

Journal of

Visual Language and

Computing

Volume 2019, Number 2

D. D. Bui & K. Ogata / Journal of Visual Language and Computing (2019) 105–115

Journal of Visual Language and Computing
journal homepage: www.ksiresearch.org/jvlc

Graphical Animations of the Suzuki-Kasami Distributed Mutual
Exclusion Protocol⋆,⋆⋆
Dang Duy Buia, Kazuhiro Ogataa,∗
aSchool of Information Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

ART ICLE INFO
Article History:
Submitted 3.1.2019
Revised 6.1.2019
Second Revision 8.1.2019
Accepted 10.10.2019
Keywords:
distributed protocols
graphical animations
Maude
model checking
SMGA
state machines

ABSTRACT
A state machine that formalizes a distributed mutual exclusion protocol called the Suzuki-Kasami
protocol is graphically animated. The messages that have been just put into (or sent) and deleted
from (or received) the network are crucial information and then visually explicitly displayed on the
designated places in a state picture. The protocol uses some pieces of information that are seemingly
owned by each node but actually shared by all nodes. The pieces of information are visually explicitly
displayed on two designated places. One main purpose of graphically animating state machines is to
make it possible for humans to visually perceive characteristics or properties of the state machines.
We demonstrate that carefully observing graphical animations makes it possible for human users to
perceive some characteristics or properties of the state machine formalizing the Suzuki-Kasami pro-
tocol and the properties are confirmed by model checking. To make it more likely for human users to
be able to perceive such properties, it is necessary to design good state pictures. We summarize some
tips on how to design good state pictures for mutual exclusion protocols.

© 2019 KSI Research

1. Introduction
Many kinds of information and communication technol-

ogy (ICT) systems can be formalized as statemachines. Some
ICT systems, such as the Internet, have become important
societal infrastructures, they must be highly reliable. It is
crucial to comprehend ICT systems better so as tomake them
highly reliable. Because ICT systems can be formalized as
state machines, one possible way to comprehend ICT sys-
tems is to understand state machines that formalize the ICT
systems. There may be multiple possible ways to understand
state machines, and one promising way to do so would be to
rely on human visual perception. Therefore, Nguyen and
Ogata [8] have developed a tool called SMGA that gener-
ates graphical animations of state machines. Some shared-
memory mutual exclusion protocols and some communica-

⋆This work was partially supported by JSPS KAKENHI Grant Number
JP26240008 & JP19H04082.

⋆⋆The present paper is an extended and revised version of the paper [4]
presented at DMSVIVA 2019.

∗Corresponding author
bddang@jaist.ac.jp (D.D. Bui); ogata@jaist.ac.jp (K. Ogata)

ORCID(s): 0000-0002-2700-1762 (D.D. Bui); 0000-0002-4441-3259 (K.
Ogata)

tion protocols have been tackled with SMGA so far. But,
ICT systems that are societal infrastructures are often in the
form of distributed systems. In this paper, thus, a distributed
mutual exclusion protocol called the Suzuki-Kasami proto-
col [14] is tackled with SMGA.

As all other distributed systems, the Suzuki-Kasami pro-
tocol uses a network with which messages are exchanged
among nodes. The message that has been just put into the
network (just sent by a node) or just deleted from the network
(just received by a node) is crucial information and then we
prepare one place dedicated to the one that has been just put
into the network and one place dedicated to the one that has
been just deleted from the network. There may be too many
messages in the network to display all of them on the desig-
nated place. If that is the case, a limited number of messages
is displayed and the others are suppressed. Instead, “...” is
displayed. The protocol uses some pieces of information that
are seemingly owned by each node but actually shared by all
nodes. The pieces of information are visually explicitly dis-
played on the designated places in a state picture.

Understanding a state machine is to know properties the
state machine enjoys. The more state machine properties
we know, the better we understand the state machine. One

DOI reference number: 10-18293/JVLC2019-N2-012
105

www.ksiresearch.org/jvlc

D. D. Bui & K. Ogata / Journal of Visual Language and Computing (2019) 105–115

main purpose of SMGA is to make it possible for humans
to perceive characteristics or properties of a state machine
by observing graphical animations of the state machine. We
guess some properties of the state machine formalizing the
Suzuki-Kasami protocol by observing its graphical anima-
tions and confirm the properties by model checking. We
use Maude [5], a rewriting logic-based computer language,
as a specification language for state machines and a model
checker. We mention some SMGA functionalities, such as
playing forward and backward frame-by-frame playback and
finding out states that satisfy some conditions from a state
sequence used in an input file. We also summarize how to
design state pictures for mutual exclusion protocols.

The rest of the paper is organized as follows. Sect. 2
mentions some preliminaries needed to comprehend the tech-
nical contents of the paper. Sect. 3 describes state machine
graphical animation (SMGA). Sect. 4 describes the Suzuki-
Kasami protocol. Sect. 5 describes how to specify the Suzuki-
Kasami protocol in Maude. Sect. 6 describes how to revise
SMGA so that the Suzuki-Kasami protocol can be tackled
and reports on the case study in which the protocol has been
graphically animated with the revised version of SMGA.
Sect. 7mentions some functionalities of SMGA. Sect. 8men-
tions on how to confirm guessed properties of the proto-
col with model checking. Sect. 9 summarizes some tips on
how to design state pictures for mutual exclusion protocols.
Sect. 10 mentions some related work. Sect. 11 concludes the
paper and mentions some future directions.

