

Journal of

Visual Language and

Computing

Volume 2019, Number 1

 Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

Context Computation for Implicit Context-Sensitive Graph
Grammars: Algorithms and Complexities

 Yang Zoua, Xiaoqin Zeng, and Yufeng Liu

Institute of Intelligence Science and Technology, School of Computer and Information, Hohai University, China
__

A R T I C L E I N F O

Article History:
Submitted 3.1.2019
Revised 6.1.2019
Second Revision 7.22.2019
Accepted 8.26.2019

Keywords:
Visual languages
Context-sensitive graph grammars
Context computation
Algorithm
Complexity

A B S T R A C T

Visual Programming Languages have been frequently utilized in computer science. Context-sensitive
graph grammars are appropriate formalisms for specifying visual programming languages, since they
are intuitive, rigorous, and expressive. Nevertheless, some of the formalisms whose contexts are
implicitly or even incompletely represented in productions, called implicit context-sensitive graph
grammars, suffer inherent weakness in intuitiveness or limitations in parsing efficiency. Making
context explicit to productions tends to be a conceivable way to address this issue. Based on the
formalization of context, this paper proposes an approach to the computation of context for implicit
context-sensitive graph grammars. The approach is comprised of four partially ordered algorithms.
Moreover, the complexities of the algorithms are analyzed and the applicability of the approach is
discussed. Thus, the proposed approach paves the way for the practical applications of context in
implicit context-sensitive graph grammar formalisms, such as facilitating the comprehension of graph
grammars and improving parsing performance of general parsing algorithms.

 © 2019 KSI Research

1. Introduction
In many fields of computer science, Visual

Programming Languages (VPLs) have been frequently
adopted in modeling, representation, and design of
complex structures. VPLs usually handle those objects
that do not possess inherent visual representation in a
visual way [1].

Various approaches have been proposed to formally
specify and parsing VPLs, such as constraint multiset
grammars [2], symbol-relation grammars [3], picture
processing grammar [4], visual grammar [5], attributed
shape grammar [6], compiler techniques [7], etc. As a
natural extension of formal grammar theory, graph
grammars offer the mechanisms for formal specification
and parsing of VPLs [8], just like formal grammars do for

string languages. However, the extension from one-
dimensional string-based formal grammars to two-
dimensional graph grammars brings about a few novel
challenges, especially the embedding problem. The
embedding problem refers to that how to avoid creating
dangling edges when replacing a subgraph in a graph
(called host graph) with another graph and connecting the
remainder and the replacing graph together to produce a
whole graph. Quite a few graph grammar formalisms have
been proposed in the literature [8-12]. From the
perspective of usability, there is still room for these
formalisms to be ameliorated in expressive power or
computing efficiency.

 Most of the existing graph grammar formalisms fall into
the categories of context-free and context-sensitive. The
expressive power of a graph grammar lies on the type it
belongs to as well as the embedding mechanism it chooses
[13-14]. Among all the categories of embedding
mechanisms that vary in complexity and power, invariant
embedding is the least complex one and most commonly

aCorresponding author
Email address: yzou@hhu.edu.cn

Journal of Visual Language and Computing

journal	homepage: www.ksiresearch.org/jvlc/

15

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

employed in graph grammar formalisms. Context-
sensitive graph grammars tend to be more expressive than
context-free ones, when confined to identical less
complex embedding mechanisms and invariant
embedding in particular. As context-free graph grammars
have difficulty in specifying a large portion of graphical
VPLs [11-12], recent research in this field focus more on
context-sensitive graph grammar formalisms and their
applications [15-22].

 Generally, a graph grammar consists of a set of
productions (rewriting rules), each of which is a pair of
graphs, called left graph and right graph, together with an
embedding expression. In context-sensitive graph
grammars, the contexts pertaining to a production
generally refer to the neighboring subgraphs of the
rewritten portion of its left graph in potential host graphs
[23], which describe the situations under which the
production can be applied. A host graph is a graph that is
being rewritten by some graph grammar in the process of
derivation or parsing. However, the context portion of a
production, i.e., the remainder of the left graph minus the
rewritten portion, is commonly not a direct copy of the
contexts for the sake of conciseness of productions and
easiness of embedding.

 As is known, the most representative context-sensitive
graph grammar formalisms are Layered Graph Grammar
(LGG) [11] and Reserved Graph Grammar (RGG) [12].
In order to solve the embedding problem, LGG identically
involves in the left and right graphs of a production its
immediate context and imposing a dangling edge
condition on redex definition, which guarantees that
dangling edges never occur in rewritten host graphs.
Generally, a redex is a subgraph in a host graph that is
isomorphic to the left or right graph of a production. RGG
is commonly viewed as an improvement over LGG in
respect of succinctness of specification and efficiency of
parsing algorithm. Rather than directly involving contexts
in productions just as LGG does, RGG formalism invents
a particular two-level node structure coupled with a
marking technique to indirectly specify the context of a
production by identically distributing a set of marked
vertices into the left and right graphs. The vertices
establish a one-to-one correspondence between the two
graphs in terms of their marks. Thus, the embedding
problem is solved through this mechanism together with a
dedicated embedding rule. Other context-sensitive
formalisms include Edge-based Graph Grammar (EGG)
[23-24], Context-Attributed Graph grammar (CAGG)
[25], Contextual Layered Graph Grammar (CLGG) [26],
and Spatial Graph Grammars (SGG) [27]. To tackle the
embedding problem, EGG identically augment a set of
marked dangling edges to both the left and right graphs of
a production, whereas CAGG introduces attributes of
nodes to establish a correspondence between the two

graphs of a production. CLGG and SGG are extensions of
LGG and RGG, respectively. Based on LGG, CLGG
supports three extra mechanisms, which can be employed
to define more complex VPLs. SGG extends RGG by
augmenting its productions with a spatial specification
mechanism, with which it can explicitly describe both
structural and spatial relationships for VPLs.

 According to how the context portion of a production is
dealt with, the preceding formalisms fall into two
categories: explicit and implicit [28]. The former
formalisms indicate those that directly enclose the
complete immediate contexts as its context portion in a
production, whereas the latter refers to the ones in which
the context portion is expressed as specifically tailored
(i.e., incomplete) immediate contexts, attributes adhered
to the rewritten portion, or even newly introduced graph
notations. Apparently, LGG and RGG are typical
examples of the former and the latter, respectively.

One of the inherent deficiencies of implicit formalisms
is that they are not intuitive, which arises from the fact
that the context portion of a production is not the complete
immediate contexts. In RGG, the context portion is a set
of marked vertices. Vertices are explained to be
connecting points of edges, but their exact meaning is left
undefined. Therefore, the selection, arrangement and
marking of vertices within a node become a challenge in
the design of productions. Moreover, as actual immediate
contexts are absent in productions, it is rather difficult for
users to exactly comprehend the language of a given graph
grammar. Noticeably, similar situations also arise in other
implicit formalisms.

 Making context explicit can be a conceivable way to
address the above issues. Obviously, explicit context is
helpful in several application scenarios. Context can be
employed to make up the deficiency in intuitiveness so as
to facilitate the comprehension and design of implicit
graph grammars. Furthermore, context can be utilized to
reduce the search space in general parsing algorithms by
decreasing the times of backtracking through context
matching, thus improving the parsing efficiency. In the
literature [28], a formal definition of context is presented
and the properties are characterized, which provide a solid
theoretical foundation for the computation of context.
Nevertheless, the formalization of context and its
properties is complex, a direct approach for computation
is not available. Therefore, an explicit and detailed
method for context computation is apparently a necessity
for serving the purpose of context usage in application
scenarios.

 In this paper, on the basis of RGG formalism, an
approach to context computation in implicit graph
grammar formalisms is proposed. This is a subsequent
research work on context, and the technical contributions

16

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

are as follows: It presents a concrete approach for context
computation, which is comprised of four partially ordered
algorithms with each one being dependent on its
predecessors. Moreover, it provides the time complexities
of the algorithms. Besides, it discusses the applicability of
the approach. This method can be generalized to be
applicable to other implicit formalisms. Hence, it paves
the way for the application of context for the implicit
context-sensitive graph grammar formalisms.

 The remainder of the paper is organized as follows:
Section 2 reviews the RGG formalism and excerpts the
formal definition of context. Section 3 proposes an
approach that consists of four algorithms to the
computation of context. Section 4 addresses the
complexities of the algorithms. Section 5 discusses the
applicability of the algorithms. Finally, section 6
concludes the paper and proposes future research.

