
 
Journal of 

Visual Language and 

Computing 

Volume 2019, Number 1 



J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Journal of Visual Language and Computing

journal homepage: www.ksiresearch.org/jvlc

Comprehension of Software Architecture Evolution supported by Vi-
sual Solutions: A Systematic Mapping and a Proposed Taxonomy

Joao Werthera, Glauco de Figueiredo Carneirob and Rita Suzana Pitangueira Maciela

aFederal University of Bahia, Salvador, BRA
bUniversidade Salvador (UNIFACS), Salvador, BRA

A R T I C L E I N F O

Article History:

Submitted 8.1.2019
Revised 8.20.2019
Second Revision 8.20.2019
Accepted 8.20.2019

Keywords:
software architecture
software visualization
software architecture evolution
software architecture comprehension

A B S T R A C T

Context: Software visualization has the potential to support specialized stakeholders to understand the
software architecture (SA) evolution. To the best of our knowledge, there is no guideline to support
the use of visual solutions towards SA evolution comprehension. Goal: Analyze the use of visual
solutions for the purpose of comprehension with respect to software architecture evolution from the
point of view of software architects and developers in the context of both academia and industry.
Method: We conducted a Systematic Mapping Study to achieve the stated goal. Results: The study
identified 211 papers published from January 2000 to May 2019 as a result of the search strings
execution. We selected 21 primary studies and identified a gap in terms of a taxonomy to assist
specialists in the development or classification of solutions to support the comprehension of software
architecture evolution using visual resources. Conclusion: We observed that despite the relevance of
the use of visual solutions to support the comprehension of software architecture evolution, only 21
studies have reported these initiatives, suggesting that there is still room for the use of different visual
metaphors to represent its components, relationships and evolution throughout the releases.

© 2019 KSI Research

1. Introduction

Software evolution reflects changes undergone by the soft-
ware during its lifespan [1] [2]. The study of software evo-
lution is essential to better support changes in software re-
quirements over time, keeping its integrity at a lowest pos-
sible cost [3] [4] [5]. Software Architecture (SA) is the de-
sign model used to build and evolve a software system [6].
Throughout the analysis of the software architecture, it is
possible to understand the dimensions along which a sys-
tem is expected to evolve [1]. The importance of SA in soft-
ware evolution process is that a software built without an
adaptable architecture normally will degenerate sooner than
others with a change-ready architecture [1]. The evolution
of a SA can be the result of changes in the current SA to
accommodate business demands, new technologies and/or

jwertherf@gmail.comn (J. Werther); glauco.carneiro@unifacs.br
(G.d.F. Carneiro); ritasuzana@dcc.ufba.br (R.S.P. Maciel)

www.unifacs.br (G.d.F. Carneiro); pgcomp.dcc.ufba.br (R.S.P.
Maciel)

ORCID(s): 0000-0001-6241-1612 (G.d.F. Carneiro);
0000-0003-3159-6065 (R.S.P. Maciel)

platform or other reason that impacts the SA [7]. The com-
prehension of SA is essential for the development and evo-
lution of software systems [8][9] and can be supported by
software visualization resources to understand key SA char-
acteristics regarding architectural models and design deci-
sions [8] [10].

Software Visualization (SV) has been used to support
the SA comprehension in the context of software systems.
This support usually occurs through the use of different vi-
sual metaphors to represent its components, relationships
and evolution throughout the releases [9]. The use of visual
solutions to represent SA and its architecture design decision
can improve significantly their understanding [9]. SA visu-
alization may concern with the evolution of its components
throughout the releases, not only its static visualization [11].

To the best of our knowledge, there is no guideline to
support the use of visual solutions towards SA evolution com-
prehension. For this reason, we conducted this Systematic
Mapping Study (SMS) to identify evidence in the literature
on this issue provided by papers published in peer-reviewed
conferences and journals from January 2000 to May 2019.

DOI reference number: 10.18293/JVLC2019N1-008
53



J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

From the 211 studies retrieved by the search string applied
in specific electronic databases, we selected 21 studies to
gather evidence to answer the stated research questions.

We aim at identifying strengths, weaknesses and research
gaps related to the use of visual solutions to support the com-
prehension of software architecture evolution. Additionally,
the analysis of the selected papers allowed us to identify
the opportunity to propose a taxonomy to characterize and
evaluate visual solutions to support the comprehension of
SA evolution, representing their main characteristics, prop-
erties and features. According to Price, Baccker and Small
(1993) [12], a well-founded taxonomy provides a common
terminology and a set of related concepts that facilitate the
communication and classification of information in a spe-
cific area, enabling the identification and cataloging of new
discoveries and ideas in this area. The selected studies were
classified using the category dimension of the proposed tax-
onomy as follows: 14% were categorized as Description,
38% as Technique, 67% as Tool and 19% as Environment.
Besides the category dimension, the proposed taxonomy con-
tains other five additional dimensions: stage, visualization
form, static representation, dynamic representation and ar-
chitectural tasks.

This paper is an extension of an earlier conference pa-
per [13]. Our original work related a systematic mapping
conducted for analyze the use of visual solutions for the pur-
pose of comprehension with respect to software architec-
ture evolution from the point of view of software architects
and developers in the context of both academia and indus-
try. In this extension work, a new version of this system-
atic mapping, we adjusted the PICO criteria to build a new
version of the search string maintaining the original goal
and research questions. We aimed at increasing the number
of selected papers and therefore improve the findings dis-
cussed in this study. We also included a new background sec-
tion to present a contextualization of issues related to soft-
ware architecture, software evolution, architecture evolution,
software visualization and software architecture visualiza-
tion considered relevant in this systematic mapping. We also
narrowed the interval of publication of searched papers by
changing the upper bound of the interval from December
2018 to May 2019. However, we did not identified impact
of this change in the number of retrieved papers.

The remainder of this paper is organized as follows. Sec-
tion 2 shows a brief contextualization on software architec-
ture, software architecture evolution and their respective re-
lationships with software visualization. Section 3 discusses
related works and Section 4 presents the design we adopted
to conduct this SMS. The Section 5 reports the results and
findings of this study, and proposes a new taxonomy for vi-
sual solutions to software architecture evolution. The Sec-
tion 6 presents the answers to the stated research questions.
Finally, we conclude and mention future work in Section 7..

2. Background
SA refers to a set of components of a software system,

their connections and their principles and guidelines to man-
age the development and evolution during software life cycle
[14]. SA describes the system’s structure, interaction of its
components and their core properties, playing an important
role as an interface between requirements and source code
[15]. SA is a possible mean to provide evidence if in fact the
software is in compliance with its non-functional require-
ments (e.g performance, reliability, scalability, etc.) [15].
SA is also used to describe high-level structures and behav-
ior of a software system [16], which contributes to support
the software evolution [17]. In addition, SA provides a better
understanding of the software to its stakeholders [15].

Software evolution refers to the dynamic behavior of soft-
ware systems as they are submitted to changes over time [18]
[19]. The analysis of software evolution is essential to both
understand past and to plan future changes in the software,
keeping its integrity (mainly the architectural one), at a low-
est possible cost [20]. The importance of SA in software
evolution process is that a software built without an adapt-
able architecture is prone to have shorter lifespan than others
that have a change-ready architecture, impairing its evolu-
tion over time [21]. The analysis of SA evolution signifi-
cantly improves the perception of software evolution. SA
allows the planning and restructuring of the software system
in a high level of abstraction, being a valuable reference for
the discussion with stakeholders regarding the quality and
business trade-off [7]. The comprehension of SA is essen-
tial for the development and evolution of software systems.
Due to the amount of information, this task can be more ef-
fective when supported by resources that help to soften the
required cognitive effort to perform it [11].

Shahin, Liang and Khayyambashi [9] argued that the use
of SV to represent SA and also its evolution can improve the
comprehension of both. In fact, SV provides solutions to
support SA comprehension and its corresponding evolution
[8]. The SA visualization is an important area in SV [11] and
visually represents components and structures from a given
SA associated with its architecture design decisions [6]. It
may involve not only the visualization of software structures
and their relationships, but also the evolution of these struc-
tures in the software lifespan [11]. Gallagher, Hatch and
Munro (2008) [22] stated that SA visualization can improve
the comprehension of software systems for all their stake-
holders in all their aspects, along their evolution. Besides
being fundamental to discuss and understand the SA in ac-
cordance with the variety of project stakeholders, SA visu-
alization is also critical for decisions related to SA [23] and
can visually represent some architectural design decisions
[6]. In the framework proposed by Gallagher, Hatch and
Munro (2008) [22] to evaluate SA visualization tools, one
of the features of the key area Task Support (TS) is the TS
Show evolution. The question of this feature using the GQM
approach [24] was “Does visualization show the evolution
of software architecture?". This framework considers that a
SA visualization tool should indeed provide facility to show

54



J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

evolution, whether in basic or advanced way [22].

3. Related Works
Software visualization has been used in different areas

of software engineering such as software architecture, soft-
ware evolution and software design [8][25]. In the following
paragraphs we present results provided by a selection of sec-
ondary studies that discussed the use of software visualiza-
tion to support the execution of activities targeting software
architecture. This is not an exhaustive list, it is rather an
illustrative set of relevant papers that motivated the conduc-
tion of this systematic mapping.