2. Preliminaries
Let us consider as an example a test&set mutual exclu-

sion (or spin-lock) protocol whose pseudo-code is as fol-
lows:
Loop

“Remainder Section”
rm ∶ repeat while test&set(locked);
“Critical Section”

cs ∶locked ∶= false;

Multiple processes participate in the protocol. Each process
is in Remainder Section, working on some tasks that do not
require any shared resources. When a process needs some
shared resources, it is supposed to move to Critical Section
where it uses the shared resources. After that, it goes back to
Remainder Section. We suppose that each process is located
at either rs or cs. A process is located at rs and cs if and only
if it is in Remainder Section and Critical Section, respec-
tively. locked is a Boolean variable sharedwith all processes
participating in the protocol. test&set(locked) atomically
performs the following: it sets locked to true and returns
the old value stored in locked. When a process wants to en-
ter Critical Section, it repeatedly conducts test&set(locked)
until false is returned and then goes to cs. When it leaves
Critical Section, it sets locked to false and goes back to rs.

The protocol is formalized as a state machine M ≜
⟨S, I, T ⟩ that consists of a set S of states, where some states

I ⊆ are initial states, and a binary relation T over states,
where each element (s, s′) ∈ T is a state transition, saying
that state s can go to state s′. We use Maude [5], a pro-
gramming/specification language based on rewriting logic,
to specify state machines. Maude makes it possible to spec-
ify complex systems flexibly and is also equippedwithmodel
checking facilities, such as a reachability analyzer (or a search
command).

When there are three processes p1, p2 and p3 participat-
ing in the protocol, let MTS ≜ ⟨STS, ITS, TTS⟩ be the state
machine formalizing the protocol. A state in STS can be ex-pressed as follows: {(pc[p1]: l1)(pc[p2]: l2)(pc[p3]: l3)
(locked: b)}, where li (for i = 1, 2, 3) is either rs or cs and b
is either true or false. (pc[pi]: li) and (locked: b) are called
observable components that are name-value pairs, meaning
that process pi is located at li and the value stored in vari-
able locked is b, respectively. pc[pi] and locked are names,
while li and b are values. (pc[pi]: li) is also called a pc or
pc[pi] observable component and (locked: b) is also called a
locked observable component. Observable components are
glued as members of an associative-commutative collection
that is called a soup. Therefore, a state is expressed as a
braced soup of observable components. ITS consists of one
state that is expressed as follows: {(pc[p1]:} rs)(pc[p2]:

rs)(pc[p3]: rs) (locked: false)}, which will be referred as
ic.

TTS is specified by the following two rewrite rules:
rl [enter] : {(locked: false) (pc[I]: rs) OCs}

=> {(locked: true) (pc[I]: cs) OCs} .

rl [exit] : {(locked: B) (pc[I]: cs) OCs}

=> {(locked: false) (pc[I]: rs) OCs} .

Rewrite rules are defined with rl, while conditional ones are
defined with crl and their conditions are written after if.
enter and exit are labels (or names) given to the rules, re-
spectively. I is a Maude variable of process identifications,
B is a Maude variable of Boolean values and OCs is a variable
of observable component soups.

By substituting B, I and OCswith true, p3 and (pc[p1]: rs)

verb!(pc[p2]: rs)!, the left-hand side of rule exit comes to
equal State 61 shown in Fig. 1 because soups are associa-
tive and commutative and then the right-hand side comes to
equal State 61. By substituting B, I and ICswith false, p1 and
(pc[p2]: rs) (pc[p3]: rs), the left-hand side of rule enter

comes to equal State 64 shown in Fig. 1 and then the right-
hand side comes to equal State 65. These are how rewrite
rules describe state transitions.

3. State Machine Graphical Animation
(SMGA)
SMGA [8] has been implementedwithDrawSVG (www.

drawsvg.org). It basically takes a finite computation (or a fi-
nite state sequence) of a state machine and generates a graph-
ical animation of the state machine. For each state, a picture
is designed and then we get a series of pictures from a finite
computation. Such a series of pictures is regarded as amovie

106

www.drawsvg.org
www.drawsvg.org

D. D. Bui & K. Ogata / Journal of Visual Language and Computing (2019) 105–115

Figure 1: A sequence of pictures for MTS

Figure 2: A picture of states in STS

film. This is how SMGA generates a graphical animation of
a state machine.

We could design a picture of states in STS as shown in
Fig. 2 when there are three processes. An input file to SMGA
consists of three parts: ###keys, ###textDisplay and ###states.
Fig. 3 shows a snip of an input file to SMGA for MTS. In
the ###keys part, the names (or keys) used in the observ-
able components that constitute each state are enumerated.
ForMTS, locked, pc[p1], pc[p2] and pc[p3] are enumerated.
There are two different ways to display the value stored in an
observable component: (1) the value is displayed at a des-
ignated place and (2) one of the diagram objects associated
with the value appears, while the other diagram objects dis-
appear. For (1), the value is treated as a text and displayed
horizontally from left to right by default. Some data struc-
tures, such as stacks, should be displayed in a different way.