2. Preliminaries
 A graph grammar consists of an initial graph and a
collection of productions (graph rewriting rules). Each
production has two graphs called left graph and right
graph respectively, and can be applied to another graph
called host graph. Every node in a production is either a
terminal or a non-terminal node. A graph grammar defines
a graph language composed of those graphs that can be
derived from the initial graph by repeated applications of
the productions and whose nodes are all terminal ones. A
redex is a subgraph in a host graph that is isomorphic to
the left or right graph of a production.

2.1 The RGG Formalism

 RGG is a context-sensitive graph grammar formalism [9].
It introduces a node-edge format to represent graphs in
which each node is organized as a two-level structure,
where the large surrounding rectangle is the first level,
called super vertex, and other embedded small rectangles
are the second level, called vertices. Either a vertex or a
super vertex can be the connecting point of an edge. In
addition to the two-level node structure, the RGG also
introduces a marking technique that divides vertices into
two categories: marked and unmarked ones. Each marked
vertex of a production is identified by an integer that is
unique in the left or right graph where the vertex lies. A
production is properly marked if each marked vertex in
the left graph has a counterpart marked by the same
integer in the right graph, and vice versa.

 In the process of a production application, when a redex
is matched in a host graph, each vertex that corresponds
to a marked vertex in the left or right graph preserves its
associated edges connected to nodes outside of the redex,
which avoids the appearance of dangling edges during the

subsequent subgraph replacement process provided that
an additional embedding rule is also enforced. The
embedding rule states that if a vetex in the right (or left)
graph of a production is unmarked and has an isomorphic
vertex in the redex of a host graph, then all the edges that
are connected to the vertex should be completely inside
the redex.

Fig. 1. A graph grammar for process flow diagrams.

 As an example, an RGG specifying process flow
diagrams, which is slightly adapted from [11], is depicted
in Figure 1.

2.2 Partial and Total Precedence

 In this subsection, we take the RGG as the representative
of implicit context-sensitive graph grammar formalisms
to present partial and total precedence relations between
graph productions. For the sake of clarity and simplicity,
some basic concepts and notations are listed below. Note
that graphs are directed ones in the node-edge format and
only vertices in productions might be marked.

 RGG: A reserved graph grammar is a triple 𝐴, 𝑃, 𝛺 ,
where 	𝐴 is an initial graph, 	𝑃 a set of graph grammar
productions, 𝛺 a finite label set consisting of two disjoint
sets 𝛺& and 𝛺'&(called terminal label set and nonterminal
label set, respectively). For any production 𝑝 ≔ (𝐿, 𝑅) ∈
𝑃, three conditions are satisfied: 𝑅 is non-empty, 𝐿 and 𝑅
are over 𝛺, and the size of 𝑅 are not less than that of 𝐿.

 𝑝 ≔ (𝐿, 𝑅): A production with a pair of marked graphs:
the left graph 𝐿 and right graph 𝑅. The notations 𝑝. 𝐿 and
𝑝. 𝑅 represent the left and right graph of a production 𝑝,
respectively. For any graph 𝐺 , 𝐺. 𝑁 and 𝐺. 𝐸 denote the
set of nodes and edges, respectively; 𝑛. 𝑉 and 𝑛. 𝑣 denote
the set of vertices and some vertex 𝑣 of a node 𝑛 ,
respectively; and 𝐺. 𝑉 = 𝑛. 𝑉7∈8.' is the union of the
sets of vertices of nodes in 𝐺; for any edge 𝑒, 𝑠 𝑒 and

Stat
1:T

2:B

if
1:T

Stat
T

B
Stat
T

B

endif
T

2:B

:=λ

begin

Stat
T

B

end
T

:=

B

Stat

Stat
1:T

B

Stat
T

:=
1:T

2:B

2:B

(1)

(3)

(2)

B

Stat
1:T

2:B

fork
1:T

Stat
T

B
Stat
T

B

join
T

2:B

:=(5)

B
fork
1:T

Stat
T

B
Stat
T

B

join
3:T

4:B

:=(6)

2:B
fork
1:T

Stat
T

B

join
3:T

4:B

2:B

assign
1:T

2:B
:= (4)Stat

1:T

2:B

receive
3:T

4:B

send
1:T

2:B
:=(7)

Stat
1:T

2:B

Stat
3:T

4:B

 5 send 5 send
1:T

2:B

1:T

2:B
(8)

receive
3:T

4:B

:=

Stat
3:T

4:B
 5 receive

3:T

4:B

send
1:T

2:B
:=(9)

Stat
1:T

2:B

 5 receive
3:T

4:B

17

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

𝑡 𝑒 represent the source and target vertex of 𝑒 ,
respectively, and 𝑙 𝑒 is the label on 𝑒. 𝑃= = 𝑝. 𝐿|𝑝 ∈ 𝑃
and 𝑃? = 𝑝. 𝑅|𝑝 ∈ 𝑃 .

 𝐺@ ≈ 𝐺B: 𝐺@ is isomorphic to 𝐺B.

 Redex: A subgraph 𝑋 ⊆ 𝐻 is a redex of graph 𝐺, denoted
as 𝑋 ∈ 𝑅𝑑(𝐻, 𝐺), if 𝑋 ≈ 𝐺 under an isomorphic mapping
𝑓 and any vertex in 	𝑋 that is isomorphic to an unmarked
vertex in 𝐺 keeps its edges completely inside 𝑋.

 𝑅𝑑(𝐻, 𝐺): A set of redexes of marked graph 𝐺, which
are subgraphs of graph 𝐻.

 𝑀𝑐𝑐 : A mapping from graphs to the sets of maximal
connected components contained in these graphs. A
maximal connected component in a graph is a connected
component being maximal.

 𝑀𝑐𝑐 𝑃= = 𝐶|𝐶 ∈ 𝑀𝑐𝑐 𝑝. 𝐿 	⋀	𝑝 ∈ 𝑃 , 𝑀𝑐𝑐 𝑃? =
𝐶|𝐶 ∈ 𝑀𝑐𝑐 𝑝. 𝑅 	⋀	𝑝 ∈ 𝑃 .

 The following definitions excerpted from [28] are
necessary to understand the notion of context and the
approach to context computation.

 Definition 1. Let 𝑔𝑔 ≔ 𝐴, 𝑃, 𝛺 be an RGG, 𝑝@, 𝑝B ∈ 𝑃
be two productions, 𝐶@ ∈ 𝑀𝑐𝑐(𝑝@. 𝐿) and 𝐶B ∈
𝑀𝑐𝑐(𝑝B. 𝑅). If ∃𝑋 ⊆ 𝐶B such that 𝑋 ∈ 𝑅𝑑(𝐶B, 𝐶@), then
𝐶@ is matched with 𝑋 in 𝐶B, denoted as 𝐶@ ≈ 𝑋 ⊑ 𝐶B; or
concisely 𝐶@ is included in 𝐶B, denoted by 𝐶@ ⊑ 𝐶B.

 The definition introduces the notion of inclusion
between the components of productions, or to be exact, to
locate a redex of a component of the left graph of one
production in some component of the right graph of
another production.

 Let 𝑈 be some set and 𝑆 = 𝐵,𝑚 a multiset, where 𝐵 is
the underlying set of elements and 𝑚:	𝐵 → ℕ is a
mapping from 𝐵 to the set ℕ of positive natural numbers.
𝑆 ⊆ℕ 𝑈 if and only if 𝐵 ⊆ 𝑈. In order to unambiguously
reference to an element from a multiset, we stipulate that
any two elements in a multiset 𝑆 have distinct identities
even if they are the same element from the point of view
of the underlying set 𝐵, and the identities of elements are
not explicitly represented in context for the sake of
conciseness.

 Definition 2. Let 𝑔𝑔 ≔ 𝐴, 𝑃, 𝛺 be an RGG, and 𝑃=
and 𝑃? the sets of left and right graphs of productions in
𝑃 , respectively. A set 𝑆@ ⊆ 𝑀𝑐𝑐(𝑃=) is included in
another multiset 𝑆B ⊆ℕ 𝑀𝑐𝑐(𝑃?), denoted as 𝑆@ ⊑ 𝑆B, if
there is a mapping 𝑓: 𝑆@ → 𝑆B such that:

 • ∀𝐶 ∈ 𝑆@(∃𝑋 ⊆ 𝑓(𝐶)(𝑋 ∈ 𝑅𝑑(𝑓(𝐶), 𝐶))), and

• ∀𝐶, 𝐶W ∈ 𝑆@ 𝐶 ≠ 𝐶W ∧ 𝑓 𝐶 = 𝑓 𝐶W → ∃𝑋, 𝑋W ⊆
𝑓 𝐶 𝑋 ∈ 𝑅𝑑 𝑓 𝐶 , 𝐶 ∧ 𝑋W ∈ 𝑅𝑑 𝑓 𝐶 , 𝐶W ∧ 𝑋 ∩ 𝑋W =
𝜙 .