Shahin, Liang and Babar [8] conducted a systematic re-
view to characterize the use ofVisualization Techniques (VT)
to represent SA in different application domains. Results
classified theVTs into four types, according to its popularity:
graph-based, notation-based, matrix-based andmetaphor-based.
From this set, the graph-based stood out for its popularity
in industry. The same authors argued that VTs have been
used to support SA activities for several purposes: (i) the
understanding of architecture evolution; (ii) the understand-
ing of static characteristics of architecture; and (iii) search,
navigation, and exploration of architecture design [8]. Addi-
tionally, the systematic review reported that VTs have been
applied to support SA related activities in a large range of
domains. From those domains, software graphics and dis-
tributed system have received special attention from the in-
dustry. Finally, the authors argued that SV is one of the in-
teresting ways to support the understanding of the rationale
behind design decisions that affect software architecture [8].
It should be mentioned that Shahin, Liang and Babar [8] fo-
cused on VT to represent SA. They did not discussed the use
of SV to support activities related to the comprehension of
SA evolution.

Telea, Voinea and Sassenburg (2010) [25] performed a
survey to investigate the use of visual tools for the compre-
hension of SA from the perspective of stakeholders. They
analyzed the results using software architecture visualiza-
tions tools (AVTs) aiming to guide industrial practitioners in
the adoption of tools and techniques according requirements
and capabilities of each type. The authors considered three
types of stakeholders: technical users (developers), project
managers/lead architects, and consultants. They concluded
that AVTs were effective to support technical users and less
adequate for consultants, according to expectancy of each
stakeholder [25]. Although Telea, Voinea and Sassenburg
(2010) [25] fovused on the use of visual solutions for SA
comprehension, they did not focused on SA evolution solu-
tions.

Breivold, Crnkovic and Larson (2012) [1] conducted a
systematic review focusing on software architecture evolu-
tion. The goal of the review was to provide an overview at
the architectural level of existing approaches in the analy-
sis of software evolution, and also examine possible impacts
of this theme on both research and industry. The authors
identified five main categories related to this theme: (i) tech-

Table 1
The Goal of this SMS according to the GQM Approach

Analyze the use of visual solu-
tions

for the purpose of comprehension
with respect to software architecture

evolution
from the point of view
of

software architects and
developers

in the context of both academia and
industry

niques supporting quality consideration during software ar-
chitecture design, (ii) architectural quality evaluation, (iii)
economic evaluation, (iv) architectural knowledge manage-
ment, and (v) modeling techniques [1]. The conclusion of
this study emphasized the need of development and improve-
ment of methods, process and/or tools to design architecture
in large systems, due to the amount and complexity of ar-
tifacts produced and used during their respective lifecycle.
This study also presented conclusions for researchers and
practitioners, including considering the possibility to elab-
orate new ideas beyond Lehman’s lays (about software evo-
lution). Additionally, this paper also reported the existence
of only few works targeting the theme, indicating the need
of more research effort in this ares [1]. Despite Breivold,
Crnkovic and Larson (2012) [1] studied the evolution of SA,
they did not emphasized how visual solutions can be used to
support the comprehension of SA evolution.

We could identify the relevant contribution of the afore-
mentioned studies to the SA area, including SA evolution.
However, they did not focused on visual solutions to support
the comprehension of the SA evolution.

4. Research Design
We conducted a SMS to find evidence for the use of vi-

sual solutions to support the comprehension of SA evolution
during the software lifespan. A SMS is a form of a system-
atic literature review (SLR)withmore general research ques-
tions, aiming to provide an overview of the given research
[26]. We decided to conduct a SMS due to the potential that
this methodology has to reduce the analysis bias, through the
establishment of selection procedures [27].
4.1. Planning

The protocol we adopted to conduct this secondary study
was comprised of objectives, criteria for considering papers,
research questions, selected electronic databases, search strings,
selection procedures, exclusion, inclusion and quality crite-
ria to select the studies from which we aim to answer the
stated research questions [27]. The protocol of this SMS and
related artifacts are available in a public Github repository 1.
The goal of this study is presented in Table 1 according to
the GQM approach [28].

1https://github.com/jvlc2019saevolution/submission

55



J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Table 2
PICO Criteria for Search Strings

(P)opulation studies in software architecture
(I)ntervention visual solutions to support the comprehension

of software architecture evolution
(C)omparison not applicable
(O)utcomes solutions (i.e., tools, techniques, environment,

approaches, models or methodology) with
focus on visual resources to support soft-
ware architecture evolution; visual solutions
to software architecture evolution; use of vi-
sual resources to comprehension of software
architecture evolution

The Research Question (RQ) is “How have researchers
and practitioners from academia and industry used software
visual solutions to support the comprehension of software
architecture evolution based on papers published in the peer-
reviewed literature?". This research question is in line with
the goal of this review, and has been derived into four spe-
cific research questions, as follows: Specific Research Ques-
tion 1 (SRQ1): What are the main visual solutions to support
the software architecture evolution comprehension? Spe-
cific Research Question 2 (SRQ2): What are the purposes of
each visual solution to support the software architecture evo-
lution comprehension? SpecificResearchQuestion 3 (SRQ3):
How the solutions designed to visually support comprehen-
sion of software architecture evolution can be classified?
Specific Research Question 4 (SRQ4): Which visual forms
are used to support comprehension of software architecture
evolution?

The motivation behind RQ is justified by the acknowl-
edgment that the comprehension of the software architecture
evolution is required to tackle issues or improvements related
to the software architecture and its evolution throughout re-
leases [23] [6] [9] [8] [7] [3]. The specific research questions
have the goal to gather evidence to support the answer of the
stated RQ.

We considered the PICO criteria to define the search strings,
as shown in Table 2. The search strings are based on this cri-
teria for the selective process of papers for this review.

The formation of the search string applied in the elec-
tronic databases is shown in Tables 3 and 4. The Table 3
refers to major terms for the research objectives, built us-
ing the PICO criteria. We also used of alternative terms and
synonyms of these major terms. For example, the term vi-
sualization can be associated with terms such as visual, vi-
sualizing and visualize. These alternative terms, as shown
in Table 4,are also included in the search string. We built
the final search string by joining the major terms with the
boolean “AND” and joining the alternative terms to the main
termswith the boolean “OR”. The focus of the formed search
strings is to focus on papers targeting the research questions
of this systematic mapping.

Table 5 presents the electronic databases from which we
retrieved the papers along with the respective search strings
used to retrieve the papers. Table 6 presents the criteria for
exclusion and inclusion of papers in this review. The OR
connective adopted in the exclusion criteria, means that the

Table 3
Major terms for the research objectives

Criteria Major Terms
(P)opulation AND “software architecture"
(I)ntervention AND “comprehension" AND “evolution"
(C)omparison Not Applicable
(O)utcomes AND “visual" AND “solution"

Table 4
Alternative terms from majors terms

Major Term Alternative Terms
“evolution" (“evolution" OR “evolve" OR “evolving")
“comprehension" (“comprehension" OR “understanding" OR

“understand" OR “support" OR “analysis"
OR “evaluation" OR “examination" OR
“explore" OR “exploring")

“solution" (“tool" OR “environment" OR “technique"
OR “approach" OR “model" OR “methodol-
ogy" OR “solution")

“visual" (“visualization" OR “visualizing" OR “visual-
ize" OR “visual")

Table 5
Electronic Databases Selected for this SMS

Database and URL Search Strings
Scopus

www.scopus.com (“software architecture" AND (“evolution"
OR “evolve" OR “evolving") AND (“com-
prehension" OR “understanding" OR “un-
derstand" OR “support" OR “analysis" OR
“evaluation" OR “examination" OR “explore"
OR “exploring") AND (“tool" OR “environ-
ment" OR “technique" OR “approach" OR
“model" OR “methodology" OR “solution")
AND (“visualization" OR “visualizing" OR
“visualize" OR “visual")

ACM Digital Library
portal.acm.org (+“software architecture" +(“evolution"

“evolve" “evolving") +(“comprehension" “un-
derstanding" “understand" “support" “anal-
ysis" “evaluation" “examination" “explore"
“exploring") +(“tool" “environment" “tech-
nique" “approach" “model" “methodology"
“solution") +(“visualization" “visualizing"
“visualize" “visual"))

Engineering Village
(Ei Compendex)

www.engineeringvillage.com
(“software architecture" AND (“evolution"
OR “evolve" OR “evolving") AND (“com-
prehension" OR “understanding" OR “un-
derstand" OR “support" OR “analysis" OR
“evaluation" OR “examination" OR “explore"
OR “exploring") AND (“tool" OR “environ-
ment" OR “technique" OR “approach" OR
“model" OR “methodology" OR “solution")
AND (“visualization" OR “visualizing" OR
“visualize" OR “visual"))

IEEE Xplore
ieeexplore.ieee.org (“software architecture" AND (“evolution"