Figure 3: A snip of an input file to SMGA for STS

For example, a stack should be displayed vertically from top
to bottom. In the ###textDisplay part, we can specify how
values treated as texts are displayed for (1). For MTS, thevalue stored in the locked observable component is displayed
as (1). Because it is displayed by default, nothing is specified
in the ###textDisplay part. The values stored in the pc[p1],
pc[p2] and pc[p3] observable components are displayed as
(2). For example, if the value stored in the pc[p1] observable
component is rs, the circle on which 1 is written appears in
the rs region and otherwise the circle appears in the the cs

region. In the ###states part, a sequence of states is written,
where states are separated by ||.

Fig. 1 shows a sequence of pictures forMTS generated bySMGA. In State 61, the value stored in the locked observable
component is true, the value stored in the pc[1] observable
component is rs, the value stored in the pc[2] observable
component is rs, the value stored in the pc[3] observable
component is cs. Hence, true is displayed by default at the
designated place, the circle on which 1 is written appears
in the rs region, the circle on which 2 is written appears in
the rs region and the circle on which 3 is written appears
in the cs region in State 61. In State 62, the value stored in
the locked observable component changes to false, the value
stored in the pc[3] observable component changes to rs and
the other values do not change. Hence, false is displayed
by default at the designated place, the circle on which 3 is
written appears in the rs region and the other two circles
remain in the rs region in State 62.

Observing such a sequence of pictures or a graphical an-
imation of a state machine, we could guess some properties
of the state machine [9]. Observing the sequence of pic-
tures shown in Fig. 1, for example, we could guess the prop-
erty that locked is false if and only if there is no process
in the critical section, or equivalently locked is true if and
only if there exists a process in the critical section. We use
the Maude reachability analyzer (or the search command) to
confirm that the guessed property is invariant with respect
toMTS. The following command can be used to confirm it:
search [1] in TS : ic

=>* {(locked: false) (pc[I]: cs) OCs} .

Maude exhaustively searches the reachable states from the
initial state ic for a state that can match {(locked: false)

(pc[I]: cs) OCs}. If there is such a state, in which a process
I is located at cs and locked is false, then the property is

107

D. D. Bui & K. Ogata / Journal of Visual Language and Computing (2019) 105–115

Figure 4: Suzuki-Kasami distributed mutual exclusion protocol
in an Algol-like language

violated. No such a state is found by Maude and then the
guessed property is invariant with respect toMTS when thereare three processes.

4. Suzuki-Kasami Protocol
The Suzuki-Kasami protocol is a distributed mutual ex-

clusion protocol [14]. The basic idea is that a node that has
a privilege is only allowed to enter its critical section, and
there exists one and only one privilege in the system. The
privilege is owned by a node, or is in the network being trans-
ferred by a node to another. We suppose that N nodes par-
ticipate in the protocol and the natural numbers 1,… , N are
used as their identifications. Let Node be {1,… , N}. The
N nodes have no memory in common and can communicate
only by exchanging messages. The communication delay is
totally unpredictable, namely that although messages even-
tually arrive at their destinations, they are not guaranteed to
be delivered in the same order in which they are sent. There
are two kinds of messages used in the Suzuki-Kasami pro-
tocol: request and privilege messages. A request message is
in the from request(j, n), where j is the identification of the
node that has sent the message and n is a request number. A
privilege message is in the form privilege(q, a), where q is a
queue of node identifications and a is a natural number array
of sizeN .

The Suzuki-Kasami protocol consists of two procedures
P1 and P2 for each node i ∈ Node. The procedures for node
i are shown in Fig. 4.

request and ℎave_privilege are Boolean variables. re-
quest indicates whether or not node i wants to enter its crit-
ical section, and ℎave_privilege indicates whether or not
node i owns the privilege. queue is a queue of Node. It
contains the identifications of nodes that wait to enter their
critical sections. ln and rn are natural number arrays of size
N . ln[j] for each node j ∈ Node is the sequence number
of node j’s request granted most recently. rn records the
largest request number ever received from each of the other
nodes. Node i uses rn[i] to generate the sequence numbers
of its own requests. For each node i ∈ Node, its rn is always
meaningful, while its queue and ln aremeaningful onlywhen
node i owns the privilege. When the privilege is in the net-
work, queue and ln contained in the privilege message are
meaningful. For each node i ∈ Node, initially, request is
false, ℎave_privilege is true if i = 1 and false otherwise,
queue is empty, and ln[j] and rn[j] for each j ∈ Node are 0.

If node i wants to enter its critical section, it first calls
its own procedure P1, which sets request to true. If it hap-
pens to own the privilege, it immediately enters the critical
section. Otherwise, it generates the next sequence number,
namely, incrementing rn[i], and sends the request message
request(i, rn[i]) to all other nodes. When it receives a priv-
ilege message privilege(queue, ln), it enters the critical sec-
tion. When it leaves the critical section, it sets ln[i] to its
current sequence number rn[i], meaning that the current re-
quest has been granted, and updates queue such that if there
are nodes that want to enter their critical sections and whose
identifications are not yet in the queue, their identifications
are added to the queue. After that, if queue is not empty,
node i sets ℎave_privilege to false and sends the privilege
message privilege(deq(queue), ln) to the node found in the
front of the queue. Otherwise, node i keeps the privilege.
Finally, node i sets request to false and leaves procedure P1.