 In the definition, the first condition states that for each
component in 𝑆@ , there is an image in 𝑆B under the
mapping 𝑓 that contains a redex of it; and the second
expresses that if two different components in 𝑆@ have the
same image in 𝑆B, then the two corresponding redexes in
it cannot overlap, which strictly adheres to the redex
definition in the RGG formalism.

 Definition 3. Let 𝑔𝑔 ≔ 𝐴, 𝑃, 𝛺 be an RGG, and
𝑝@, 𝑝B ∈ 𝑃 be two productions, 𝑝@ directly partially
precedes 𝑝B , denoted as 	𝑝@ ≼] 𝑝B , if ∃𝑆 ⊆ 𝑀𝑐𝑐(𝑝B. 𝐿)
such that 𝑆 ⊑ 𝑀𝑐𝑐(𝑝@. 𝑅). The direct partial precedence
relation between them is denoted by the pair 𝑝@, 𝑝B . The
direct partial precedence relation on the set 𝑃 of
productions is defined as ≼^= 𝑝@, 𝑝B |𝑝@, 𝑝B ∈ 𝑃 ∧
𝑝@ ≼] 𝑝B . The partial precedence relation between them
is denoted by the pair 𝑝@, 𝑝B .

 The direct partial precedence between a pair of
productions characterizes the fact that a component of one
production’s left graph is isomorphic to a subgraph
included in a component of another production’s right
graph.

 The partial precedence relation is the closure of the direct
partial precedence relation on a set 𝑃 of productions.

 Partial precedence is a kind of relation between a pair of
components chosen from two distinct productions,
whereas total precedence describes the same relation
between two sets of components from the right graphs of
a subset of productions and the left graph of a single
production, respectively.

 Definition 4. Let 𝑔𝑔 ≔ 𝐴, 𝑃, 𝛺 be an RGG, 𝑝 ∈ 𝑃 ,
and a multiset 𝑃W ⊆ℕ 𝑃 . 𝑃W directly totally precedes 𝑝 ,
denoted as 𝑃W ≺] 𝑝 , if there is a surjective mapping
𝑓:𝑀𝑐𝑐(𝑝. 𝐿) → 𝑆𝑡 such that:

 • 𝑆𝑡 ⊆ 𝑀𝑐𝑐(𝑃?W);

 • 𝑀𝑐𝑐(𝑝. 𝐿) ⊑ 𝑀𝑐𝑐(𝑃?W) with respect to 𝑓;

 • ∀𝑝W ∈ 𝑃W ∃𝐶 ∈ 𝑀𝑐𝑐 𝑝. 𝐿 𝑓 𝐶 ∈ 𝑀𝑐𝑐 𝑝W. 𝑅 .

 The corresponding direct total precedence relation is
denoted by the pair 𝑃W, 𝑝 , and 𝑝 and 𝑃W are called the
target production and preceding set, respectively. The
direct total precedence relations on the set 𝑃 of
productions is defined as ≺^= 𝑃W, 𝑝 |𝑃W ⊆ℕ 𝑃 ∧ 𝑝 ∈
𝑃 ∧ 𝑃W ≺] 𝑝 .

 A direct total precedence relation specifies that a certain
graph composed of the right graphs of a subset of
productions contains a redex of the left graph of another
production. Note that the third constraint on 𝑓 emphasizes
that every production in 𝑃W takes part in 𝑓 with at least
one of its components in the right graph. If a subset 𝑃W of
𝑃 forms such a relation with a production	𝑝, then it means

18

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

that all the right graphs of 𝑃W must exactly comprise a
redex of the left graph of 𝑝 with each one containing at
least one redex of its components.

 A total precedence relation 𝑀, 𝑝 is composed of a set
of direct total precedence relations and a set of linking
relations on it. A compound precedence set consists of
three parts: a multiset 𝑇 of productions from set 𝑃 , a
multiset 𝐸 of direct total precedence relations, and a set 𝑅
of linking relations on 𝐸. A compound precedence set 𝑀,
together with a production 𝑝 , forms a total precedence
relation, on condition that a direct total precedence
relation is established between the first part of 𝑀 and the
production 𝑝.

2.3 Definition of Context

 The sets of partial or total precedence relations with
respect to a graph grammar establish an order of
production applications, which can be exploited to
discover potential situations in which any of the
productions is applicable for derivation. We refer to these
situations as contexts. Given two productions 𝑝@ and 𝑝B,
if 𝑝@ directly partially precedes 𝑝B, then 𝑝@. 𝑅 contains a
context of 𝑝B or merely a portion of a context, depending
on whether 𝑝B. 𝐿 consists of only one or at least two
maximal connected components. As for the former case,
{𝑝@} ≺] 𝑝B readily holds and a context of 𝑝B immediately
follows; whereas in the latter case, a subset of productions
involving 𝑝@ that directly totally precedes 𝑝B is pursued
so as to form a complete context for 𝑝B. As a third case, a
total precedence relation can be sought to build a rather
deeper complete context.

 Complete contexts of a production can be stratified in
terms of the levels of corresponding total precedence
relations from which they are generated. Roughly, a
complete context that is built in the light of a precedence
relation that corresponds to a rooted tree of depth 𝑖 is
called a level-𝑖 context, 𝑖 ≥ 1, and it degrades to a level-
1 context when the relation is a direct one.

 A complete context can be employed to extend the
respective production to which it pertains. This is done by
augmenting the context simultaneously to the both graphs
and properly linking the two parts together respectively.
A production 𝑝 equipped with a level-𝑖 context is often
abbreviated to a context-	𝑖 𝑝.

 Definition 5. Let 𝑔𝑔 ≔ 𝐴, 𝑃, 𝛺 be an RGG, 𝑝 ∈ 𝑃 ,
𝑀𝑐𝑐(𝑝. 𝐿) = 𝐶@,⋯ , 𝐶7 , and 𝑃W ⊆ℕ 𝑃 . If 𝑃W ≺] 𝑝 with
respect to some surjective mapping 𝑓:𝑀𝑐𝑐 𝑝. 𝐿 → 𝑆𝑡 =
𝐷@,⋯ , 𝐷h and a set of redexes 𝑋 = {𝑋i|𝑋i ∈
𝑅𝑑 𝑓 𝐶i , 𝐶i , 1 ≤ 𝑖 ≤ 𝑛}, then the pair 𝑈, 𝑍 is a level-
1 context of 𝑝 with respect to 𝑃W , 𝑓 , and 𝑋, denoted as
𝑐𝑡l 𝑃W, 𝑓, 𝑋 , where 𝑈 = 𝐷mW@nmnh , 𝐷mW = 	𝐷m\

𝑋pqpq∈rq , 𝐾m = 𝑙|𝑓 𝐶t = 𝐷m ∧ 1 ≤ 𝑙 ≤ 𝑛 , 𝑍 =
𝑍m@nmnh , and 𝑍m = 𝑒 ∈ 𝐷m. 𝐸| 𝑠 𝑒 ∈ 𝑋pq. 𝑉 ∧ 𝑡 𝑒 ∈

𝐷mW. 𝑉 ∨ 𝑠 𝑒 ∈ 𝐷mW. 𝑉 ∧ 𝑡 𝑒 ∈ 𝑋pq. 𝑉 ∧ 𝑘m ∈ 𝐾m . The
sets 𝑈 and 𝑍 are called the contextual graph and
contextual connection, respectively.