OR “evolve" OR “evolving") AND (“com-
prehension" OR “understanding" OR “un-
derstand" OR “support" OR “analysis" OR
“evaluation" OR “examination" OR “explore"
OR “exploring") AND (“tool" OR “environ-
ment" OR “technique" OR “approach" OR
“model" OR “methodology" OR “solution")
AND (“visualization" OR “visualizing" OR
“visualize" OR “visual")

exclusion criteria are independent, i.e., meeting only one cri-
terion is enough to exclude the paper. On the other hand,
the AND connective in the inclusion criteria, means that all
inclusion criteria must met to select the paper under analy-
sis. Table 6 also presents the quality criteria used for this
review represented as questions that were adopted and ad-
justed from Dyba and Dingsoyr [29]. A critical examination
following the quality criteria established in this table was
performed in all remaining papers that passed the exclusion
and inclusion criteria. All these criteria must met (i.e., the
answer must be YES for each one) to permanently select the
paper, otherwise the paper must be excluded. The exclusion,

56



J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Table 6
Exclusion, Inclusion and Quality Criteria

Type Id Description Connective
or Answer

Exclusion E1 Published earlier than 2000 OR
Exclusion E2 The paper was not published

in a peer-reviewed journal or
conference

OR

Exclusion E3 The paper does not present a
primary study

OR

Exclusion E4 The paper is not written in
English

OR

Exclusion E5 The paper has less than 3
pages

OR

Inclusion I1 The paper must present an
approach in the usage of
visual solution to support the
comprehension of software
architecture evolution

AND

Quality Q1 Are the aims of the study
clearly specified?

YES/NO

Quality Q2 Is the context of the study
clearly stated?

YES/NO

Quality Q3 Does the research design sup-
port the aims of the study?

YES/NO

Quality Q4 Has the study an adequate
description of the visual
solution?

YES/NO

Quality Q5 Is there a clear statement
of findings by applying the
visual solution to support the
comprehension of software
architecture evolution?

YES/NO

Table 7
Steps of the Selection Process

Step Description
1 Apply the search strings to obtain a list of candidate

papers in specific eletronic databases.
2 Remove replicated papers from the list.
3 Apply the exclusion criteria in the listed papers.
4 Apply the inclusion criteria after reading abstracts, in-

troduction and conclusion in papers not excluded in
step 3.

5 Apply quality criteria in selected papers in step 4.

Table 8
Classification Options for Each Retrieved Paper

Classification Description
Excluded Papers met the exclusion criteria.
Not Selected Papers not excluded due to the exclusion cri-

teria, but did not meet the inclusion or quality
criteria.

Selected Papers did not meet the exclusion criteria and
met both the inclusion and quality criteria.

inclusion and quality criteria were used in the selection pro-
cess as presented in Table 7. According to Table 8, at the end
of the selection process, all the retrieved papers were classi-
fied in one of the three options: Excluded, Not Selected and
Selected.
4.2. Execution

The quantitative evolution of papers throughout the ex-
ecution of this SMS is summarized in Figure 1. The fig-
ure uses the PRISMA flow diagram [30] and shows the per-
formed steps and the respective number of documents for
each phase of the SMS, following the outline described in
Subsection 4.1.

Figure 1: Procedures and its results in the papers selection
process.

Table 9
Effectiveness of the Search Strings

Database

Selected
Papers

Excluded
Papers

Not
Selected
Papers

Replicated
Papers

Total
Search
Results

Search
Effectiveness

ACM Digital
Library 3 3 23 1 30 10.0%

Engineering
Village 2 3 16 35 56 3.6%

IEEE Xplore 12 5 38 7 62 19.4%
Scopus 4 5 16 38 63 6.3%
TOTAL 21 16 93 81 211 10.0%

Table 9 presents the effectiveness of the the search strings
showed in Table 5 considering the 211 retrieved papers. The
electronic database that more contributed with selected stud-
ies was the IEEE Xplore with five papers, corresponding to
a search effectiveness of 18.5%. The twelve selected papers
represented 13.0% of all 211 retrieved papers.

The Figure 2 presents a overview of contribution of each
exclusion criterion in total of excluded papers. The exclu-
sion criterion that had more contribution was the E1 crite-
rion that says “Published date less than 2000", accounting
for 50% of excluded papers.

The Figure 3 presents graphics that provide a overview
of sources (electronic databases) distribution by papers sta-
tus. The papers status is according to Table 8. The Fig-
ure 3a shows the selected papers distribution by source. The
“IEEE Xplore" had the major contribution for selected pa-
pers with 57% of occurrences. The “Scopus" was the second
with 19% of selected studies. The Figure 3b shows the not-
selected papers distribution by source. The “IEEE Xplore"
leaded with 41% of not-selected papers and “ACM Digital
Library" came in second with 25%. The Figure 3c presents
the excluded papers distribution by source. The “Scopus"

57



J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Figure 2: Contribution of exclusion criteria in total of ex-
cluded papers.

Figure 3: Overview of paper totalization by status and by
electronic databases.

and “IEEE Xplore" databases had the majors contributions
with 31%of excluded papers each one. The Figure 3d presents
the distribution of all found papers by source. The “Sco-
pus" had the major contribution with 30%, close to “IEEE
Xplore"with 29%of all papers found in its databases searches.

5. Results
The Table 10 shows the list of 21 selected papers of this

systematic mapping. All papers are labeled as “S” followed
by the paper reference number. There is 18 selected pa-
pers that were published in conferences. The other 3 articles
(S02, SO3 and S16) were published in journals. They are
discriminated in the “Venue" column.

The paper S01 [4] describes a solution aimed at enhanc-
ing the comprehension of the software architectural evolu-
tion based on visual resources. This solution proposes the
use of efficient navigation and visualization of the history
of software architectural changes throughout releases, inte-
grating the use of evolution metrics with software visualiza-
tion techniques. This integration has the goal to support both
tracking and analysis of architectural changes from past re-
leases. The authors developed the so called Origin Analysis
method to analyze software structural change. This method
supports the identification of possible origin of function or
file that appears to be new in a later release of the software
system, if it already existed in the system elsewhere [4]. This
method highlights the use of two techniques in its implemen-
tation: Bertillonage Analysis andDependency Analysis. The

paper also performs a study of evolution of a real tool to
demonstrate the use of BEAGLE, a prototype implementa-
tion of this solution that works as an integrated environment
for studying software architecture evolution, as a validation
form of the Origin Analysis [4]. This paper does not discuss
explicitly its limitations, even though cites some of them.

The paper S02 [31] proposes the usage of architecture
stability or resilience concepts to evaluate a SA, using Ret-
rospective Analysis to achieve this goal. Retrospective Anal-
ysis is a technique that verify the amount of changes applied
is successive releases of a software system and analyze how
smoothly the evolution took place. It works with a set of
software metrics based in size, growth, changes and cou-
pling, using visual tools to graphically observe the evolution
of thesemetrics. The authors [31] affirms that theRetrospec-
tive Analysis can have many uses, not only to verify the sta-
bility, but also to calibrate the predictive evaluation results as
well as to predict trends in evolution of software. The paper
describes a case study of twenty releases of a telecommu-
nication software system containing a few million lines of
code to show how Retrospective Analysismay be performed.
However, the paper does not provide any procedures to per-
form the Retrospective Analysis.

The paper S03 [32] introduces a graphical and formal
model to represent architecture styles and their reconfigura-
tions in software evolution. The model specifies a SA using
graphs and graph grammars to represent components (also
called edges) and connections (also referred as nodes). Two
techniques are formally presented. The first uses Synchro-
nized Hyperedge Replacement Systems, dynamically allow-
ing changes of components and connections according to
their synchronization requirements specified in the nodes.
The second technique specifies complex reconfigurations as
transformations over derivations of graph grammars using
lambda-calculus. However, the techniques are only described
in a formal and summarizedway and the paper does not men-
tion any implementation or case study of them [32] .

The paper S04 [33] presents the tool-set and method-
ology Complex Systems Analysis Based Architecture (ABA-
CUS) as a visual solution to model complex systems, com-
prehend their architecture and analyze their characteristics
and its potential changes. The paper reports that ABACUS
allows to collect and merge all enterprise architectural infor-
mation of a system into a unified repository and also evalu-
ate system properties like performance, openness, and evolv-
ability. The paper also highlights that ABACUS provides a
hierarchical 3D visualization to allow to look across the en-
terprise architecture. The authors [33] emphasize that the
use of ABACUS is not only use its tool-set, but also follow
itsmethodology, as illustrated in Figure 4. They conclude af-
firming that the usage of ABACUS allows the architects con-
duct the architecture design and evolution based on quantifi-
able non-functional requirements. However, the paper does
not presents any case study of ABACUS neither presents any
evidence of its practical usage.

