 2 3
Level 3’ 1 2 1.20 2 5
Level 4’ (∅) 0 0 0 0 0
Levels 1’ 2 2 2.00 1 1
Levels 1’-2’ 1 2 1.50 3 4
Levels 1’-3’+ 1 3 2.00 5 6

Table 3
Illustrative Example: Metric summaries (Examples 1,2, and 3).

sation involving Levels 1’-4’, the minimum and maximum
degree node values occur with the isolated node T3, 2, andnode T4, 6, respectively. The average degree node value isrelatively high, 4.67. This indicates a more complex visual-
isation for the users. All six of the nodes and all 11 of the
hyperedges are included in the visualisation.
5.2.2. Example 2 (filtering by topic)

This example illustrates the situation in which the user
select the option to filter by one topic (T1) and the accumu-
lative mode is used. In step 10 of Algorithm 1, the levels
for the graph are first identified (refer to Table 2).

For example, if a user requests to filter with respect to
topic T1, the levels are filtered accordingly. In this case,
for example, the filtered Level′i is the subset of hyperedges{ℎ1}, as only ℎ1 contains Ti (refer to Example 2 in Table 2).

After the levels are filtered, they are visualised. In the
accumulative mode, only the hyperedges for one level are
presented at a time. The four filtered levels are visualised in
Figure 5.

The metrics associated with Example 2 are presented in

Table 3. The rows corresponding to the visualised model are
emphasized with the lightgray colour; all four rows are high-
lighted in the table to indicate they are visualised. The mini-
mum node degree values ([1..2]) show limited variation; the
maximum degree node values ([1..2]) are also low. There are
a smaller number of nodes ([1..2]); a small number of hyper-
edges ([1..2]) are involved in the filtered levels. This results
in reduced average node degree values ([1.00..2.00]), reflect-
ing the reduced visual complexity of the individual levels in
comparison to Example 1.
5.2.3. Example 3 (filtering by achievement)

This example illustrates the situation in which the user
select the option to filter by an achievement condition, which
identifies the more extreme performance outcomes in the as-
sessment data for the class (≤ 20% OR ≥ 80%); the cumula-
tive mode is used. In step 10 of Algorithm 1, the levels for
the graph are first identified (refer to Table 2).

The levels are filtered according to the achievement con-
dition selected by the user (≤ 20% OR ≥ 80%). There
are five hyperedges that meet this achievement condition:
ℎ2, ℎ4, ℎ7, ℎ8, ℎ9 (refer to Example 3 in Table 2).

After the levels are filtered, they are ready to be visu-
alised. In the cumulative mode, the presentation for a level
includes the hyperedges for the current levels and the pre-
vious levels. The three (non-empty) filtered levels are visu-
alised in Figure 6.

The metrics associated with this example are presented
in Table 3. The rows corresponding to the visualised model
are emphasized with the lightgray colour; rows containing
intermediate assessments are not highlighted. Theminimum
node degree values ([1..2], is low; themaximumdegree node
values ([2..3]) are also relatively low. There is a wider varia-
tion in the number of nodes involved in the cumulative visu-
alisations ([1..6]); a relatively small number of hyperedges
([1..5]) are involved in the filtered levels. This results in re-
duced average node degree values [1.50..2.00] in the indi-
vidual levels reflecting the reduced visual complexity of the
individual levels in comparison to Example 1; the overall
average in the cumulative visualisation involving the three
non-empty levels is 2.00.
5.3. Discussion

The straightforward examples explore the use of the two-
weighted hypergraph based TDMMH model to generate (RQ1)
and visualise (RQ2) assessment data. The representation of
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Figure 5: Illustrative Example 2 multilevel visualisation: one topic is selected (T1) as a filter (accumulative mode).

Figure 6: Illustrative Example 3 multilevel visualisation: achievements at the more extreme ranges (very low ≤ 20%, very high
≥ 80%) of the grades are selected using filter selections (cumulative mode).

the assessment data covering one or more topics is straight-
forward with the TDMMH as it leverages the n-ary rela-
tionships of the hyperedges. The support for displaying all
or part of the model of interest using the concepts of levels
and filtering is flexible, allowing the user to focus on spe-
cific aspects of the assessment data. The preliminary set of
metrics are applied, providing some insight on their relation-
ship to the visual complexity of the models (RQ3). The av-
erage node index value appears to be useful as an indicator
of the visual complexity. In the next section, the TDMMHmodel is further explored using a historical case study in a
self study and a comparative study with the original TDM
model (RQ4).