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

:=

	5	receive
3:T

4:B

send
1:T

2:B

R9R9

if
1:T

Stat
T

B
Stat
T

B

endif
T

2:B

B

R2R2

:=

	6	receive
5:T

7:B

	10	send
3:T

4:B

if
1:T

receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

	6	receive
5:T

7:B

	10	send
3:T

4:B

if
1:T

Stat
8:T

9:B
Stat
T

B

endif
T

2:B

B

(a) (b)

(c)

(d)

fork
1:T

Stat
T

B
Stat
T

B

join
T

2:B

B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B
fork
11:T

Stat
14:T

15:B
Stat
T

B

join
T

12:B

B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B
fork
11:T

send
14:T

15:B
Stat
T

B

join
T

12:B

B

Fig. 2. The contexts of a production and their extended productions. (a)
A level-1 context of 𝑝8 . (b) A level-2 context of 𝑝9 . (c) A level-1
context-equipped 𝑝8. (d) A level-2 context-equipped 𝑝9.

 Each component 𝐷mW of the contextual graph is the rest
graph of 𝐷m , a component of the right graph of some
production that contains one or more redexes 𝑋pq of the
components 𝐶pq, minus 𝑋pq, and each 𝑍m is the collection
of edges in 𝐷m that connect 𝐷mW to all the redexes 𝑋pq.

 Similar to Definition 5, the notion of level-	𝑖 context can
be recursively defined.

 Example 1. Two contexts of a production and their
extended productions.

 Two contexts at distinct levels of a production and their
respective extended productions are demonstrated in
Figure 2. A level-1 context of 𝑝8 originated from the
direct total precedence relation 𝑝2, 𝑝9 ≺] 𝑝8 is shown
in Figure 2(a), where the left component of the graph is
𝑅2 (the right graph of production 2), the right one is 𝑅9,
the subgraph enclosed by the green dashed ellipse is the
redex of 𝐿8 (the left graph of 𝑝8), and the context consists
of two parts 𝑈 and 𝑍 : 𝑈 is the rest of the whole graph

19

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

minus the redex and 𝑍 the set of thick red edges that
connect 𝑈 to the redex. The corresponding context-
equipped production, context-1 𝑝8, numbered as 𝑝11, is
depicted in (c), where the two subgraphs surrounded
respectively by green dashed eclipses are the isomorphic
image of the underlying production of 𝑝11.

 Figure 2(b) is a level-2 context of 𝑝9, which is created
based on the direct total precedence relation
𝑈𝑑 𝑝5, 𝑝11 ≺] 𝑝9 , or equivalently, the total
precedence relation 𝑈𝑙 𝑝5, 𝑝11 ≺ 𝑝9 , where 𝑈𝑑 𝑃
indicates the set of underlying productions of 𝑃 , and
𝑈𝑙 𝑃 refers to the underlying structure of 𝑃. In this graph,
the left and right component is 𝑅11 and 𝑅5, respectively,
the subgraph enclosed by the purple dashed rectangle is
the isomorphic image of 𝑈𝑑 𝑝11 , and the one
surrounded by the green dashed eclipse is the redex of the
left graph of 𝑝9 . In a similar way, the corresponding
context-equipped production, context-2 𝑝9, is illustrated
in (d).

3. Context Computation
 In this section, an approach is presented for the
computation of context in the RGG formalism, based on
the theoretical foundation reviewed in the preceding
section.

 The approach consists of four partially ordered
algorithms, of which the first three deal with the
computation of the set of direct partial precedence
relations, the set of direct total precedence relations, and
the set of total precedence relations with respect to a set
of productions, respectively, and the last handles the
computation of the contexts of a single production as well
as the corresponding extended productions.

3.1 Computation of Partial Precedence

Algorithm 1. Computation of partial precedence relations.
Input. A set 𝑃 of productions.
Output. The direct partial precedence relation on 𝑃.
{
 𝐶𝑚= = 𝑀𝑐𝑐(𝑝. 𝐿)l∈^ ;
 𝐶𝑚? = 𝑀𝑐𝑐(𝑝. 𝑅)l∈^ ;
 Create a two-dimensional array 𝑀 whose two indices range over
 𝐶𝑚= and 𝐶𝑚? respectively such that each element is initialized
 to an empty set ∅;
 for each 𝐶 ∈ 𝐶𝑚={
 for each 𝐶W ∈ 𝐶𝑚?{

𝑀 𝐶, 𝐶W = FindRedex 𝐶W, 𝐶 ;
 }
 }
 return 𝑀;
}

 The first algorithm generates the partial direct
precedence relation on a given set of productions. It
consists of collecting all the components of the left and

right graphs of the productions to create one set and
another respectively, and then finding all the redexes of
each component of the former in any one of the latter that
is taken as the host graph. The output is a matrix such that
each entry is assigned to a set of redexes (maybe empty)
with respect to a pair of components from the two distinct
sets that uniquely locate the entry in it. The function
FindRedex 𝐶W, 𝐶 returns all the redex of 𝐶 found in 𝐶W.

 For example, consider the RGG in Figure 1, the set of
direct partial precedence relations regarding 𝑝8 is the set
that is comprised of the following elements:
𝑝9, 𝑝8 ,	 𝑝8, 𝑝8 ,	 𝑝7, 𝑝8 , 𝑝2, 𝑝8 , 𝑝4, 𝑝9 ,	 𝑝5, 𝑝9 ,
𝑝6, 𝑝9 ,	 𝑝1, 𝑝9 ,	 𝑝8, 𝑝9 . This set also coincides with

the set of partial precedence relations of 𝑝8.

3.2 Computation of Direct Total Precedence

 The second algorithm figures out the direct total
precedence relation on a set 𝑃 of productions, on the basis
of the output of the first algorithm.

 First, it creates three one-dimensional arrays 𝐿𝑙𝑡 , 𝑅𝑙𝑡 ,
𝑇𝑝𝑑 and 𝐹𝑢𝑛 which share a same index that ranges over
𝑃, to store the upcoming data.

 Then, it arranges the components of the left graph of
each production 𝑝 into an ordered tuple form 𝐿𝑙𝑡 𝑝 in a
certain order, and for each element in this tuple, it
generates a corresponding set that gathers all the redexes
involved in the components from 𝐶𝑚?.

 Next, it conducts the Cartesian product 𝑅𝑙𝑡 𝑝 of these
sets of redexes in the same order as their counterparts in
𝐿𝑙𝑡 𝑝 . As a result, every tuple in 𝑅𝑙𝑡 𝑝 is a redex of
𝐿𝑙𝑡 𝑝 , since they are of the same length and each
constituent of the former is a redex of the element of the
latter to which it corresponds in terms of the tuple order.

 After that, by replacing each redex in a tuple of 𝑅𝑙𝑡 𝑝
with the underlying production whose right graph
includes a component that contains this redex, it acquires
a direct total precedence relation regarding 𝑝; this process
repeats until all the relations regarding 𝑝, which comprise
the set 𝐷𝑡𝑝 𝑝 , are collected. Meanwhile, it establishes a
mapping ℎ from 𝐷𝑡𝑝 𝑝 to a partition of 𝑅𝑙𝑡 𝑝 (i.e., a
collection of disjoint nonempty subset of it that have it as
their union) such that ℎ maps each tuple to the subset of
𝑅𝑙𝑡 𝑝 , each of whose elements can be transformed to this
tuple by the preceding replacement.

 Note that each element in 𝐷𝑡𝑝 𝑝 is a list of a multiset of
productions in a predefined order. Nevertheless, a direct
total precedence relation refers to a relation between a
multiset of productions without any order and a
production. To bridge this gap, it performs a partition of
𝐷𝑡𝑝 𝑝 in terms of such an equivalence relation that two
lists are equivalent if both of them correspond to a same

20

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

multiset, which produces 𝐷𝑝𝑠 𝑝 and 𝑙.