Whenever request(j, n) is delivered to node i, node i ex-
ecutes its own procedure P2. However, procedure P2 has
to be atomically executed. When node i executes procedure
P2, it sets rn[j] to n if n is greater than rn[j]. Then, if node i
owns the privilege, does not want to enter its critical section,
and the nth request of node j has not been granted, that is,
rn[j] = ln[j] + 1, then it sets ℎave_privilege to false and
sends the privilege message privilege(queue, ln) to node j.

5. Specification of Suzuki-Kasami Protocol
Let Nat, Bool, Loc, NodeQueue, and NatNArray be the

set of all natural numbers, the set of the Boolean values (true
and false), the set of all locations, such as rem and l1, the
set of all queues of Node, and the set of all natural number
arrays whose sizes are N , respectively. A request message
addressed to node i ∈ Node by node j ∈ Node is expressed
as msg(i, req(j, k)), where k ∈ Nat, msg is used as the con-
structor of messages and req is used as the constructor of
requests. A privilege message addressed to node i ∈ Node
is expressed as msg(i, priv(q, a)), where q ∈ NodeQueue,
a ∈ NatNArray and priv is used as the constructor of priv-
ileges. Let Req and Priv be {req(i, n) | i ∈ Node, n ∈ Nat}

108

D. D. Bui & K. Ogata / Journal of Visual Language and Computing (2019) 105–115

Figure 5: Rewrite rules specifying TSK

and {priv(q, a) | q ∈ NodeQueue, a ∈ NatNArray}, respec-
tively. The network is formalized as a soup of messages
that are request and privilege messages. The set MsgSoup
of all soups of messages is inductively defined as follows:
void ∈ MsgSoup, for each i ∈ Node, r ∈ Req, and p ∈
Priv, msg(i, r) ∈ MsgSoup and msg(i, p) ∈ MsgSoup, and
for each ms1, ms2 ∈ MsgSoup, ms1 ;ms2 ∈ MsgSoup. A
semicolon ; is used as the constructor of soups of messages.
void denotes the empty soup of messages and is the iden-
tity of ;, namely that ms ; void = void ;ms = ms for each
ms ∈ MsgSoup. Each message is also treated as the single-
ton soup that only consists of the message.

The Suzuki-Kasami protocol is formalized as a state ma-
chineMSK ≜ ⟨SSK , ISK , TSK⟩, which is specified in Maude.
P1 is divided into 12 regions shown in Fig. 4. The 12 regions
are referred as the 12 locations, such as rem and l1. We sup-
pose that each node is at one of those 12 locations. Procedure
P2 is regarded as one region and then there are totally 13 re-
gions in the Suzuki-Kasami protocol. The 13 regions are
given names, such as try(i) and setReq(i), shown at the left-
most column in Fig. 4. For each node i, there are 13 kinds of
transitions that corresponds to the 13 regions. The 13 region
names are used to refer to the 13 kinds of transitions. Let us
note that sndReq(i) and updQ(i) correspond to each iteration
of the loops at labels l4 and l7, respectively.

When there are three nodes, a state inMSK is expressed
as follows: {n(1) n(2) n(3) (nw: ms) (tran: t)}, where n(i)
is as follows:
(#req[i]: n) (pc[i]: l) (request[i]: b1)
(havePriv[i]: b2) (rn[i]: a1) (ln[i]: a2)
(queue[i]: q) (idx[i]: j)

where ms is a soup of messages in the network, t is the tran-
sition that has been just taken, n is the number of requests
made by node i, l is the location where node i is, b1 is the
value of the node i’s request, b2 is the value of the node i’s
ℎave_privilege, q is the value of the node i’s queue and j is
the value of the node i’s j, a loop variable. The state expres-
sion defines SSK .

When there are three nodes, ISK consists of one state
that is expressed as follows: {n(1) n(2) n(3) (nw: void)

(tran: notran)}, where notran means that no transition has
been taken and n(I) is as follows:
(#req[I]: 0) (pc[I]: rem) (request[I]: false)

(havePriv[I]: (I == 1)) (rn[I]: ia)

(ln[I]: ia) (queue[I]: empty) (idx[I]: 1)

where ia denotes the natural number array such that each slot
is 0, I == 1 is true if I is 1 and false otherwise, and empty

denotes the empty queue.
TSK is specified in terms of (conditional) rewrite rules.

There are 13 rules, among which four rules are shown in
Fig. 5. The words starting with a capital letter, such as X, I,
T and OCs, are Maude variables. Their types (or sorts) could
be understood from the context. For example, X, I, T and OCs

are variables of Nat, Loc, transition names and observable
component soups, respectively. RN[J] := Max is the array as-
signment at index J. top(Q) is the top element of Q. get(Q)
denotes the queue obtained by deleting the top from Q. What
is called a matching equation1 V := T , where V is a fresh
variable and T is a term, can be used in rule conditions and
is like let expressions in functional programming languages.
The rules will be described later by observing some state
pictures generated by SMGA. Let us, however, mention one
thing about rule recReq that formalizes procedure P2. The
rules has L =/= l10 /\ L =/= l8 /\ L =/= l7 as part of
the condition, saying that node I does not receive any re-
quests messages if it is located at l10, l8 or l7. The condition
is not explicitly mentioned in the original paper [14] of the
Suzuki-Kasami protocol. If we do not use the condition, the
protocol may cause lockout that a node that wants to enter its
critical section never be there if a node does not try to enter
its critical section unboundedly many times [10].

1In general, a matching equation is in the form T 1 := T 2, where T 1
and T 2 are terms.