The paper S05 [34] proposes a graphical technical de-
scription of the architectural instance of a software system,

58



J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Table 10
List of Selected Papers

Ref.
Label Title Venue Year

S01 An integrated approach for studying architectural evolution
[4]

10th International Workshop on Program Comprehension 2002

S02 On architectural stability and evolution [31] Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Vol. 2361, pp. 13-23 (JOURNAL)

2002

S03 Two graph-based techniques for software architecture
reconfiguration [32]

Electronic Notes in Theoretical Computer Science, Vol. 51,
pp. 177 - 190 (JOURNAL)

2002

S04 The ABACUS architectural approach to computer-based
system and enterprise evolution [33]

12th IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS)

2005

S05 An Approach based on Bigraphical Reactive Systems to
Check Architectural Instance Conforming to its Style [34]

First Joint IEEE/IFIP Symp. Theoretical Aspects of Soft-
ware Engineering (TASE)

2007

S06 Exploring Inter-Module Relationships in Evolving Software
Systems [5]

11th European Conference on Software Maintenance and
Reengineering (CSMR)

2007

S07 Technology Infusion of SAVE into the Ground Software
Development Process for NASA Missions at JHU/APL[35]

IEEE Aerospace Conference 2007

S08 The SAVE Tool and Process Applied to Ground Software
Development at JHU/APL: An Experience Report on
Technology Infusion [36]

31st IEEE Software Engineering Workshop (SEW) 2007

S09 Visualizing Software Architecture Evolution Using Change-
Sets [37]

14th Working Conference on Reverse Engineering (WCRE) 2007

S10 YARN: Animating Software Evolution [38] 4th IEEE International Workshop on Visualizing Software
for Understanding and Analysis

2007

S11 Development of a Methodology, Software-Suite and Service
for Supporting Software Architecture Reconstruction [39]

14th European Conf. Software Maintenance and Reengi-
neering

2010

S12 Evolve: tool support for architecture evolution [40] 33rd Int. Conf. Software Engineering (ICSE) 2011
S13 Model-Based Software Architecture Evolution and Evalua-

tion [41]
19th Asia-Pacific Software Engineering Conference 2012

S14 eCITY: A Tool to Track Software Structural Changes Using
an Evolving City [42]

IEEE International Conference on Software Maintenance 2013

S15 Run-time monitoring and real-time visualization of software
architecture [43]

Asia-Pacific Software Engineering Conference, APSEC 2013

S16 eCITY: Evolutionary software architecture visualization -
An evaluation [44]

Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), Vol. 8345 LNCS, pp. 201-224 (JOUR-
NAL)

2014

S17 eCITY+: A Tool to Analyze Software Architectural Rela-
tions Through Interactive Visual Support [45]

European Conference on Software Architecture Workshops 2014

S18 The ARAMIS Workbench for Monitoring, Analysis and Vi-
sualization of Architectures Based on Run-time Interactions
[46]

European Conference on Software Architecture Workshops 2015

S19 Towards the understanding and evolution of monolithic
applications as microservices [47]

42nd Latin American Computing Conference, CLEI 2016

S20 Supporting software architecture evolution by functional
decomposition [48]

5th International Conference on Model-Driven Engineering
and Software Development - MODELSWARD

2017

S21 EVA: A Tool for Visualizing Software Architectural Evolu-
tion [3]

40th International Conference on Software Engineering
(ICSE)

2018

Figure 4: The ABACUS methodology [33]

and verify the compliance to its corresponding style. This
solution is based on the Bigraphical Reactive Systems (BRS)
to perform the verification with formal methods, and uses

an extended version of a Bigraph to describe the instance.
Besides supplying a visual method to specify architectural
instances and styles, the solution proposed can enhance the
ability to design evolving systems. Additionally, the paper
shows two study cases in order to prove the effectiveness of
this solution [34].

The paper S06 [5] proposes an approach based on the
visual representation of inter-module dependencies and re-
lationships between SA components and modules through-
out multiple versions of the software system. The Semantic
Dependency Matrix is a visualization technique that shows
dependencies between two modules with similar behavior
classes. The Edge Evolution Film Strip is a visualization
technique that presents the evolution of an inter-module rela-
tions in a software system along itsmultiples versions. These
techniques were applied in two large open source software
systems, in reverse engineering context, to exemplify them.
The paper also purposes a pattern language for inter-module
relationships. The studied examples are provided from an
exploration prototype named Softwarenaut [5].

59



J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

The papers S07 [35] and S08 [36] describe the NASA
JHU/APL’s experiences in using the SAVE (Software Archi-
tecture Visualization and Evaluation) tool and process. The
SAVE tool addresses the understanding, maintenance and evolv-
ing issues, allowing software architects to navigate, visual-
ize, analyze, compare, evaluate, and improve their software
systems, all in only one environment. This tool can be also
used to develop a new architecture, compare with the cur-
rent one and still helps in change impact analysis, among
others features. The architecture comparison can also occur
between distinct software systems. The papers show how
the SAVE tool has been successfully applied to the Com-
mon Ground software, a shared software architecture used
by NASA missions software systems, in order to avoid fur-
ther SAmaintenance and evolution problems [35] [36]. How-
ever, the paper S07 [35] reports in more detail the workshops
that exposed the results found by the SAVE tool in the Com-
mon Ground’s architecture analysis and evolution. Despite
the presentation of the tool resources and features along the
studies, these papers do not discuss its limitations.

The paper S09 [37] presents Motive, a prototype of an
alternative approach to comprehension of software and its
architecture evolution, which in addition to showing the evo-
lution or changes of entities or components filtered by pe-
riod and level of abstraction - like most of existing visual
tools for SA evolution - allows users to visualize the net ef-
fect on the SA of any set of logically related changes. This
set is called change-set. Two java open source systems were
used to study and evaluate the Motive tool and this alterna-
tive approach. The authors [37] report that this evaluation
showed that the identification and visualization of the im-
pact of change-sets seems very promising to help architects
and developers comprehend the evolution of a software sys-
tem and its architecture.

The paper S10 [38] introducesYARN (Yet Another Reverse-
engineering Narrative), a prototype tool that implements an
approach to modeling, extracting and animating a SA evolu-
tion. Animating the changing dependencies is an intuitive
and natural way to visually realize, identify and compare
changes over system lifespan. The YARN generates anima-
tion through the YARN balls. The YARN ball is a type of
circle composed by subsystems (vertices) and changing de-
pendencies (edges), as shown in Figure 5. The animation
starts by showing a YARN ball at a chosen baseline and then
showing all the sequences of releases of a YARN ball pro-
gressively. Colour and thickness of edges varying according
to the number of changes and how many dependencies ex-
ist between two modules. One of the suggested uses of a
YARN ball by the authors [38] is to help the communication
between stakeholders of change based dependency informa-
tion in software projects. The authors also report that there
was created an informal user survey to evaluate the useful-
ness of the solution and the understanding of the software
and architecture evolution.

The paper S11 [39] presents the description and goals of
the project titled “Development of a methodology, software-
suite and service for supporting software architecture recon-

Figure 5: Shots of YARN Balls [38]

struction", intended to develop a methodology and a tool-
set (environment) to do automatic architecture reconstruc-
tion of software systems through visual resources utilization.
It also provides tracking of changes in architectural compo-
nents during software evolution. At the time this paper was
written (2010) the project was focused to systems that has
been built using Java or .NET technologies and deal with
SQL databases. This paper presents limitation of its study,
but only in a summarized way. It also shows details of the
current status (2010) of this project [39].

The paper S12 [40] introduces Evolve, a graphical mod-
eling tool that implements an ADL (Architectural Descrip-
tion Language) named Backbone that is focused on software
architecture evolution. Evolve supports definition and evo-
lution of SA using the Backbone, with particular attention to
incremental change and unplanned change processing, very
common activities in the software development and evolu-
tion process. Backbone provides constructs that allow changes
that may result in architectural anomalies but Evolve is able
to detect these anomalies. The paper shows the main charac-
teristics of Evolve and how it deal with changes definition in
SA, besides a brief use historic. The Evolve tool, at the time
the paper was published (2011), was freely available for aca-
demic research and the production of open source software
under the GNU Affero General Public License version 3.

The paper S13 [41] presents and proposes the develop-
ment of ARAMIS (Architecture Analysis and Monitoring In-
frastructure), an architecture meta-model based solution to
extract run-time architecture information and provide data to
generate new dynamic architecture views in real time. The
solution provides visual representations of the monitored ar-
chitecture at several abstraction levels, as well as the avail-
ability of methods to evaluate this architecture [41]. This
study does not present any type of implementation (only tech-
nical description), despite presents some limitations of the
solution.

The paper S14 [42] introduces eCITY, a tool that helps
software architects and developers to understand the soft-
ware structure of their system. It allows the track of compo-
nents’ insertion, removal, or modification over system lifes-
pan and provides an interactive visualization that provides an
overview of changes. All of this implemented under a city
metaphor using animations to represent the transitions of the
architecture components and color coding to highlight the
evolution and changes of these components (Figure 6). The

60



J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Figure 6: eCITY : a City View [42]

eCITY provides an overview of the entire system at a desired
point into its evolution process (life cycle), implementing it
under a city metaphor, allowing the user an interactive way
to understand and explore these changes. eCITY provides
views to help the changes over time, like: Timeline View, an
administrative view that uses charts and color to emphasize
changes between software system versions; and City View,
a city layout using animations to represent the transitions of
the architecture components and color coding to highlight
the evolution and changes of these components, as shown in
Figure 6. The eCITY tool works with compile-time infor-
mation, not providing dynamic views [42]. The eCITY was
originally designed as an Eclipse plug-in. This paper also
presents a summary of a conducted user study to emphasize
its usefulness.