Algorithm 2. Computation of direct total precedence relations.
Input. A set 𝑃 of productions and the direct partial precedence
 relation on 𝑃.
Output. The direct total precedence relation on 𝑃.
{

Let 𝐿𝑙𝑡, 𝑅𝑙𝑡, 𝐷𝑡𝑝,	𝐷𝑝𝑠, 𝐹𝑢𝑛1 and 𝐹𝑢𝑛2 be one-dimensional
 arrays that share the same index which ranges over 𝑃;

 for each 𝑝 ∈ 𝑃{
 𝑘 = |𝑀𝑐𝑐(𝑝. 𝐿)|;
 Let 𝑀𝑐𝑐 𝑝. 𝐿 = 𝐶@,⋯ , 𝐶p ;
 𝐿𝑙𝑡 𝑝 = 𝐶@,⋯ , 𝐶p ;
 for each 𝐶 ∈ 𝑀𝑐𝑐(𝑝. 𝐿){
 𝑅𝑑𝑥 𝐶 = ∅;

 for each 𝐶W ∈ 𝐶𝑚?{
 𝑅𝑑𝑥 𝐶 = 𝑅𝑑𝑥 𝐶 ∪ 𝑀 𝐶, 𝐶W ;
 }

 }
𝑅𝑙𝑡 𝑝 = 𝑅𝑑𝑥 𝐶@ ×⋯×𝑅𝑑𝑥 𝐶p ;
𝐷𝑡𝑝 𝑝 = ∅;
for each 𝑘-tuple 𝑡@,⋯ , 𝑡p ∈ 𝑅𝑙𝑡 𝑝 {

 Generate a 𝑘-tuple 𝑝@,⋯ , 𝑝p such that
 𝑡i ∈ FindRedex 𝑀𝑐𝑐 𝑝i. 𝑅 , 𝐶i , 1 ≤ 𝑖 ≤ 𝑘;
 if 𝑝@,⋯ , 𝑝p ∉ 𝐷𝑡𝑝 𝑝 {
 ℎ 𝑝@,⋯ , 𝑝p = 𝑡@,⋯ , 𝑡p ;
 𝐷𝑡𝑝 𝑝 = 𝐷𝑡𝑝 𝑝 ∪ 𝑝@,⋯ , 𝑝p ;
 } else
 ℎ 𝑝@,⋯ , 𝑝p = ℎ 𝑝@,⋯ , 𝑝p ∪ 𝑡@,⋯ , 𝑡p ;
}
𝐹𝑢𝑛1 𝑝 = ℎ;
𝐷𝑝𝑠 𝑝 = ∅;
for each list 𝑞@,⋯ , 𝑞p ∈ 𝐷𝑡𝑝 𝑝 {
 Create a multiset 𝑆 = 𝑞@,⋯ , 𝑞p ;
 if 𝑆 ∉ 𝐷𝑝𝑠 𝑝 {
 𝑙 𝑆 = 𝑞@,⋯ , 𝑞p ;
 𝐷𝑝𝑠 𝑝 = 𝐷𝑝𝑠 𝑝 ∪ 𝑆 ;
 } else
 𝑙 𝑆 = 𝑙 𝑆 ∪ 𝑞@,⋯ , 𝑞p ;
}
𝐹𝑢𝑛2 𝑝 = 𝑙;

}
return 𝐿𝑙𝑡, 𝑅𝑙𝑡, 𝐷𝑡𝑝, 𝐷𝑝𝑠, 𝐹𝑢𝑛1, 𝐹𝑢𝑛2 ;

}

 In this way, it finally achieves the arrays 𝐷𝑝𝑠 and 𝐹𝑢𝑛2
that can generate the direct total precedence relations
regarding each production of 𝑃, together with the array
𝐹𝑢𝑛1 that can produce the set of redexes with respect to
any of these relations. For example, for each 𝑆 ∈ 𝐷𝑝𝑠 𝑝 ,
𝑆, 𝑝 is a direct total precedence relation, and

ℎ 𝑄�∈t � is the set of all the possible redexes.

 An underlying assumption for the algorithm is that any
component in 𝐶𝑚= or 𝐶𝑚? , as well as any redex of a
component from 𝐶𝑚= in another from 𝐶𝑚?, is uniquely
identified. This is applicable from the perspective of
algorithm implementation, as it can be achieved by
assigning to each node of a production a unique number
as its identity, and representing each redex as a triple
𝑆, 𝑓, 𝑖𝑑 with 𝑆 the involved subgraph, i.e., the redex

itself, 𝑓 the underlying mapping, and 𝑖𝑑 the identifier of
the right graph that contains the redex.

	5	receive
3:T

4:B

send
1:T

2:B

R9R9

begin

Stat
T

B

end
T

B

R1R1
(a) (b)

	5	receive
3:T

4:B

send
1:T

2:B

R9R9

if
1:T

Stat
T

B
Stat
T

B

endif
T

2:B

B

R2R2

	5	receive
3:T

4:B

send
1:T

2:B

R9R9

Stat

Stat
T

2:B

B

R4R4

(c) (d)

	5	receive
3:T

4:B

send
1:T

2:B

R9R9

fork
1:T

Stat
T

B
Stat
T

B

join
T

2:B

B

R5R5

1:T

	5	receive
3:T

4:B

send
1:T

2:B

R9R9

Stat
1:T

B

end
T

R4R4
2:B

	5	receive
3:T

4:B

send
1:T

2:B

R9R9

fork
1:T

Stat
T

B
Stat
T

B

join
3:T

4:B

2:B

R6R6
(e) (f)

Fig. 3. Some level-1contexts of 𝑝8.

 For example, consider the RGG illustrated in Figure 1,
the direct total precedence relations with 𝑝8 being the
target production are as follows: 𝑝1, 𝑝9 , 𝑝8 ,
𝑝2, 𝑝9 , 𝑝8 , 𝑝4, 𝑝9 , 𝑝8 , 𝑝5, 𝑝9 , 𝑝8 ,
𝑝6, 𝑝9 , 𝑝8 , 𝑝1, 𝑝8 , 𝑝8 , 𝑝2, 𝑝8 , 𝑝8 ,
𝑝4, 𝑝8 , 𝑝8 , 𝑝5, 𝑝8 , 𝑝8 , 𝑝6, 𝑝8 , 𝑝8 ,
𝑝1, 𝑝7 , 𝑝8 , 𝑝2, 𝑝7 , 𝑝8 , 𝑝4, 𝑝7 , 𝑝8 ,
𝑝5, 𝑝7 , 𝑝8 , 𝑝6, 𝑝7 , 𝑝8 . The preceding set of the

relations includes two productions, each of whose right
graph contains a component, and these two components
constitutes a graph that contains a redex of the target
production’s left graph. Therefore, the number of total
precedence relations regarding 𝑝8 is 5×3 = 15 . The
algorithm figures out all the total precedence relations
with any production from the input production set
assuming the role of target production.

 Figure 3 illustrates some of the level-1 contexts
regarding 𝑝8. These six level-1 contexts correspond to the
first five direct total precedence relations with 𝑝8 being
the target production. Note that 𝑝4, 𝑝9 , 𝑝8 accounts
for two of them, i.e., Figure 3(c) and (d), as there are two
options for the selection of node “Stat”. Readily, the total
number of level-1 contexts corresponding to the direct

21

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

total precedence relations regarding 𝑝8 can be counted as
6×3 = 18.

3.3 Computation of Total Precedence

 The third algorithm describes the procedure of
constructing all the total precedence relations of depth
𝑘 + 1 based on those of depth no more than 𝑘 , with
respect to a set 𝑃 of productions, where 𝑘 ≥ 1. Readily,
the set of total precedence relations of any depth can be
recursively generated from the fundamental set of direct
total precedence relations by using it.

Algorithm 3. Computation of total precedence relations.
Input. A set 𝑃 of productions, ≼^ the direct total precedence relation
 on 𝑃, and the set 𝑇𝑝𝑑 of total precedence relations of depth
 no more than 𝑘, where 𝑘 ≥ 1.
Output. The set of total precedence relations of depth 𝑘 + 1.
{
 Let 𝑃𝑡𝑝 and 𝑇𝑝𝑟 be one-dimensional arrays whose indexes range
 over 𝑃;
 Let 𝑇𝑝𝑑p be the set of total precedence relations of depth 𝑘;
 for each 𝑝 ∈ 𝑃{
 𝑃𝑡𝑝 𝑝 = 𝑛𝑢𝑙𝑙 ; // Initialize the elements of 𝑃𝑡𝑝;
 }
 for each 𝑝𝑠 ∈ 𝑇𝑝𝑑{
 Let 𝑒 = 𝑃W, 𝑝W be the root element of 𝑝𝑠;
 𝑃𝑡𝑝 𝑝W = 𝑃𝑡𝑝 𝑝W ∪ 𝑝𝑠 ;
 }
 for each 𝑝 ∈ 𝑃{
 𝑃𝑡𝑟 𝑝 = ∅;
 for each 𝑒W = 𝑃WW, 𝑝 ∈≼^{
 Let 𝑃WW = 𝑝@,⋯ , 𝑝p ; //𝑃WW is a multiset;