6. Case Study
6.1. Historical Data

This case study is based on data collected from a first-
year undergraduate level offering of a course on program-
ming and engineering design at The University of British
Columbia. This offering of the course had 377 students and
was held during the Fall of 2016. The course covers many
topics that are generally included in an introductory course
on programming and engineering design in nine modules:
number conversions, programming fundamentals, condition-
als, loops, file I/O, functions, arrays, strings, and DAQ sys-
tems. Functions, strings and DAQ systems received two
weeks of lecture time; all of the othermodules received roughly
one week of lecture time.

The data have been collected from the final exam of the

course, which are captured via theGradescope platform [22],
a system for the on-line assessment of handwritten exams.
The final exam of this offering consists of 17 independent
sub-questions that formed a total of eight main questions.
The questions are tagged using 20 concept-level topics, de-
fined by the instructors, based on the eight modules that are
covered in this course. For example, the Strings Module is
further decomposed into three topics: String-Length, String-
Copy and String-Compare, providing a finer level of granu-
larity.
6.2. TDMMH Visualisation

Three visualisation cases are presented in this section:
no filtering, filtering by topic, and filtering by an achieve-
ment condition. The cumulative mode is used in all three
cases. In these visualisations, a self-loop on a node is rep-
resented by the width and colour associated with the circle
representing that node. The metrics associated with these
cases are presented in Table 4.
6.2.1. Case 1 (no filtering)

Figure 7 shows the TDMMH with no filters for the exam
data described in Section 6.1.

It indicates that the exam adequately covers all of the
modules of the course and that all modules except Conver-
sions (including the Hex and Octal topics) are highly con-
nected to one another. The exam includes questions that had
only a single topic (e.g., ℎ1 on Hex), two topics (e.g., ℎ14on While Loops and DAQ-Write), three topics (e.g., ℎ9 onPrinting, File Output and 2D Arrays) and four topics (e.g.,
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Figure 7: TDMMH for the final exam of an offering of a first-year course on programming and engineering design

Case Study �(G)
(min)

Δ(G)
(max)

E
(avg)

order size

Case 1 (no filtering, default cumulative mode)
Level 1’ 2 2 2.00 3 3
Level 2’ 1 2 1.40 7 10
Level 3’ 1 3 1.0 5 10
Level 4’ 1 2 0.80 2 5
All (Levels 1’-4’) 1 6 2.15 17 20
Case 2 (filter on topic, Level 4, cumulative mode)
Level 2’ 1 2 1.33 2 3
Level 3’ 1 2 1.50 2 4
Level 4’ 1 2 1.60 2 5
Levels 1’-4’ 1 6 2.25 6 8
Case 3 (filter on achievement, Level 3, cumulative mode)
Level 2’ 1 1 1.00 2 4
Level 3’ 1 3 0.67 3 6
Levels 1’-3’ 1 3 1.62 5 8

Table 4
Case Study: TDMMH Metric Summaries for Cases 1,2, and 3.

ℎ17 on For Loops, 1D Arrays, Write Functions, and String-
Compare). The further decomposition to concept-level top-
ics provides insights which might have not been possible to
gauge using module-level tags. For example it shows that
students have done well on questions on String-Copy and
String-Compare but not sowell on questions on String-Length.
As another example, further decomposition of items from
the Arrays Module shows that students are able to do well
in 1D-Arrays, but perform quite poorly on questions on 2D-
Arrays.

For the first case study,its associated metrics are pre-
sented in the top part of Table 4. The row corresponding to
the visualisedmodel is emphasizedwith the lightgray colour;
the rows with intermediate assessment values are not high-
lighted. The minimum degree node value is one; this occurs,
for example, with the nodes representing File Input (i.e., v9),

File Output (i.e., c10), and others. The maximum degree
node value is six which occurs with a node representing the
Write Functions topic (v12). The average degree node valueis 2.15 for the visualised model; this study includes all of the
hyperedges and nodes, 17 and 20 respectively.
6.2.2. Case 2 (filtering by topic)

Figure 8 applies the cumulative topic-based level4 filteron the “Write Functions" concept. This filter will enable in-
structors to determine the coverage and performance of stu-
dents on a particular concept. The TDMMH in the given ex-
ample demonstrates that the Write Function has been exten-
sively covered in the exam. The performance of students on
questions that covered write functions in combination with
1D arrays, String-copy, and String-compare have been quite
good; however, their performance on questions that cover
Write functions in combination with 2D Arrays, Casting,
and Printing has not been as good.

The metrics associated with this case are presented in
Table 4. The row corresponding to the visualised model is
emphasisedwith the lightgray colour; the rowswith interme-
diate assessments are not highlighted. The minimum degree
node value is one (e.g., 2D Arrays (v14)). The maximum
degree node value is six; this occurs with Write Functions
(v12). The average degree node value is 2.25 for the visu-
alised model, which is higher than the average value for Case
1 (no filtering). The Write Functions is the topic that has
the highest number of appearances in the hyperedges. Fil-
tering on a topic results in a higher average degree value in
this study, as there are more connections among the nodes
selected; a subset of six hyperedges and eight nodes are con-
sidered.
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Figure 8: Cumulative topic-based level4 filter on “Write Func-
tions" is selected.