The paper S15 [43] describes the implementation results
of some core characteristics ofARAMIS, previously proposed
in S07 [41]. ARAMIS is a approach for evolution and eval-
uation of software systems that relies on a infrastructure of
run-time monitoring to manage the behavior of the system,
in several abstraction levels. In this paper, a prototype of
ARAMIS was developed focused only in reconstruction of
object-level interactions. The prototype uses aspect-oriented
techniques to extract and gather the run-time architectural in-
formation, and the XMPP (Extensible Messaging and Pres-
ence Protocol) to distribute the gathered information for vi-
sualization in real-time, through specialized components, as
we can see in Figure 7. The evaluation of this process, ac-
cording to prototype results, shows that ARAMIS can easily
be used to demonstrate the behavior of the run-time moni-
tored systems [43].

The paper S16 [44] evaluates the eCITY tool, presented
in S14 [42]. The authors designed and conducted a con-
trolled experiment to perform the evaluation. In this ex-
periment, they proposed eCITY as a tool for improving the
analysis of SA evolution along its lifespan. They hoped that
through the use of this tool, the architects would bemore effi-
cient and effective when perform the analysis of architectural
changes. As a result of this experiment, the participants ob-
tained an average gain of 170% in efficiency and an average
gain of 15% in the effectiveness of the basic tasks of SA evo-
lution. The authors [44] considered that efficiencymeans the
time required for accomplishing a set of given tasks and ef-

[h!]

Figure 7: ARAMIS : a Prototype Overview [43]

fectiveness means the difference between the true and actual
score related to a task.

The paper S17 [45] presents eCITY+, an improved ver-
sion of eCITY, presented in S14 [42], now combining the
stable city layout and theHierarchical Edge Bundling (HEB),
an useful technique to help the implementation of 3D visu-
alization with the use of animation. The eCITY+ is a later
version of eCITY tool presented in S08 [42], owning char-
acteristics similar from its predecessor. The eCITY+ tool
primarily differs from its earlier version in the use ofHEB to
highlight changes in both the hierarchical structure as well as
the inter-dependencies between software components. The
eCITY+ tool, as its predecessor, performs analysis of soft-
ware architecture relationships through interactive visual sup-
port, using the city metaphor to provide an overview of the
entire system [45]. The eCITY+ also was consciously devel-
oped as a plug-in to traditional SA maintenance tools.

The paper S18 [46] updates the current status of theARAMIS,
previously presented in S13 [41] and S15[43], presenting
it now for understanding, communication integrity valida-
tion and evaluation of the behavior view of a software ar-
chitecture. This paper analysis a J2EE application to exem-
plify how ARAMIS can automatically validates the commu-
nication between the units of a software system, verifying
if it corresponds to its architecture model, including making
visualizations of these interactions available on higher and
more comprehensible abstraction levels [46].

The paper S19 [47] describes a technical solution tomod-
ernizemonolithic applications intomicroservices using soft-
ware visualization to support the comprehension of evolu-
tion process. This conceptual solution can provide a mod-
ernization process that uses a legacy system and generates
a set of visual diagrams that help architects and developers
to understand the system, also suggesting ways of code par-
titions for transforming into micro-services. The paper has
focus only in an understanding stage of modernization, not
in transformation stage [47]. The authors analyzed a large
Java EE application to validate this solution.

The paper S20 [48] presents a graphical approach that

61



J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

combines a functional decomposition analysis techniquewith
a non-functional impact analysis technique. Theoretically
the functional decomposition prevents the architecture from
degrading, but sometimes can be too expensive to implement
it. This approach intend to avoid this problem. The func-
tional decomposition technique uses individual relations (as-
sociations and attributes) as atomic units of decomposition,
partitioning them between the subsystems according to how
they are used by the system operations [49]. This technique
facilitates the selection of decompositions of low coupling
and high cohesion. The non-functional impact analysis tech-
nique uses the KAMP (Karlsruhe Architectural Maintain-
ability Prediction) approach [50]. The combination of this
two techniques guarantee a good equilibrium between func-
tional modularity and non-functional concerns. Finally, this
approach is illustrated with an example of evolution of a hy-
pothetical system [48].

The paper S21 [3] introduces EVA (Evolution Visualiza-
tion for Architectures), a visual tool to help software archi-
tects understand the evolution of architecture and therefore
track and analyze architectural changes. This tool can visual-
ize and explore architectures of software systems with a long
life cycle, including stages of its evolution. EVA provides
three main views: Single-Release Architecture View, that
shows the architecture of only one software system version,
as shown in Figure 8a; 3-DArchitecture-Evolution View, that
depicts architectures of multiple software system versions
in a single compositional view, as shown in Figure 8b; and
Pairwise Architecture-Comparison View, that presents the
architectural differences between two software system ver-
sions, as shown in Figure 8c. EVA allows its users to assess
the impact of design decisions, as well as its rationale, which
have influenced in the software architecture. As we can see
in Figure 8, EVA uses color coding to distinct packages or
groups of code level entities. The work is currently (2018)
focused on showing the explicit reasons behind the archi-
tectural changes, in order to assist the rationale of tracking
design during the software lifespan [3]. This article presents
limitations of its study, but does not discuss them explicitly.
The EVA tool was developed in Phyton and is available in a
GitHub repository.

Unfortunately, we could not find any taxonomy to clas-
sify solutions that support the comprehension of SA evo-
lution using visual resources. Then, to improve the under-
standing of these visual solutions previously described, we
propose a taxonomywith the goal to classify their main char-
acteristics, properties and features. Next, we present the tax-
onomy and the corresponding classification of each of the
selected visual solutions in this SMS.
5.1. Taxonomy for Visual Solutions to Support SA

Evolution Comprehension
In this subsection, we present the resulting taxonomy of

visual solutions to support the comprehension of software ar-
chitecture evolution. We argue that the concepts presented in
this taxonomy are key to understand the characteristics of vi-
sual solutions and therefore to answer the research questions

Figure 8: Three Types of Visualization of EVA [3]

of this secondary study. We used the software visualiza-
tion taxonomy proposed by Price, Baecker and Small (1993)
[12] and the framework purposed by Gallagher, Hatch and
Munro (2008) [22] as references. The first focused on soft-
ware visualization, whereas the latter focused on software
architecture. For this reason, we adopted them as references
to propose the new taxonomy. According to Sulr et al. [26],
a taxonomy is consisted of a number of dimensions (e.g.,
“visualization form") with their attributes (e.g., “2D Ele-
ments",“Color Coding""). Each visual solution from the se-
lected papers from this SMS can pertain to one or more at-
tributes from a specific dimension, as we will describe in the
following paragraphs.

The Category dimension is related to the type of pro-
posed visual solution to support the comprehension of SA
evolution. It is comprised of four attributes: Description,
Technique, Tool and Environment. TheDescription attribute
classifies the solution or its core idea as a main concept or a
technical description of a visual solution. The Technique at-
tribute informs whether the visual solution proposes the use
of a technique, such as specialized procedures or processes.
The Tool attribute means the solution presents or proposes a
tool , or its development, to assist specialized users of soft-
ware architecture to develop, or maintain software systems.
The Environment attribute indicates that the solution explic-
itly presents or proposes an environment, i.e., an integrated
set of tools to help software architecture specialized users in
the development or maintenance of software systems. The
value of this dimension for each solution is mandatory and
it may have more than one attribute signalized.

The Stage dimension has four attributes. The Concep-
tual attribute indicates that the solution is still represented
and referenced as a concept, not having any implementation.
The Project attribute indicates that the solution has been un-
der development as a project. The Prototype attribute means
the solution is a prototype of the solution. Finally, the Sta-
ble Release attribute is related to the status of the solution as
already in production as a stable release. The value of this
dimension is also mandatory and only one attribute can be
signalized for each solution.

The Visualization Form dimension defines the visual
characteristics of the output of the solution [12]. It is char-
acterizes by eight attributes as follows. The 2D Elements
attribute indicates that the solution uses 2D elements, such
as 2D charts, diagrams, shapes, windows, figures and lines.
The 3DVisualization attribute indicates that the solution uses

62



J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

3D resources for visualization. TheAnimation attributemeans
the solution uses resources of animation in the visual repre-
sentations. The Bigraphs attribute marks the use of bigraphs
in the visual solution. The Visual Metaphor attribute indi-
cates the use of one or more visual metaphors in the visual
representations to enhance the SA evolution understanding.
The Color Coding attribute means the solution adopts a spe-
cific color system to represent the data. The Tree-based at-
tribute is used to characterize solutions that use visual struc-
tures based on trees. TheUML-based indicates that the solu-
tion uses UML diagrams as a form of visual representation.

The Static Representation dimension shows what ar-
chitectural information can be extracted and represented be-
fore run-time [22]. It has two associated attributes: Static Vi-
sualization and Recovery. The Static Visualization attribute
means the solution displays data exclusively related to static
structure of the software system. The Recovery attribute in-
dicates that the solution supports the retrieval of architec-
tural data from specific sources. This dimension may have
no attributes flagged.