 𝐶𝑟𝑡 = 𝑃𝑡𝑝 𝑝@ ×⋯×𝑃𝑡𝑝 𝑝p ;
 𝐸 = 𝑒W ;
 𝑅 = ∅;
 for each 𝑡@,⋯ , 𝑡p ∈ 𝐶𝑟𝑡 such that
 ∃𝑖, 𝑗 𝑡i ≠ 𝑛𝑢𝑙𝑙 ∧ 𝑡m ∈ 𝑇𝑝𝑑p { //1 ≤ 𝑖 ≤ 𝑘;
 Create a mapping 𝑓 with domain 𝑃WW;
 𝐷 = ∅; //	𝐷 is a multiset;
 for each 𝑡i{ //1 ≤ 𝑖 ≤ 𝑘;
 if 𝑡i = 𝑛𝑢𝑙𝑙
 𝑓 𝑝i = 𝑛𝑢𝑙𝑙;
 else {
 Let 𝑡i = 𝐸i, 𝑅i , and 𝑒i be the root element;
 𝑓 𝑝i = 𝑒i;
 𝐷 = 𝐷 ∪ 𝑒i ;
 𝐸 = 𝐸 ∪ 𝐸i;
 𝑅 = 𝑅 ∪ 𝑅i;
 }
 }
 Construct a linking relation 𝑟 = 𝑒W, 𝐷, 𝑓 ;
 𝑅 = 𝑅 ∪ 𝑟 ;
 𝑃𝑡𝑟 𝑝WW = 𝑃𝑡𝑟 𝑝WW ∪ 𝐸, 𝑅 ;
 }

 }
 }
 return 𝑇𝑝𝑟;
}

 The algorithm consists of two tasks. First, it partitions
the set 𝑇𝑝𝑑 into |𝑃| distinct subsets in terms of the root
node of the rooted tree that each total precedence relation
(i.e., a precedence structure) forms, which comprise the

set 𝑃𝑡𝑝.

 Then, for any production 𝑝 in 𝑃, it constructs the set of
all the total precedence relations of depth 𝑘 + 1 whose
root elements share the same head 𝑝. More precisely, this
set is the union of the subsets, each of which includes
those relations whose root elements are a same direct total
precedence relation with 𝑝 as the head. Thus, in terms of
each of these relations, say 𝑃WW, 𝑝 , the algorithm
constructs a corresponding subset of all the relations of
depth 𝑘 + 1 with 𝑃WW, 𝑝 as the root element.

e1

e4

p8

p4 p9

p4 p8

p9p2

e3

p5

e2

(c)

p4

p5

p9

p4 p8

p9p2

(a) (b)

Fig. 4. The rooted trees of different depths that correspond to
precedence structures.

 To this end, it first conducts the Cartesian product of
|𝑃WW| selected elements from 𝑃𝑡𝑝 whose indexes exactly
comprises the multiset 𝑃WW. Second, it screens the ordered
tuples in the product to make sure that each chosen one
can be utilized to generate a proper linking mapping from
𝑃WW to the union of 𝑛𝑢𝑙𝑙 and the set of root elements of
its constituents, and that the resulting precedence structure
must be of depth 𝑘 + 1. The latter is guaranteed when one
constituent of the tuple is of depth 𝑘 . Third, for each
chosen tuple, it generates the linking relation, which is
composed of the head 𝑃WW, 𝑝 , the set of tails, i.e., the root
elements of the constituents of the tuple, and the newly
created linking mapping, and then constructs the
consequent precedence structure 𝐸, 𝑅 , where 𝐸 and 𝑅
comprise all the involved direct total precedence relations
and relevant linking relations, respectively.

22

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

 A total precedence relation is commonly represented as
a precedence structure. A precedence structure can
visually form a rooted tree. In Figure 4, (a), (b), and (c)
show three rooted trees that correspond to three
precedence structures, called 𝑝𝑠@ , 𝑝𝑠B , and 𝑝𝑠� ,
respectively. Apparently, they are of depth 1, 2, and 3,
respectively.

 Example 2. A precedence structure 𝑝𝑠� ≔ 𝐸, 𝑅 on
the production set 𝑃 of the RGG in Figure 1, where:

 • 𝐸 = 𝑒@, 𝑒B, 𝑒�, 𝑒� , in which 𝑒@ = 𝑝4, 𝑝9 , 𝑝8 , 𝑒B =
𝑝5 , 𝑝4 , 𝑒� = 𝑝4, 𝑝8 , 𝑝9 , 𝑒� = 𝑝2, 𝑝9 , 𝑝8 ;

 • 𝑅 = 𝑟@, 𝑟B , in which 𝑟@ = 𝑒@, 𝑒B, 𝑒� , 𝑓@ with
𝑓@ 𝑝4 = 𝑒B and 𝑓@ 𝑝9 = 𝑒� , 𝑟B = 𝑒�, 𝑒� , 𝑓B with
𝑓B 𝑝4 = 𝑛𝑢𝑙𝑙 and 𝑓B 𝑝8 = 𝑒�;

 • 𝑒� = 𝑒@.

 In the rooted tree corresponding to 𝑝𝑠�, as depicted in
Figure 4(c), the four fragments enclosed by red dashed
rectangles are the elements 𝑒@ , 𝑒B , 𝑒� , and 𝑒� ,
respectively, which are direct total precedence relations,
i.e., precedence structures of depth 1.

 The subtree enclosed by the green dashed rectangle
corresponds to the precedence structure 𝑝𝑠B.

 Given the set of total precedence relations of depth no
more than 2 including 𝑝𝑠@ and 𝑝𝑠B (the set of direct total
precedence relations involved) as input, the algorithm will
generate a set of total precedence relations of depth no
more than 3, where 𝑝𝑠� is involved. That is, 𝑝𝑠� is created
on the basis of 𝑝𝑠@ and 𝑝𝑠B, together with the direct total
precedence relation 𝑒@.

3.4 Computation of Context

 It is known that a total precedence relation, i.e., a
precedence structure 𝐸, 𝑅 , forms a rooted tree in such a
way that each direct total precedence relation in 𝐸
corresponds to a subtree of depth 1 and they are glued to
each other in terms of the linking relations in 𝑅.

 The fourth algorithm calculates all the level-	𝑖 contexts
of a production and respective extended productions in
terms of a total precedence relation, i.e., a precedence
structure, with respect to it. Readily, the diagram of a
rooted tree corresponding to a precedence structure offers
a more comprehensible perspective for the algorithm.

 The algorithm is composed of two consecutive tasks.
The first task is to transform a total precedence relation (a
rooted tree) into a set of direct total precedence relations
(rooted trees of depth 1).

 To this end, the algorithm creates an empty set, adds the
rooted tree to it, and repeats the subsequent four steps until
all the elements in it become rooted trees of depth 1. First,

it randomly selects a rooted tree from the set and locates
an outmost subtree of length 1 (with the root node, say 𝑝);
then, it figures out all the possible context-	𝑖 𝑝’s according
to the subtree, where 	𝑖 ≥ 1 ; next, for each of those
extended productions, say 𝑝W, it constructs a new tree from
the original one by pruning the subtree except the root
(this node is preserved since it is also a leaf of another
subtree to which this one is linked via a linking relation in
𝑅) from it and substituting 𝑝W for the root 𝑝, and puts it
into the set; and finally, it deletes the originally selected
tree from the set. After that, the set includes only rooted
trees of depth 1, any of which corresponds to a direct total
precedence relation.