Figure 9: Cumulative achievement level3 filter with “≤ 60" is
selected.

6.2.3. Case 3 (filtering by achievement)
Figure 9 applies the cumulative achievement level3 fil-ter with “≤ 60". This filter enables instructors to determine

gaps in students’ knowledge. The TDMMH in the given
example demonstrates questions concept combinations that
the students have performed poorly on in this exam. Interest-
ingly, all of the hyperedges that include Printing are selected
in this filter. This may suggest that there is a general misun-
derstanding ormisconception about how print statements are
used.

The metrics associated with this case are presented in
Table 4. The row corresponding to the visualised model is
emphasisedwith the lightgray colour; the rowswith interme-
diate assessments are not highlighted. The minimum degree
node value is one (e.g., String-Length (v18)). The maximum
degree node value is three (e.g., Write Functions (v12)). Theaverage degree node value, 1.62, is quite low for the visu-
alised model. Here, the filtering selects a subset of five hy-
peredges and eight nodes for consideration.
6.2.4. Discussion

The three presented cases explore the use of the two-
weighted hypergraph based TDMMH model to generate (RQ1)

and visualise (RQ2) assessment data from a historical data
set. The support for visualising all or part of the model of
interest using the concepts of levels and filtering allows in-
structors to gain additional insights. The preliminary set of
metrics are applied to quantify the complexity of the models
(RQ3). The average node index value appears to be useful
as an indicator of the visual complexity of the model. As
demonstrated by Case 2 and Case 3, applying filters may in-
crease or decrease the average node index of the model com-
pared to Case 1 which had no filters. Therefore, the number
of nodes in combination with the average node index value
may be a more useful indicator of the visual complexity of
the model.
6.3. Comparing the TDM and TDMMH

Approaches (no filtering)
This section compares and contrasts the use of the TDMMHwith the previously proposed TDM approach in a this study,

Case 4. The discussion is organised with respect to the four
RQs. Figure 10 visualises the final exam results for the data
set described in Section 6.1; this study extends Case 1 in
6.2.1(i.e., no filtering) to include the TDM approach.

The two approaches can both be used to represent the as-
sessment data. Essentially, the nodes represent assessment
topics and the two-weighted edges/hyperedges represent the
coverage and achievements in the assessment data. A colour
palette and line widths can visualise the weights in both the
TDM and TDMMH . The common layout of the nodes
has been performed manually, with the goal of reducing the
number of crossing edges. This layout, however, does not
strongly reflect the organisation of topics within a course.
For example, three DAQ topics (DAQ-Read, DAQ-Write,
SegmentDisplay) are taught within onemodule of the course;
these topics are scattered in the visualisations.

The fundamental difference between the two models is
based on their interpretation of how a question i that is tagged
with a set of topics V = vj , ..., vk contributes to the cover-
age and achievement of the models. In the algorithm used
for creating the TDMMH hypergraphs, question i only con-
tributes to the coverage and achievement of the hyperedge
that is associated with V (Acℎv(V )) (see Section 5.1 for
details). In contrast, in the algorithm used for creating the
TDM two-weighted graphs, question i contributes to the
coverage and achievement for all of the edges that include an
element of V (see [14] for details). This approach ensures
that a question that is tagged with more than two topics (i.e.,
|V | > 2), where a particular edge is not associated with V ,
contributes to the computation of achievements within the
TDM. Let’s consider an example using the models that are
visualised in Figure 10. In the TDMHM approach, the ques-
tion tagged with the three topics of File Input, Conditionals
and Casting only contribute to the coverage and achievement
of one hyperedge; this is the one associated with these three
topics. In the two-weighted TDM, this question contributes
to the coverage and achievement of six separate edges: self
loops on each of the File Input, Conditionals and Casting
topics as well as edges between File Input and Casting, File
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Hypergraph Two-weighted	Graph

Figure 10: Comparison of the proposed two-weighted hypergraph (TDMMH and the original two-weighted graph (TDM) for
visualising the final exam results of an offering of a first-year course on programming and engineering design

input and Conditionals, and Casting and Conditionals.
Based on the difference in the interpretation of how a

question contributes to the coverage and achievement of edges,
the two models differ quite significantly. A few of these sim-
ilarities and differences with reference the metrics provided
in Table 5 are presented below.