The Dynamic Representation dimension shows what
architectural information can be extracted and represented
during run-time [22]. The Dynamic Visualization attribute
means the solution displays data extracted during its execu-
tion (run-time). The Events Monitoring indicates if the so-
lution perform the catch events during its execution. These
events can be identified and associated with SA elements and
thereby support the comprehension of specific scenarios of
software architecture evolution. The Live attribute points out
that the SA data is gathered in a real time fashion as the solu-
tion is executed [12] [22]. The Post-mortem attribute means
the SA data to be gathered is produced in a post-mortem fash-
ion by the solution, i.e., generated by its previous execution
[12] [22]. This dimension may have no attributes flagged.

The Architectural Tasks dimension is related with fea-
tures of the visual solution that support stakeholders to per-
form tasks that to some extent focuses on the software ar-
chitecture and its evolution [22]. It has nine attributes as
follows. The Anomalies attribute indicates that the solution
supports the identification of anomalies, violations and in-
consistencies occurrences related to SA. These occurrences
can also influence the Comprehension attribute indicates the
solution supports visual analysis tasks to improve the com-
prehension of SA and its evolution. Analysis tasks means
tasks that generate results to facilitate the understanding the
SA, its components, dependencies and relationships, as well
as its evolution. They should support top-down or bottom-
up approaches [22]. The Styles attribute indicates that the
solution is able to identify architectural styles and/or verify
its compliance with a predefined reference. The Show Evo-
lution attribute indicates that the solution provides facilities
to exhibit evolution evidence of a SA, in a basic or advanced
way [22]. The Construction attribute indicates that the so-
lution provides resources to add, change or remove SA ele-
ments in the visual representation. The Evaluation attribute
means the solution supports SA quality analysis and also
compliance evaluation. TheComparison attribute points out

that the solution performs visual comparison among releases
of the software system under analysis. A typical use of this
attribute is the comparison between the as-is with the to-be
architectures or the as-designed with as-implemented soft-
ware architecture [22]. The Tracking indicates that the the
solution supports the tracking of SA changes throughout its
releases. This is a key resource to, for example, identify and
trace the architectural decay of a SA, which impairs the soft-
ware lifespan [3]. Finally, the Rationale indicates that the
solution presents andmake available the rationale behind the
design decisions that somehow influences the SA.
5.2. Visual Solutions According to Taxonomy

The Table 11 shows the main characteristics, properties
and features identified in the visual solutions of the selected
papers from the perspective of the proposed taxonomy. These
characteristics were identified and collected exclusively based
on the text provided by the selected studies listed in Table 10.

The column labeled Category indicates different cate-
gories of solutions found in the selected papers, according
the description presented in Subsection 5.1. The column la-
beled Stage means the stage of the solution proposed by the
paper at the time it was published. The column labeled Vi-
sualization Form means the summary description of funda-
mental characteristics related to what can be exhibited in the
visual solution. The content of this column is based on the
Form category proposed by the taxonomy of Price [12]. The
columns labeled Static Representation, Dynamic Represen-
tation, Architectural Tasks are based on keys areas proposed
in Gallagher’s framework [22]. The columnOthers Features
shows complementary purposes, features and characteristics
of the presented visual solution not listed before.

We decided to present a analysis about the visual solu-
tion named EVA to illustrate how the characteristics of the
selected visual solutions presented in Table 11 can be deter-
mined. This analysis is shown in Table 12. The visual solu-
tion EVA was previously presented in the paper S21 [3] and
its justifications come exclusively from this paper’s content.

The Figure 9 presents the overview of current stages for
all visual solutions referenced by Table 11. Its worth re-
membering that current stages means the stage at the time
its study was published. Note that most of solutions (9 in
21) were in “Stable Release" stage, whereas few of them (2
in 21) were in “Project" stage.

The Figure 10 shows the categories of solution found in
selected papers. The “Tool" category has the major prefer-
ence in visual solutions, being present in 14 of 21 solutions
found. The “Description" category is present in only three
solutions.

Figure 11 shows that the tasks Comprehension and Show
Evolution are adopted in all visual solutions from the se-
lected studies. It means that all of them reported the support
of analysis tasks to improve the SA comprehension. More-
over, they also reported the adoption of facilities to exhibit
the SA evolution. These are in fact, minimum requirements
of a visual solutions to support comprehension of SA evolu-
tion. The task Comparison is also representative in the an-

63



J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Table 11
Using the Proposed Taxonomy to Classify the Visual Solutions to SA Evolution

Ref.
Paper Name of Visual

Solution
Category Stage Visualization Form Static Representa-

tion
Dynamic Repre-
sentation

Architectural
Tasks

Other Features

S01 Beagle Environment,
Technique

Prototype 2D Elements,
Tree-based

Static Visualiza-
tion, Recovery

N/A Comprehension,
Comparison,
Show Evolution

Evolution metrics
usage

S02 Retrospective
Analysis

Technique Prototype 2D Elements,
Color Coding

Static Visualiza-
tion, Recovery

N/A Comprehension,
Comparison,
Show Evolution,
Evaluation

N/A

S03 Not named Technique Conceptual 2D Elements,
Visual Metaphor

Static Visualiza-
tion

N/A Comprehension,
Construction,
Show Evolution,
Styles

Graph Grammar,
Synchronized
Hyperedge Re-
placement Sys-
tems, Hyperedge
Replacement
Grammar

S04 ABACUS Tool Stable Release 2D Elements,
Tree-based, 3D
Visualization,
Color Coding

Static Visualiza-
tion, Recovery

N/A Comprehension,
Construction,
Show Evolution,
Evaluation

Methodology-
oriented

S05 Not named Description,
Technique

Conceptual 2D Elements,
Bigraph

Static Visualiza-
tion

Dynamic Visual-
ization, Live

Comprehension,
Comparison,
Construction,
Show Evolution,
Styles

BRS resources

S06 Film Strip and
Dependency
Matrix

Technique Prototype 2D Elements Static Visualiza-
tion, Recovery

N/A Comprehension,
Comparison,
Show Evolution

N/A

S07 SAVE Tool, Environ-
ment

Stable Release 2D Elements Static Visualiza-
tion, Recovery

N/A Comprehension,
Anomalies,
Comparison,
Construction,
Show Evolution,
Rationale, Styles,
Evaluation

Process-oriented,
Products com-
parison

S08 SAVE Tool, Environ-
ment

Stable Release 2D Elements Static Visualiza-
tion, Recovery

N/A Comprehension,
Anomalies,
Comparison,
Construction,
Show Evolution,
Rationale, Styles,
Evaluation

Process-oriented,
Products com-
parison

S09 Motive Tool Prototype 2D Elements,
UML-based

Static Visualiza-
tion, Recovery

N/A Comprehension,
Show Evolution

N/A

S10 YARN Tool Prototype 2D Elements,
Color Coding,
Animation

Static Visualiza-
tion, Recovery

N/A Comprehension,
Show Evolution

N/A

S11 GOP Tool, Environ-
ment

Project 2D Elements,
Color Coding

Static Visualiza-
tion, Recovery

N/A Comprehension,
Comparison,
Construction,
Show Evolution,
Tracking

Methodology-
oriented

S12 Evolve Tool Stable Release 2D Elements,
UML-based,
Animation

Static Visualiza-
tion

N/A Comprehension,
Anomalies,
Comparison,
Construction,
Show Evolution

Model-driven,
ADL implemen-
tation

S13 ARAMIS Tool Conceptual N/A Static Visualiza-
tion

Dynamic Visual-
ization, Events
Monitoring

Comprehension,
Show Evolution,
Evaluation

Model-driven

S14 eCITY Tool Stable Release 2D Elements,
Color Coding,
Animation,
Visual Metaphor

Static Visualiza-
tion

N/A Comprehension,
Comparison,
Show Evolution,
Tracking

N/A

S15 ARAMIS Tool, Technique Prototype 2D Elements,
UML-based

N/A Dynamic Visual-
ization, Events
Monitoring, Live,
Post-mortem

Comprehension,
Show Evolution,
Evaluation

Model-driven,
Traceability with
requirements,
Views creation

S16 eCITY Tool Stable Release 2D Elements,
Color Coding,
Animation,
Visual Metaphor

Static Visualiza-
tion

N/A Comprehension,
Comparison,
Show Evolution,
Tracking

N/A

S17 eCITY+ Tool, Technique Stable Release 2D Elements,
3D Visualization,
Color Coding,
Animation,
Visual Metaphor

Static Visualiza-
tion

N/A Comprehension,
Comparison,
Show Evolution,
Tracking

As-plugin

S18 ARAMIS Tool Stable Release 2D Elements,
UML-based

N/A Dynamic Visual-
ization, Events
Monitoring, Live,
Post-mortem

Comprehension,
Show Evolution,
Evaluation

Model-driven,
Traceability with
requirements,
Views creation,
Communica-
tion integrity
validation

S19 Not named Description Project 2D Elements,
UML-based,
Color Coding

Static Visualiza-
tion

N/A Comprehension,
Comparison,
Show Evolution

Model-driven,
Modernization

S20 Not named Technique Conceptual 2D Elements,
UML-based

Static Visualiza-
tion

N/A Comprehension,
Show Evolution

KAMP approach

S21 EVA Tool Stable Release 2D Elements,
3D Visualization,
Color Coding

Static Visualiza-
tion, Recovery

N/A Comprehension,
Comparison,
Show Evolu-
tion, Tracking,
Rationale

ADD traceability

alyzed solutions. They have reported the ability to perform
visual comparison of SA characteristics among two or more
releases of a specific software system, which corresponds
to 62% of analyzed visual solutions. The tasks Anomalies

and Rationale were not representative in the solutions, cor-
responding to only 14% and close to Styles with 19%. The
task Construction explicitly appears in 33% of the visual so-
lutions and half of them present specific resources to design

64



J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Table 12
Sample Analysis - Visual Solution EVA [3]

Values Justifications
Category = (“Tool") Title of the paper is “EVA: A

Tool for Visualizing Software
Architectural Evolution".