109

D. D. Bui & K. Ogata / Journal of Visual Language and Computing (2019) 105–115

Figure 6: A picture of states in SSK

Figure 7: A snip of an input file to SMGA for SSK

6. Graphical Animations of Suzuki-Kasami
Protocol
Fig. 6 shows a picture of states in SSK when there are

three nodes participating in the Suzuki-Kasami protocol.
There is a pane (called the nw pane) located in the left up-
per corner where the messages in the network are displayed.
Under the nw pane, there is a pane (called the nw (received)
pane) where the message that has been just received by a
node (or just deleted from the network) is displayed. Un-
der the nw (received) pane, there is a pane (called nw (send-
ing) pane) where the message that has been just sent by a
node (or just put into the network) is displayed. For each
node i = 1, 2, 3, there are places to display the node i’s
request, j (or idx), ℎave_privilege and rn. There is al-
ways exactly one queue that is meaningful and then there
is one place to display the meaningful queue. There is al-
ways exactly one ln that is meaningful and then there is one

place to display the meaningful ln. If there is a node whose
ℎave_privilege is true, its queue and ln are displayed there.
If there is a privilege message in the network, namely that
there is no node whose ℎave_privilege is true, then nothing
is displayed there because you can see the meaningful queue
and ln in the privilege message in the network. There are 12
panes that correspond to the 12 locations, such as rs and l1.
There is one more pane in the picture where the transition
that has been just taken is displayed.

Fig. 7 shows a snip of an input file to SMGA for MSK .We have added one more part called the ###conditionDisplay
part to an input file to SMGA. Although each node has its
own variables ln and queue, they have meaningful values
only if the node owns the privilege. Hence, we would like to
only display the meaningful ln and queue on the two places
on a state picture, respectively. Just below the line where
###conditionDisplay is written in the input file shown in Fig. 7,
we write the two names ln and queue because at most one ln

and atmost one queue are displayed. The next line ln[1] ln[2]

ln[3] ****priv(_,ln) specifies that there are four possible
places where the meaningful ln is stored: the ln[1] observ-
able component, the ln[2] observable component, the ln[3]

observable component and the privilege message in the net-
work. The next line ln[1]++++havePriv[1]==true says that if
the havePriv[1] observable component stores true, the value
stored in the ln[1] observable component is displayed on the
place for ln. The following two lines can be interpreted like-
wise. The next line ****priv(_,ln)++++nw says that if there
exists a privilege message in the network, nothing is dis-
played on the place for ln. The following five lines specify
how to deal with queue and can be interpreted in the same
way as the five lines for ln.

The nw observable component consists of the messages
that have been sent and have not been received yet. Those
messages are displayed on the nw pane. It may be impossible
to display all messages on the nw pane. If that is the case,
the messages that can fit to the nw pane are only displayed,
which are followed by “...” If there exists a message that
has been just put (or sent) into the network, the message is
displayed on the nw (sending) pane. If there exists a message
that has been just deleted (or received) from the network, the
message is displayed on the nw (received) pane.

Fig. 8 shows a sequence of four pictures for MSK . Thefour pictures correspond to four consecutive states State 242,
State 243, State 244 and State 245 in a finite computation of
MSK . State 242 goes to State 243 by rewrite rule sndReq

(or sendReq(2)), State 243 goes to State 244 by rewrite rule
trsPrv (or transferPriv(1)) and State 244 goes to State 245
by rewrite rule wtPrv (or waitPriv(3)). Taking a look at the
first picture (of State 242) immediately makes us recognize
that node 1 is located at l9, node 2 is located at l4, node 3 is
located at l5, node 1 owns the privilege, there is one message
denoted msg(1,req(2,5)), the rule sendReq(2) (or sndReq(2))
has been just taken and so on. What is displayed as the con-
tent of ln is (1 : 4), (2 : 4), 3 : 3, which says that
ln[1] is 4, ln[2] is 4 and ln[3] is 3, meaning that the node
1’s fourth request has been granted, the node 2’s fourth re-

110

D. D. Bui & K. Ogata / Journal of Visual Language and Computing (2019) 105–115

Figure 8: A sequence of pictures for MSK (1)

Figure 9: A sequence of pictures for MSK (2)

quest has been granted and the node 3’s third request has
been granted. What is displayed as the content of queue is
3 | empty, which says that there is one element in queue and
the element is 3, meaning that node 3 has been waiting to
enter its critical section.

Taking a look at the second picture (of State 243) makes

us recognize that the rule sendReq(2) (or sndReq(2)) has been
just taken, the message msg(1,req(2,5)) has been just put
into the network and node 2 has just moved to l5 from l6. The
state transition from State 242 to State 243 visually describes
an instance of what rule sndReq (or sendReq(2) or sndReq(2))
in Fig. 5 does.

111

D. D. Bui & K. Ogata / Journal of Visual Language and Computing (2019) 105–115

Taking a look at the third picture (of State 244) makes
us recognize that the rule transferPriv(1) (or trsPrv(1)) has
been just taken, the message msg(3,priv(empty, (1 : 4),(2 :

4),3 : 4)) has been just put into the network and node 1 has
just moved to l10 from l9. The state transition from State
243 to State 244 visually describes an instance of what rule
trsPrv (or transferPriv(1) or trsPrv(1)) in Fig. 5 does.