• With respect to the number of nodes, both visualisa-
tions are the same, as this is not impacted by the dif-
ferent graph foundations: 20 topics need to be visu-
alised. Filtering options that impact the number of
nodes (e.g., multi-level visualisations in the hypergraphs)
are not part of the Case 4 study.

• The TDMMH approach provides explicit information
about questions that are tagged with more than two
topics, whereas this information is implicitly provided
in the two-weighted TDM. For example, as discussed
previously, the contribution of a question that is tagged
with three topics (e.g., File Input, Conditionals and
Casting) is explicitly visualised in the hypergraph ap-
proach; however, the contribution of this question is
implicitly distributed among six edges in the two-weighted
graph approach.

• The TDMMH can have up to 2n hyperedges where
as the two-weighted graph TDM can only have n(n−1)

2edges for a graphwith n vertices. This enables TDMMHto model more complex domains with more than one
edge between two vertices. For example there are a to-
tal of three edges between For Loops and Write Func-
tions. One based on a question that involved only these
two topics; on hyperedge based on a question that in-
volved these two topics aswell as 1D arrays and Strong
Compare; and a third hyperedge based on a question
that involved these two topics as well as 1D Arrays
and String Copy.

• The TDMMH approach is generally sparser compared
to the two-weighted TDM approach. This is because
in the TDMMH approach each question can only con-
tribute to one edge. In contrast, in the two-weighted
graph approach one question can contribute to multi-
ple edges. For example, in Figure 10, the hypergraph
TDM has a total of 17 hyperedges where as the two-
weighted TDM has a total of 49 edges. The average
node degree values of the TDM and TDMMH are
2.80 and 2.15, respectively, indicate this measure may
provide some insight into the visual complexity of the
models.

• The main strength of TDMMH is that it accurately
represents the underlying data set. Therefore, themodel
can be used to determine precisely the achievement
and coverage on a set of nodes V . The main limita-
tion of TDMMH is in its inference power as it lacks
the ability to infer achievements or coverage on the
non-complete subsets of V . As an example, referring
to Figure 10, TDMMH provides accurate information
about how For Loops have been covered in combina-
tion with other topics, but it cannot infer achievement
on For Loops by itself.

• The main limitation of the original TDM approach is
that it cannot accurately represent the underlying data
set; therefore, the model does not have the capacity
to determine preciously the achievement and coverage
on a set of nodes V . The main strength of this model
is in its inference power as it can infer achievements
or coverage of subset of nodes of size 1 (self loops) or
size 2 (general edges). For the same example given
before, the original TDM can be used to infer the
achievement and coverage on the topic of For Loops
by itself; however, it cannot be used to provide highly
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Model �(G)
(min)

Δ(G)
(max)

E
(avg)

order size

TDM 2 10 2.80 49 20
TDMMH 1 6 2.15 17 20

Table 5
Case Study: TDM and TDMMH Metric Summaries (no filter-
ing, default cumulative mode)

accurate information about how the topic of For Loops
has been covered in combination with other topics.

7. Conclusions and Future Work
The preliminary results ofmodelling and visualising topic-

level achievements and coverage in the educational assess-
ment problem using a two-weighted, multilevel, hypergraph-
based model (called TDMMH ) are presented. The genera-
tion of TDMMH utilisesmatrix computations, whichmakes
it scalable and efficient. The visualisation helps to address
the complexity of a hypergraph through a flexible, multilevel
approach. A set of metrics are employed to quantitatively
assess the visual complexity of the hypergraph based visu-
alisations of the models. A case study that illustrates how
TDMMH can be applied to provide insight in the context
of a large university course is presented. The case study also
compares and contrasts the proposed approach with the orig-
inal TDM model that uses a graph instead of a hypergraph.

There are several limitations in the current work which
restrict the generalisability of the results. One of the signif-
icant limitations of this study is that TDMMH s have only
been applied to one course from the computer science do-
main. It is important to acknowledge that these may be hard
to comprehend for stakeholders without formal training in
algorithmic literacy. A second limitation of the current work
is that the case studies only explore the benefits of using
TDMMH s from an instructor’s perspective. A comprehen-
sive stakeholder and scenario analysis study is planned for
future work, which would investigate the usability of the
model across a range of disciplines.

A number of other directions are also planned for the
next steps in this research. (1) Adding layout algorithms
that optimise the model visualisation; the algorithmmay use
a range of options such as reducing the number of crossing
edges in the graph or grouping topics with respect to instruc-
tional design constraints (e.g., groups of related topics cov-
ered in a course). (2) Exploring the use of dynamic models
to present a series of TDMMH s that illustrate changes on
achievements and coverage over time. (3) Exploring the use
of 3D and hierarchical models for visualising a TDMMH .
(4) Exploring additional metrics to improve the quantitative
assessment of the TDM and TDMMH models’ complexity.
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