Stage = (“Stable Released") The behavior of EVA pre-
sented in the paper always
suggests that it is in pro-
duction; EVA was already
evaluated in use and is in the
process of deploying to a large
development organization.

Visualization Form = (“2D El-
ements", “3D Visualization",
“Color Coding")

“2D Elements": suggested by
figures displayed in the pa-
per; “3D Visualization": EVA
provides a view that shows
architectures of multiple re-
leases in a 3D visualization;
“Color Coding": EVA differs
code-level entities through
color coding.

Static Representation =
(“Static Visualization", “Re-
covery")

“Static Visualization": EVA
only collects data at compile-
time (static elements); “Re-
covery": EVA supports many
SA recovery techniques.

Dynamic Representation =
N/A

The paper does not present
any characteristic or feature
for dynamic representation.

Architectural Tasks = (“Com-
prehension", “Comparison",
“Show Evolution", “Tracking",
“Rationale")

“Comprehension": EVA pro-
vides a view that represents
a single SA release, allowing
users to interactively under-
stand the functionality of
each architecture component;
“Comparison": EVA provides
comparison view that shows
the SA diïňĂerences between
two releases; “Show Evolu-
tion": EVA visualizes the SA
evolution through a set of
source codes across multiple
releases; “Tracking": EVA
provides a view that allows
representation of change
tracking of entities across
multiple releases; “Rationale":
EVA collects relevant data of
design decisions from system
repositories, displaying them
together with the architecture
evolution visualization.

Other Features = (“ADD
Traceability")

EVA shows the traceability of
architecture design decisions
over time

the architecture, such as S02 solution [34] (using Bigraphi-
cal Reactive System) and S06 solution [40] (using an ADL
visual modelling component). The task Evaluation also ap-
pears with 33%.

6. Discussion
The specific research question SRQ1 is related to the

main visual solutions to support the software architecture
evolution comprehension. The answer is presented in Ta-
ble 11, where it is possible to identify their main goals and
characteristics of each solution. The specific research ques-
tion SRQ2 is concerned to different purposes of using the
visual solutions to support the software architecture evolu-
tion comprehension. The purposes are also presented in Ta-
ble 11, identified primarily in the Architectural Tasks col-

Figure 9: Current Stages of Visual Solutions

Figure 10: Categories of Visual Solutions

umn and also in the Static Representation, Dynamic Rep-
resentation and Other Features columns. The specific re-
search question SRQ3 focuses on solutions designed to visu-
ally support comprehension of software architecture evolu-
tion can be classified. The solutions can be classified in the
categories Description, Technique, Tool and Environment.
The Table 11 classify each solution and shows that the Tool
category has more representants among the selected stud-
ies. The specific research question SRQ4 focuses on visual
forms used to support comprehension of software architec-
ture evolution. The Table 11 lists in the Visualization Form
column how the visual forms have been adopted in the visual
solutions discussed in the selected studies. From the list, it
is possible to identify the following distribution of use of the
visual forms: 2D Elements (20 studies), Tree-based (2 stud-
ies), Color coding (9 studies), Visual metaphor (4 studies),
3D Visualization (3 studies), Bigraph (1 study), Uml-based
(5 studies) and Animation (5 studies).

Finally, the main research question (RQ) focuses on the
evaluation of the usage of visual solutions to support the
comprehension of software architecture evolution based on
papers published in the peer-reviewed literature. Table 11
presents an up-to-date overview of solutions used for the
stated purpose with different characteristics and strategies
as has been already explained for the specific research ques-
tions. We have identified that based on evidence from the se-
lected studies, features of comprehension and SA evolution
visualization are minimum requirements to support software
architecture evolution comprehension, as shown in Figure
11. On the other hand, the low number of papers found in

65



J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

Figure 11: Distribution of Architectural Tasks in the Selected Papers

this systematic mapping study, suggests that visual solutions
to support SA evolution comprehension is an area that needs
expand in terms of studies and options available for practi-
tioners and researchers.

7. Conclusion
The aim of this work is to report the design, execution

and results of a systematic mapping study of visual solu-
tions to support the comprehension of software architecture
evolution. We performed a SMS according to the plan de-
scribed in Section 4. Initially, the applied search strings re-
trieved 211 papers from the selected electronic databases.
This number was reduced to 21 after applying all selection
procedures criteria. From these 21 selected studies, the iden-
tified visual solutions to support the comprehension of SA
evolution were classified as follows: 14% categorized asDe-
scription, 38% as Technique, 67% as Tool and 19% as Envi-
ronment. All of them support the architectural tasks Com-
prehension and Show Evolution.

Besides the identification of visual solutions from the lit-
erature, another contribution of this study is a taxonomy to
classify these solutions. The taxonomy contains six dimen-
sions: category, stage, visualization form, static representa-
tion, dynamic representation and architectural tasks. These
dimensions and their attributes was explained in Section 5,
SubSection 5.1. Each visual solution was classified accord-
ing to this taxonomy, generating a table of characterization
of visual solutions to SA evolution, presented in Table 11.
The assignment of the taxonomy attributes value to the vi-
sual solution characteristics shows a current overview of the
available visual solutions in peer-reviewed literature.

Moreover, this study also shows that visual solutions to
support SA evolution comprehension usually present fea-
tures to support analysis tasks to improve the SA comprehen-
sion and also provide facilities to exhibit the SA evolution.

This study also concludes that, due to a few number of papers
found in this SMS, the studies may consider to allocate more
research and development effort to provide effective visual
solutions to support SA evolution comprehension, improv-
ing the acquired knowledge in this area.

As a future work, we recommend extending the research
to establish a methodology or process, based on the taxon-
omy proposed, to define projects to build visual solutions of
SA evolution comprehension. Another possibility for future
work is the improvement of the proposed taxonomy, aiming
to generate a new framework to objectively evaluate solu-
tions like that ones discussed in this SMS.

References
[1] H. P. Breivold, I. Crnkovic, M. Larsson, A systematic review of soft-

ware architecture evolution research, Information and Software Tech-
nology 54 (2012) 16 – 40.

[2] L. Yu, S. Ramaswamy, J. Bush, Symbiosis and software evolvability,
IT Professional 10 (2008) 56–62.

[3] D. Nam, Y. K. Lee, N. Medvidovic, Eva: A tool for visualizing
software architectural evolution, in: 2018 IEEE/ACM 40th Inter-
national Conference on Software Engineering: Companion (ICSE-
Companion), 2018, pp. 53–56.

[4] Q. Tu, M. W. Godfrey, An integrated approach for studying archi-
tectural evolution, in: Proceedings 10th International Workshop on
Program Comprehension, 2002, pp. 127–136.

[5] M. Lungu, M. Lanza, Exploring inter-module relationships in evolv-
ing software systems, in: 11th European Conference on Software
Maintenance and Reengineering (CSMR’07), 2007, pp. 91–102.

[6] R. Taylor, N. Medvidovic, E. Dashofy, Software Architecture: Foun-
dations, Theory and Practice, Hoboken, New Jersey, 2009.

[7] D. Garlan, J. M. Barnes, B. Schmerl, O. Celiku, Evolution styles:
Foundations and tool support for software architecture evolution, in:
2009 Joint Working IEEE/IFIP Conference on Software Architecture
European Conference on Software Architecture, 2009, pp. 131–140.

[8] M. Shahin, P. Liang, M. A. Babar, A systematic review of software ar-
chitecture visualization techniques, Journal of Systems and Software
94 (2014) 161 – 185.

[9] M. Shahin, P. Liang, M. R. Khayyambashi, Improving understand-

66



J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

ability of architecture design through visualization of architectural
design decision, in: Proceedings of the 2010 ICSE Workshop on
Sharing and Reusing Architectural Knowledge, SHARK ’10, 2010,
pp. 88–95.

[10] R. L. Novais, M. G. de Mendonca Neto, Computer Systems and Soft-
ware Engineering: Concepts, Methodologies, Tools, and Applica-
tions, Chapter: Software Evolution Visualization: Status, Challenges,
and Research Directions, IGI Global, 2018.

[11] Y. Ghanam, S. Carpendale, A survey paper on software architecture
visualization Technical report (2008).