Taking a look at the fourth picture (of State 245) makes
us recognize that the rule waitPriv(3) (or wtPrv(3)) has been
just taken, the privilege message has been just received by
node 3 (or just deleted from the network) and node 3 has just
moved to cs from l5. The state transition from State 244 to
State 245 visually describes an instance of what rule wtPrv

(or transferPriv(1) or trsPrv(1)) in Fig. 5 does.
Fig. 9 shows another sequence of two pictures for MSK .The two pictures correspond to two consecutive states State

149 and State 150 in another finite computation of MSK .State 149 goes to State 150 by rewrite rule recReq (or receive-
Req(1)). If it is possible to display all messages in the net-
work on the nw pane, SMGA does so. Otherwise, a lim-
ited number of messages are displayed on the nw pane and
the others are depressed. In the first picture (of State 149),
all messages in the network are displayed on the nw pane.
msg(1,req(2,5)) is received by node 1 and msg(2,priv(empty,

(1 : 4),2 : 4)) is put into the network by node 1. Then, it
is impossible to display all messages in the network on the
nw pane. Therefore, 10 messages out of 12 ones are dis-
played on the nw pane and the twomessages msg(3,req(2,5))
and msg(2,priv(empty, (1 : 4),2 : 4)) are depressed in the
second picture (of State 150). Instead of displaying the two
messages, “...” is displayed on the nw pane in addition to
the 10 messages.

7. Some Functionalities of SMGA
In addition to screening statemachinemovies, SMGAal-

lows us to play forward and backward frame-by-frame play-
back, etc. Under the state sequence movie (or state picture)
displayed by SMGA, there are several buttons shown as fol-
lows:

The “Run step” button plays forward frame-by-frame play-
back and the “Back step” does backward one. The “Dura-
tion” adjuster can change how fast a movie is played. When
you write a numberN in the box just right-hand side of “Go
to state” and click “Display,” the picture of state N is dis-
played.

The “Find Patterns” buttonmakes it possible to find states
that satisfy some conditions. When the button is clicked, the
following appears:

Writing conditions in the box under “Condition” and regular
expressions in the box under “Regex”, the “Get Patterns”
button finds all states appearing in the state sequence of the
input file that satisfy the conditions and regular expressions.
When the following condition is written in the condition box,
(state['havePriv[1]'] == 'false') &&

(state['havePriv[2]'] == 'false') &&

(state['havePriv[3]'] == 'false')

SMGA finds out 7 states among 1000 states that satisfy the
condition in the first input file. One state found is as follows:

We notice that there exists a privilegemessage in the network
in the state.

When the following condition is written in the condition
box,
(state['pc[1]'] == 'cs') &&

(state['pc[2]'] == 'cs')

SMGA does not find out any states among 1000 states that
satisfy the condition in the first input file. From it, we may
guess that two or more nodes can not be in their critical sec-
tions at the same time. For the following condition,
(state['havePriv[1]'] == 'true') &&

(state['havePriv[2]'] == 'true')

SMGA does find out any states, either. From it, we may
guess that two or more node ℎave_privilege’s cannot be true
at the same time.

The SMGA functionality that finds out states that match
regular expression for the Suzuki-Kasami protocol has not
been implemented. We would like to express some regular
expression that says that there exists a privilege message in
the network. It is one piece of our future work to implement
the SMGA functionality with regular expressions.

112

D. D. Bui & K. Ogata / Journal of Visual Language and Computing (2019) 105–115

Figure 10: A sequence of pictures for MSK (3)

8. Confirmation of Guessed Properties with
Model Checking
Observing some graphical animations ofMSK could help

us visually perceive some characteristics or properties ofMSK .Fig. 10 shows yet another sequence of states forMSK . Care-fully observing such graphical animations of MSK , we no-tice that there is always at most one node located at cs, l6,
l7, l8 or l9 at any given moment. The guessed property can
be confirmed by model checking with Maude as follows:
search [1] in SK : ic

=>* (pc[I]: l1) (pc[J]: l2) OCs .

for l1, l2 ∈ {cs, l6, l7, l8, l9}. The search command checks
if there is a state reachable from ic such that two nodes I& J

are located at cs, l6, l7, l8 or l9 at the same time. Because the
command does not find any such state, the guessed property
is true when there are three nodes.

Carefully observing some graphical animations ofMSK ,we also guess that there is a privilege message in the network
if and only if there is no node located at cs, l6, l7, l8 or l9
at any given moment. This is true in all pictures shown in
Fig. 8, Fig. 9 and Fig. 10. The guessed property can be con-
firmed by model checking with Maude as follows:

search [1] in SK : ic

=>* (nw: (msg(I,priv(Q,A)) ; NW))

(pc[J]: l1) OCs .

for l1 ∈ {cs, l6, l7, l8, l9}. The search command checks if
there is a state reachable from ic such that a privilege mes-
sage is in the network and a node is located at cs, l6, l7, l8
or l9 at the same time. Because the command does not find
any such state, the guessed property is true when there are
three nodes.

Carefully observing some graphical animations of SSK ,we also guess that there exists a node whose ℎave_privilege
is true if and only if there does not exist any other node at
cs, l6, l7, l8 or l9 at any given moment. This is also true in
all pictures shown in Fig. 8, Fig. 9 and Fig. 10. The guessed
property can be confirmed by model checking with Maude
as follows:
search [1] in SK : ic

=>* (pc[I]: l1) (havePriv[J]: true) OCs

such that I =/= J .

for l1 ∈ {cs, l6, l7, l8, l9}. The search command checks if
there is a state reachable from ic such that a node I is located
at cs, l6, l7, l8 or l9 and a node j owns the privilege at the
same time, where I≠J. Because the command does not find

113

D. D. Bui & K. Ogata / Journal of Visual Language and Computing (2019) 105–115

any such state, the guessed property is true when there are
three nodes.