Algorithm 4. Computation of contexts and extended productions.
Input. A set 𝑃 of productions, a total precedence relation 𝑀, 𝑝� =
 𝐸�, 𝑅� of depth ℎ.
Output. The level-	ℎ contexts of 𝑝� and corresponding extended
 productions.
{
 𝐶𝑝𝑠 = 𝐸�, 𝑅� ;

while (∃𝑝𝑠 ∈ 𝐶𝑝𝑠 such that 𝑝𝑠 is not a direct total precedence
relation) {

 Let 𝑝𝑠 = 𝐸, 𝑅 ;
 Find an element 𝑒 ∈ 𝐸 such that 𝑒 is not the head of any
 linking relation in 𝑅;
 Let 𝑒 = 𝑃W, 𝑝 and 𝑃W = 𝑝@,⋯ , 𝑝p ; //	𝑘 ≥ 1;
 Let 𝑟 = 𝑒W, 𝐷, 𝑓 ∈ 𝑅 such that 𝑒 ∈ 𝐷;
 Let 𝑒W = 𝑃WW, 𝑝WW ;
 Let 𝐹𝑢𝑛1 𝑝 = ℎ, 𝐹𝑢𝑛2 𝑝 = 𝑙;
 Let 𝑙 𝑃W = 𝑄@,⋯ , 𝑄h ; //𝑚 ≥ 1;
 𝐶𝑝𝑠 = 𝐶𝑝𝑠\ 𝑝𝑠 ;
 for each 𝑡@,⋯ , 𝑡p ∈ ℎ 𝑄@ ∪ ⋯∪ ℎ 𝑄h {

 Construct a level-	𝑖 context 𝑈, 𝑍 , 𝑖 ≥ 1;
 Construct a context-	𝑖 𝑝 with 𝑈, 𝑍 ,	called 𝑝W;
 𝑃WWW = 𝑃WW\ 𝑝 ∪ 𝑝W ;
 𝑒WW = 𝑃WWW, 𝑝WW ;
 𝐷W = 𝐷\ 𝑒 ;

 Create a linking mapping 𝑓W: 𝑃WWW → 𝐷W ∪ 𝑛𝑢𝑙𝑙 such that
 𝑓W 𝑝W = 𝑛𝑢𝑙𝑙, and for any other production 𝑝WWW ∈ 𝑃WWW,
 𝑓W 𝑝WWW = 𝑓 𝑝WWW ;
 𝑟W = 𝑒WW, 𝐷W, 𝑓W ;
 𝐸W = 𝐸\ 𝑒, 𝑒W ∪ 𝑒WW ;
 𝑅W = 𝑅\ 𝑟 ∪ 𝑟W ;
 Construct a precedence structure 𝑝𝑠W = 𝐸W, 𝑅W ;
 𝐶𝑝𝑠 = 𝐶𝑝𝑠 ∪ 𝑝𝑠W ;

 }
 𝐶𝑝𝑠 = 𝐶𝑝𝑠\ 𝑝𝑠 ;
 }
 𝐶𝑛𝑡 = ∅;
 𝑋𝑑𝑝 = ∅;
 for each 𝑝𝑠 ∈ 𝐶𝑝𝑠{
 Construct a level-	ℎ context 𝑈, 𝑍 ;
 𝐶𝑛𝑡 = 𝐶𝑛𝑡 ∪ 𝑈, 𝑍 ;
 Construct a context-	ℎ 𝑝� with 𝑈, 𝑍 ,	called 𝑞;
 𝑋𝑑𝑝 = 𝑋𝑑𝑝 ∪ 𝑞 ;
 }
 return 𝐶𝑛𝑡, 𝑋𝑑𝑝 ;
}

In the second task, it constructs, for each element in the
set, a level-	ℎ context and based on it, an accompanying
extended production as well.

23

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

fork
1:T

Stat
T

B
Stat
T

B

join
T

2:B

B

R5R5

	5	receive
3:T

4:B

send
1:T

2:B

R9R9

if
1:T

Stat
T

B
Stat
T

B

endif
T

2:B

B

R2R2

Stat
1:T

B

Stat
T

2:B
	6	receive

5:T

7:B

	10	send
3:T

4:B
if
1:T

receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

Stat
1:T

B

Stat
T

2:B
	6	receive

5:T

7:B

	10	send
3:T

4:B
if
1:T

			receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

(f)

fork
1:T

Stat
3:T

4:B
Stat
T

B

join
T

2:B

B

fork
1:T

Stat
3:T

B
Stat
T

B

join
T

2:B

B

:=

Stat
T

4:B

Stat
11:T

14:B

Stat
T

12:B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

:=

:=

(g)

fork
1:T

Stat
3:T

B
Stat
T

B

join
T

2:B

B

Stat
T

4:B

send
11:T

14:B

Stat
T

12:B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B
Stat
11:T

B

send
14:T

12:B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

(h)

fork
1:T

Stat
3:T

B
Stat
T

B

join
T

2:B

B

Stat
T

4:B

fork
1:T

Stat
3:T

B

Stat
T

B

join
T

2:B

B

Stat
T

4:B

send
11:T

14:B

Stat
T

12:B	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B
Stat
11:T

B

send
14:T

12:B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

	13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

(j)

fork
1:T

Stat
3:T

B

Stat
T

B

join
T

2:B

B

Stat
T

4:B

:=

(l)

send
11:T

14:B

Stat
T

12:B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

Stat
11:T

B

Stat
14:T

12:B
	6	receive

5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B
Stat
11:T

B

send
14:T

12:B
	6	receive

5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

fork
15:T

Stat
17:T

20:B
Stat
T

B

join
T

16:B

B

Stat
T

18:B

	19	send
11:T

14:B

Stat
T

12:B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

fork
15:T

receive
17:T

20:B
Stat
T

B

join
T

16:B

B

Stat
T

18:B

	19	send
11:T

14:B

Stat
T

12:B

	6	receive
5:T

7:B

	10	send
3:T

4:B
if
1:T

13	receive
8:T

9:B
Stat
T

B

endif
T

2:B

B

(a) (b) (c)

(d) (e)

(i)

(k)

Fig. 5. Computation of Contexts. (a) A level-1 context of 𝑝4. (b) A level-1 context of 𝑝8. (c) A context-1 𝑝4. (d) A level-2 context of 𝑝9. (e) A
context-2 𝑝9. (f) A level-2 context of 𝑝9. (g) A context-2 𝑝9. (h-k) Four level-3 contexts of 𝑝8. (l) A context-3 𝑝8.

24

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

 Example 3. Computation of contexts.

 Figure 5 depicts some of the contexts and context-
equipped productions with respect to the RGG discussed
above, which provides a visual demonstration of the
computation process of Algorithm 4.

 In each part of Figure 5, the subgraph enclosed by a
green dashed eclipse is the left or right graph of some
production, and the subgraph enclosed by a purple dashed
rectangle or eclipse is the underlying production of a
context-equipped production.

 Figure 5(a) shows a level-1 context of 𝑝4, which is the
output of Algorithm 4 when taking the direct total
precedence relation 𝑝𝑠@ whose precedence structure is
given in Figure 4(a) as input. The context-equipped 𝑝4,
numbered as 𝑝10, is shown in (c). It is also abbreviated to
context-1	𝑝4.

 Figure 5(b) presents a level-1 context of 𝑝8, with respect
to the direct total precedence of 𝑒� whose precedence
structure is shown in Figure 4(c). The corresponding
context-equipped 𝑝8 (named by 𝑝11 above) is given in
Figure 2(c). Taking the total precedence relation 𝑝𝑠B
(comprised of 𝑒� and 𝑒�) shown in Figure 4(b) as input,
Algorithm 4 generates two level-2 contexts of 𝑝9 , as
depicted in (d) and (f). That is, based on the right graphs
of 𝑝4 and 𝑝11 (whose underlying production is 𝑝8), the
algorithm produces all the level-2 contexts of 𝑝9. The
quantity of contexts depends on the number of options
when creating the left graph of the given production from
other productions’ right graphs. Accordingly, two
context-equipped 𝑝9 are illustrated in (e) and (g), and
numbered as 𝑝12 and 𝑝13, respectively.

 The computation of the total precedence relation 𝑝𝑠� is
on the basis of 𝑝𝑠@ and 𝑝𝑠B. In a similar way, when taking
the total precedence relation 𝑝𝑠� as input, Algorithm 4
generates four level-3 contexts of 𝑝8, as shown in Figure
5(h)-(k). That is, the contexts are produced based on the
right graphs of 𝑝10 and 𝑝12 , or of 𝑝10 and 𝑝13 . A
context-equipped 𝑝8 that corresponds to the level-3
context in (h) is demonstrated in (l).

4. Complexity Analysis
 In this section, the complexities of the proposed
algorithms in the preceding section are analyzed.

 Algorithm 1 calls a procedure FindRedex 𝐻, 𝐺 to
generate the set of subgraphs of 𝐻 that are redexes of the
marked graph 𝐺 . A procedure similar to the callee was
proposed in [12] with time complexity 𝑂 |𝐻||8| , where
|𝐻| or |𝐺| denotes the number of nodes involved in it.
Then, the time complexity of the algorithm directly
follows:

 Proposition 1. The time complexity of Algorithm 1 is
𝑂 𝑚B𝑛B𝑟� , where 𝑚 is the number of productions in 𝑃,
𝑛 is the maximal number of components in the left or right
graphs of productions in 𝑃, and 𝑟 is the maximal number
of nodes in any of the components.

 Proposition 2. The time complexity of Algorithm 2 is
𝑂 𝑚𝑛 7�@𝑟�7 , where 𝑚, 𝑛 and 𝑟 are as in Proposition
1.