[12] B. A. Price, R. M. Baecker, I. S. Small, A principled taxonomy of
software visualization, Journal of Visual Languages Computing 4
(1993) 211 – 266.

[13] J. Werther, G. Carneiro, R. Maciel, A systematic mapping on visual
solutions to support the comprehension of software architecture evo-
lution, in: Proceedings of the 25th International DMS Conference
on Visualization and Visual Languages, DMSVIVA ’19, 2019, pp.
63–74. doi:10.18293/DMSVIVA2019-008.

[14] D. Garlan, D. E. Perry, Introduction to the special issue on software
architecture, IEEE Transactions on Software Engineering 21 (1995)
269–274.

[15] D. Garlan, Software architecture: A travelogue, in: Proceedings of
the on Future of Software Engineering, FOSE 2014, 2014, pp. 29–39.

[16] D. Garlan, Software architecture: a roadmap, in: Proceedings of
Conference on the Future of Software Engineering, Limerick, Ireland,
2000, pp. 91–101.

[17] N. Medvidovic, R. Taylor, D. Rosenblum, An architecture-based ap-
proach to software evolution, in: Proceedings of International Work-
shop on the Principles of Software Evolution, 1998.

[18] L. A. Belady, M.M. Lehman, Amodel of large program development,
IBM Systems journal 15 (1976) 225–252.

[19] C. F. Kemerer, S. Slaughter, An empirical approach to studying
software evolution, IEEE Transactions on Software Engineering 25
(1999) 493–509.

[20] D. Rowe, J. Leaney, D. Lowe, Defining systems evolvability - a
taxonomy of change, in: Proceedings of International Conference
andWorkshops on Engineering of Computer-Based Systems (ECBS),
1998, Jerusalem, Israel, 1998.

[21] E. Gamma, et al., Design patterns: elements of reusable object-
oriented software, Addison-Wesley, 1995.

[22] K. Gallagher, A. Hatch, M. Munro, Software architecture visualiza-
tion: An evaluation framework and its application, IEEE Transactions
on Software Engineering 34 (2008) 260–270.

[23] J. Cleland-Huang, R. S. Hanmer, S. Supakkul, M. Mirakhorli, The
twin peaks of requirements and architecture, IEEESoftware 30 (2013)
24–29.

[24] V. Basili, G. Caldiera, H. Rombach, The goal question metric
paradigm, Encyclopedia of Software Engineering 2 (1994) 528–532.

[25] A. Telea, L. Voinea, H. Sassenburg, Visual tools for software archi-
tecture understanding: A stakeholder perspective, IEEE Software 27
(2010) 46–53.

[26] M. Sulir, M. Bacikova, S. Chodarev, J. Poruban, Visual augmentation
of source code editors: A systematic mapping study, Journal of Visual
Languages Computing 49 (2018) 46 – 59.

[27] C.Wohlin, et al., Experimentation in Software Engineering, Springer-
Verlag, 2012.

[28] V. R. Basili, H. D. Rombach, The tame project: towards
improvement-oriented software environments, IEEE Transactions on
Software Engineering 14 (1988) 758–773.

[29] T. Dyba, T. Dingsoyr, Empirical studies of agile software develop-
ment: A systematic review, Information and Software Technology 50
(2008) 833 – 859.

[30] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, P. Group, et al., Pre-
ferred reporting items for systematic reviews and meta-analyses: the
prisma statement, PLoS medicine 6 (2009) e1000097.

[31] M. Jazayeri, On architectural stability and evolution, in: J. Blieberger,
A. Strohmeier (Eds.), Reliable Software Technologies—Ada-Europe
2002, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 13–

23.
[32] D. Hirsch, U.Montanari, Two graph-based techniques for software ar-

chitecture reconfiguration, Electronic Notes in Theoretical Computer
Science 51 (2002) 177–190.

[33] K. Dunsire, T. O’Neill, M. Denford, J. Leaney, The abacus archi-
tectural approach to computer-based system and enterprise evolution,
in: 12th IEEE International Conference and Workshops on the En-
gineering of Computer-Based Systems (ECBS’05), 2005, pp. 62–69.
doi:10.1109/ECBS.2005.66.

[34] Z. Chang, X. Mao, Z. Qi, An approach based on bigraphical reactive
systems to check architectural instance conforming to its style, in:
First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software
Engineering (TASE ’07), 2007, pp. 57–66.

[35] W. C. Stratton, D. E. Sibol, M. Lindvall, P. Costa, Technology infu-
sion of save into the ground software development process for nasa
missions at jhu/apl, in: 2007 IEEE Aerospace Conference, 2007, pp.
1–15. doi:10.1109/AERO.2007.352763.

[36] W. C. Stratton, D. E. Sibol, M. Lindvall, P. Costa, The save tool
and process applied to ground software development at jhu/apl: An
experience report on technology infusion, in: 31st IEEE Software
Engineering Workshop (SEW 2007), 2007, pp. 187–193.

[37] A. McNair, D. M. German, J. Weber-Jahnke, Visualizing software ar-
chitecture evolution using change-sets, in: 14th Working Conference
on Reverse Engineering (WCRE 2007), IEEE, 2007, pp. 130–139.

[38] A. Hindle, Z. M. Jiang, W. Koleilat, M. W. Godfrey, R. C. Holt, Yarn:
Animating software evolution, in: 2007 4th IEEE InternationalWork-
shop on Visualizing Software for Understanding and Analysis, IEEE,
2007, pp. 129–136.

[39] L. Schrettner, P. Hegedus, R. Ferenc, L. J. Fulop, T. Bakota, Devel-
opment of a methodology, software – suite and service for supporting
software architecture reconstruction, in: 2010 14th European Con-
ference on Software Maintenance and Reengineering, 2010, pp. 190–
193.

[40] A. McVeigh, J. Kramer, J. Magee, Evolve: Tool support for architec-
ture evolution, in: Proceedings of the 33rd International Conference
on Software Engineering, ICSE ’11, 2011, pp. 1040–1042.

[41] A. Dragomir, H. Lichter, Model-based software architecture evolu-
tion and evaluation, in: 2012 19th Asia-Pacific Software Engineering
Conference, volume 1, 2012, pp. 697–700.

[42] T. Khan, H. Barthel, A. Ebert, P. Liggesmeyer, ecity: A tool to track
software structural changes using an evolving city, in: 2013 IEEE
International Conference on Software Maintenance, 2013, pp. 492–
495. doi:10.1109/ICSM.2013.80.

[43] A. Dragomir, H. Lichter, Run-time monitoring and real-time visual-
ization of software architectures, in: 2013 20th Asia-Pacific Software
Engineering Conference (APSEC), volume 1, 2013, pp. 396–403.

[44] T. Khan, H. Barthel, L. Guzman, A. Ebert, P. Liggesmeyer, ecity:
Evolutionary software architecture visualization–an evaluation, in:
Building Bridges: HCI, Visualization, and Non-formal Modeling,
Springer, 2014, pp. 201–224.

[45] T. Khan, S. R. Humayoun, K. Amrhein, H. Barthel, A. Ebert,
P. Liggesmeyer, ecity+: A tool to analyze software architectural rela-
tions through interactive visual support, in: Proceedings of the 2014
European Conference on Software Architecture Workshops, ECSAW
’14, 2014, pp. 36:1–36:4.

[46] A. Nicolaescu, H. Lichter, A. Göringer, P. Alexander, D. Le, The
aramis workbench for monitoring, analysis and visualization of archi-
tectures based on run-time interactions, in: Proceedings of the 2015
European Conference on Software Architecture Workshops, ACM,
2015, p. 57.

[47] D. Escobar, D. CÃąrdenas, R. Amarillo, E. Castro, K. GarcÃľs,
C. Parra, R. Casallas, Towards the understanding and evolution of
monolithic applications as microservices, in: 2016 XLII Latin Amer-
ican Computing Conference (CLEI), 2016, pp. 1–11.

[48] D. Faitelson, R. Heinrich, S. S. Tyszberowicz, Supporting software
architecture evolution by functional decomposition., in: MODEL-
SWARD, 2017, pp. 435–442.

[49] D. Faitelson, S. Tyszberowicz, Improving design decomposition, in:

67

http://dx.doi.org/10.18293/DMSVIVA2019-008
http://dx.doi.org/10.1109/ECBS.2005.66
http://dx.doi.org/10.1109/AERO.2007.352763
http://dx.doi.org/10.1109/ICSM.2013.80


J. Werther et al. / Journal of Visual Language and Computing (2019) 53–68

International Symposium onDependable Software Engineering: The-
ories, Tools, and Applications, Springer, 2015, pp. 185–200.

[50] K. Rostami, J. Stammel, R. Heinrich, R. Reussner, Architecture-based
assessment and planning of change requests, in: Proceedings of the
11th International ACM SIGSOFT Conference on Quality of Soft-
ware Architectures, ACM, 2015, pp. 21–30.

68


	Blank Page
	Blank Page
	JVLC2019N1v2.pdf
	Blank Page
	Blank Page
	Blank Page

	Blank Page
	Blank Page
	Blank Page