Note that model checking only guarantees that the three
guessed properties are true when there are three nodes. We
need to use theorem proving so as to guarantee that the prop-
erties are truewhen there are an arbitrary number of nodes [2].

9. Some Tips on How to Design State Pictures
SMGA does not automatically produce visual represen-

tations or pictures of states but human users are supposed to
design state pictures. Any state pictures are not good. For
example, one possible state picture of the test&set protocol
is as follows:

Although state pictures like this could be automatically gen-
erated, we do not think that this state picture is very good
for the test&set protocol because the state picture is almost
the same as the text representation shown below the state
picture. The state picture for the test&set protocol shown in
Fig. 1 and Fig. 2 is better than the one shown above. This is
because (1) we can immediately realize how many sections
there are totally, (2) how many processes there are in each
section and (3) the relations among the sections such that a
process located at cs will move to rs. We can also visually
perceive that (4) variable locked is shared by all processes
and (5) what section each process is located at.

We summarize some tips on how to design state pictures
for mutual exclusion protocols based on our experiences.

• To recognize what sections there are at which each
process or node is located, allocate the pane (or place)
for each section such that the relations among the sec-
tions are visually perceived and display some diagram,
such as a circle on which a process or node ID is writ-
ten, on the designated pane;

• To recognize what pieces of information, such as the
network for the Suzuki-Kasami protocol and variable
locked for the test&set protocol, are shared by all pro-
cesses or nodes, allocate the pane (or place) for each
such piece of information such that we can visually
perceive they are shared by all processes and nodes
and display them on the designated panes adequately;

• To recognize whether there are some that are more
crucial than the others among the shared resources,
such as the messages that have been just put into and
deleted from the network, prepare the panes (or places)
for them and display them there adequately;

• To recognize what pieces of information are owned
by each process or node, allocate the panes (or places)
for them to make it possible to visually perceive what
pieces of information are owned by what processes or

nodes and display them on the designated panes ade-
quately.

There may be some pieces of information that are seem-
ingly stored in each process or node variables but actually the
pieces of information are shared by all processes or nodes.
queue and ln used in the Suzuki-Kasami protocol are such
pieces of information. To realize it, we need to comprehend
the Suzuki-Kasami protocol to some extent. One important
lesson learned from our experiences is that it is necessary to
comprehend mutual exclusion protocols well to some extent
so as to design reasonably good state pictures.

10. Related Work
Alloy [7] is a relational-logic based specification (ormod-

eling) language. Its environment is also called Alloy. Al-
loy is equipped with a SAT-based bounded model checker.
When it finds a counterexample, it automatically visualizes
states. PAT (Process Analysis Toolkit) [13] is an enhanced
simulator, model checker and refinement checker for concur-
rent and real-time systems. Its simulator can automatically
visualize states or state sequences, such as counterexamples.
Automatic state visualization could help human users com-
prehend states or state sequences, such as counterexamples,
better to some extent. Each application or system, however,
has its own characteristics and then must have a good pic-
ture that cannot be automatically generated but should be
designed by human users especially if the main purpose of
graphically animating statemachines is to find out non-trivial
properties that could be used as lemmas for theorem prov-
ing. A graphical user interface for Maude-NPA has been
developed [11]. Maude-NPA is a high-level security proto-
col analysis language and system implemented on the top of
Maude. The graphical user interface is dedicated to Maude-
NPA and then cannot be used for our main purpose.

Visualization of formal specifications have been attempted.
Hoxha, et al. [6] have proposed how to visualize real-time
temporal logic formulas because it is a error prone task to
specify desired requirements in such logic for conventional
engineers. Tikhonova, et al. [15] have proposed how to vi-
sualize formal specifications in a DSL implemented on the
top of Event-B and Arcainiet al. [1] have proposed a visual
notation for Abstract State Machines (ASMs). Unlike these
studies, SMGA does not aim at visualizing formal specifica-
tions.

Computer networks have been grown and intricate. So-
cial networking service (SNS) has been used by many peo-
ple over the world and then networks constituted of those
SNS users have become very complex. Visualization is one
promising way to comprehend such complex networks and
then network visualization has been intensively studied. Tools,
such as Gephi [3] and Cytoscape [12], have been developed.
Some visualization techniques used in those tools could be
used to implement some functionalities given by SMGA.Be-
cause state machines cannot be necessarily expressed as net-
works only, however, those network visualization tools can-
not be directly used to graphically animate state machines.

114

D. D. Bui & K. Ogata / Journal of Visual Language and Computing (2019) 105–115

11. Conclusion
We have described graphical animations of the Suzuki-

Kasami protocol with a revised version of SMGA. Observ-
ing them has made us guess some properties of the state
machine formalizing the Suzuki-Kasami protocol. We have
used the Maude reachability analyzer (the search command)
to confirm that the guessed properties are invariant with re-
spect to the state machine when there are three nodes and
each node enters its critical section once. The case study
demonstrates that state machine graphical animations could
make humans perceive state machine properties. We have
summarized tips on how to design good state pictures for
mutual exclusion protocols.

One piece of our future work is to graphically animate
state machines that formalize other protocols than mutual
exclusion protocols with SMGA or a further revised ver-
sion of SMGA, although Alternating Bit Protocol (ABP) has
been tackled with SMGA [8]. Another piece of our future
work is to formally verify that the Suzuki-Kasami proto-
col enjoys the three properties by theorem proving as were
done in [2]. The current implementation of SMGA is com-
pletely independent from Maude, which is pros and cons.
The pros is that SMGA can play graphical animations of
state sequences from another tool, such as Java Pathfinder,
provided that state sequence formats conforms to SMGA.
The cons is that state sequences needs to be generated in
advance. It would be preferable to integrate SMGA with
Maude so that state sequences generated by Maude can be
visualized on-the-fly, which is yet another future work of
ours.

Acknowledgment
The authors would like to thank the anonymous review-

ers who carefully read an earlier version of the paper and
gave them valuable comments without which they were not
able to complete the present paper.

References
[1] Arcaini, P., Bonfanti, S., Gargantini, A., Riccobene, E., 2016. Visual

notation and patterns for abstract state machines, in: STAF 2016 Col-
located Workshops, Revised Selected Papers, Springer. pp. 163–178.
doi:10.1007/978-3-319-50230-4_12.

[2] Aung, M.T., Nguyen, T.T.T., Ogata, K., 2018. Guessing, model
checking and theorem proving of state machine properties – a case
study on Qlock. Intl J. Softw. Eng. & Comput. Sys. 4, 1–18. doi:doi.
org/10.15282/ijsecs.4.2.2018.1.0045.

[3] Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi: An open source
software for exploring and manipulating networks, in: 3rd AAAI
ICWSM, pp. 361–362.

[4] Bui, D.D., Ogata, K., 2019. Graphical animations of the suzuki-
kasami distributed mutual exclusion protocol, in: DMSVIVA 2019,
KSI Research Inc.. pp. 125–134. doi:10.18293/DMSVIVA2019-012.

[5] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer,
J., Talcott, C., 2007. All About Maude. volume 4350 of LNCS.
Springer.

[6] Hoxha, B., Bach, H., Abbas, H., Dokhanchi, A., Kobayashi, Y., 2014.
Towards formal specification visualization for testing and monitoring
of cyber-physical systems, in: DIFTS14.

[7] Jackson, D., 2012. Software Abstraction. The MIT Press.

[8] Nguyen, T.T.T., Ogata, K., 2017a. Graphical animations of state
machines, in: 15th IEEE DASC, pp. 604–611. doi:10.1109/
DASC-PICom-DataCom-CyberSciTec.2017.107.

[9] Nguyen, T.T.T., Ogata, K., 2017b. Graphically perceiving char-
acteristics of the MCS lock and model checking them, in: 7th
Intl Workshop SOFL+MSVL, Springer. pp. 3–23. doi:10.1007/
978-3-319-90104-6_1.

[10] Ogata, K., Futatsugi, K., 2007. Comparison of Maude and SAL by
conducting case studies model checking a distributed algorithm. IE-
ICE Trans. 90-A, 1690–1703. doi:10.1093/ietfec/e90-a.8.1690.

[11] Santiago, S., Talcott, C.L., Escobar, S., Meadows, C.A., Meseguer,
J., 2009. A graphical user interface for Maude-NPA, in: 9th Spanish
Conf. Prog. & Lang., pp. 3–20. doi:10.1016/j.entcs.2009.12.002.

[12] Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ram-
age, D., Amin, N., Schwikowski, B., Ideker, T., 2003. Cytoscape: A
software environment for integratedmodels of biomolecular interac-
tion networks. Genome Res. 13, 2498–2504. doi:10.1101/gr.1239303.

[13] Sun, J., Liu, Y., Dong, J.S., Pang, J., 2009. PAT: Towards flexible
verification under fairness, in: 21st CAV, Springer. pp. 709–714.

[14] Suzuki, I., Kasami, T., 1985. A distributed mutual exclusion algo-
rithm. ACM TOCS 3, 344–349. doi:10.1145/6110.214406.

[15] Tikhonova, U., Manders, M., Boudewijns, R., 2016. Visualization
of formal specifications for understanding and debugging an indus-
trial DSL, in: STAF 2016 Collocated Workshops, Revised Selected
Papers, Springer. pp. 179–195. doi:10.1007/978-3-319-50230-4_13.

115

http://dx.doi.org/10.1007/978-3-319-50230-4_12
http://dx.doi.org/doi.org/10.15282/ijsecs.4.2.2018.1.0045
http://dx.doi.org/doi.org/10.15282/ijsecs.4.2.2018.1.0045
http://dx.doi.org/10.18293/DMSVIVA2019-012
http://dx.doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.107
http://dx.doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.107
http://dx.doi.org/10.1007/978-3-319-90104-6_1
http://dx.doi.org/10.1007/978-3-319-90104-6_1
http://dx.doi.org/10.1093/ietfec/e90-a.8.1690
http://dx.doi.org/10.1016/j.entcs.2009.12.002
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1145/6110.214406
http://dx.doi.org/10.1007/978-3-319-50230-4_13

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	paper15.pdf
	_References

	Blank Page
	Blank Page
	Blank Page