 Proof. The algorithm mainly consists of a for-loop that
nests other three sequential for-loops.

 In the outmost loop, the first nested for-loop also nests
another for-loop, which takes time 𝑂 𝑚𝑛B . The line next
to it is the calculation of a 𝑘-ary Cartesian product over
sets of redexes of components in 𝑝. 𝐿 , each of which
contains at most 𝑚𝑛×𝑟� elements, where 𝑚𝑛 and 𝑟� are
the maximal number of elements in 𝐶𝑚? and 𝑀 𝐶, 𝐶W ,
respectively. Thus, the time complexity is 𝑂 𝑚𝑛𝑟� 7 ,
since 𝑘 equals to 𝑛 in the worst case.

 In the second nested for-loop, the first line takes 𝑂 𝑛 ,
because the production to which each redex in the ordered
tuple of 𝑅𝑙𝑡 corresponds is clearly indicated beforehand,
according to the underlying assumption. Therefore, this
for-loop takes time 𝑂 𝑛 𝑚𝑛𝑟� 7 .

 Moreover, the time complexity of the last nested for-
loop is at most 𝑂 𝑛 𝑚𝑛𝑟� 7 , for the cardinality of
𝐷𝑡𝑝 𝑝 is no more than that of 𝑅𝑙𝑡 𝑝 .

 In summary, the nested part of the outmost loop takes
time 𝑂 𝑛 𝑚𝑛𝑟� 7 . Consequently, the time complexity
of the whole procedure is 𝑂 𝑚𝑛 7�@𝑟�7 , which is the
product of the time complexity of the outmost for-loop
and that of its nested part. ∎

Proposition 3. The time complexity of Algorithm 3 is
𝑂 𝑚7�B𝑛𝑙7 , where 𝑚 and 𝑛 are as in Proposition 1,
and 𝑙 is the cardinality of 𝑇𝑝𝑑.

Proof. The algorithm consists of three sequential for-
loops. It is evident that the first two loops take 𝑂 𝑛 and
𝑂 𝑙 , respectively.

 The last one is a four-layer nested for-loops. According
to the structure, its time complexity can be expressed as
𝑂 𝑑@𝑑B𝑑�𝑑� , where 𝑑@, 𝑑B, 𝑑� and 𝑑� are the maximal
number of times traversed in the outmost, second, third,
and inmost for-loop, respectively. We proceed inwards
from outside of the structure.

 First, 𝑑@ is the number of productions in 𝑃, that is, 𝑑@ =
𝑚. Next, 𝑑B equals to the cardinality of ≼^, which is no
more than 𝑚×𝑚7 = 𝑚7�@ . It is obvious that 𝑑� is
actually the cardinality of the Cartesian product over 𝑘
sets from 𝑃𝑡𝑝, where 𝑘 denotes the number of tails in a
direct total precedence relation. Since 𝑃𝑡𝑝 is a partition of

25

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

𝑇𝑝𝑑, each element of the former must be a subset of the
latter. Thus, 𝑑� < 𝑙7. As for the inmost loop, 𝑑� readily
equals to 𝑛, which is exactly the same as the exponent
appearing in the preceding inequation.

 Consequently, the last structure takes 𝑂 𝑚7�B𝑛𝑙7 , i.e.,
the product of the complexities of the four constituents.
Readily, it is also the time complexity of the algorithm.
∎

Theorem 1. The time complexity of Algorithm 4 is
𝑂 𝑛! 𝑟�7 B7 ¡¢ , where 𝑛 and 𝑟 are as in Proposition 1,
and ℎ is the depth of the input total precedence relation.

Proof. The main part of the algorithm is a two-layer
structure: a for-loop nested within a while-loop, followed
by another for-loop.

 As to the former, the total number of times it is traversed
is the product of that of the outmost while-loop and of the
inmost for-loop. We consider the while-loop first. In the
worst case, the input total precedence relation 𝐸�, 𝑅�
corresponds to a complete 𝑛-ary rooted tree of depth ℎ.
Then, the cardinality of 𝐸�, i.e., the number of subtrees of
depth 1 that compose it, can be expressed as:

 1 + 𝑛 + ⋯+ 𝑛£¤@ = 7 ¤@
7¤@

 (1)

 Suppose the number of times the inmost for-loop is
traversed at the worst case be 𝑤. In each traversal of the
while-loop, it takes a rooted tree out from 𝐶𝑝𝑠, and then
puts as many as 𝑤 revised ones that comprise one less
subtrees back into it. This process is repeated until each
element in 𝐶𝑝𝑠 becomes a rooted tree of depth 1, i.e., it
only involves a root element. Consequently, the maximal
number of times the loop is traversed can be expressed as:

 1 + 𝑤 + 𝑤B⋯+ 𝑤
¦ ¡¢
¦¡¢ 	¤@ = §

¦ ¡¢
¦¡¢ 	¤@
§¤@

 (2)

 Further inference to Formula (2) can be done as follows:

 §
¦ ¡¢
¦¡¢ 	¤@
§¤@

< §
§¤@

⋅ 𝑤
¦ ¡¢
¦¡¢ ¤@ = §

§¤@
⋅ 𝑤

¦ ¦ ¡¢¡¢
¦¡¢

 < §
§¤@

⋅ 𝑤B7 ¡¢ = 𝑂 𝑤B7 ¡¢

Note that 𝑤 exactly equals to the number of extended
context-1 productions that can be produced from a direct
total precedence relation, by Definition 5. In the worst
case, the relation consists of one head and 𝑛 tails, and
each component of the latter’s right graphs contains 𝑟�
redexes of any component of the former’s left graph. To
be exact, of the loop variable 𝑡@,⋯ , 𝑡p for the for-loop,
each element 𝑡i can be any of the 𝑟� redexes of the
corresponding component of the left graph in any
component of any tail’s right graph, where 1 ≤ 𝑖 ≤ 𝑘, and
𝑘 = 𝑛. Thus, for each permutation of the tails, there are

𝑟� 7 = 𝑟�7 possible ordered tuples, where 𝑛 is the
maximal number of choices for selecting one component
from each tail, and 𝑟� is the maximal number of redexes
in each component. Furthermore, the number of
permutations for the tails is 𝑛!. Therefore, 𝑤 = 𝑛! 𝑟�7 .
Substituting the result for 𝑤 in Formula (2) yields
𝑛! 𝑟�7 B7 ¡¢.

 As to the latter, the number of times it is traversed is
𝑛£¤@×𝑛 = 𝑛£.

 Consequently, the time complexity of the algorithm is
𝑂 𝑛! 𝑟�7 B7 ¡¢ . ∎

5. Discussion

5.1 Applicability of the Algorithms

 From the perspective of time complexity, the above four
algorithms seem rather complicated at first glance.
Nevertheless, they are applicable in practical scenarios
due to the following three causes.

 First, the parameters that characterize a graph grammar
are usually small constants, and cannot change in any
computation. That is, the parameters are the nature of a
graph grammar that will not vary with host graphs in
parsing or derivation processes under different situations.

 Second, the worst cases theoretically assumed in the
analysis of the complexities can rarely happen in practice,
and they are frequently quite small number in practical
applications. Notice that the number of redexes with
respect to a direct total precedence relation is surprisingly
𝑛! 𝑟�7. However, this amount is merely a theoretical upper
bound that accounts for all the possibly matched
subgraphs, no matter in which situation all the redexes can
simultaneously occur. An extreme situation in this case is
a host graph where all the nodes in the host graph are
labeled with the same symbol and the directed edges
between them are completely connected. However, such
host graphs can rarely be encountered in practice. As an
example, consider the graph grammar depicted in Figure
1, the number of redexes with respect to a direct total
precedence relation is theoretically 2! 4B×� , whereas in
the practical computation it is less than 10 in most cases.

 Third, the contexts of a graph grammar can be achieved
as the output from merely one execution of the algorithms,
and then they can be repeatedly utilized in the process of
derivation and parsing of this grammar at any time
afterwards.

5.2 Application of Context

 Context offers a concrete way for designers or users to
grasp the meaning of an implicit graph grammar by
directly observing the productions instead of enumerating

26

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

the members of the language. A context of a production
characterizes a potential circumstance, under which it can
be applied for derivation, a means usually employed to
generate members of the language. Conversely, the
context can also be regarded as a circumstance under
which the production can be applied for parsing. Any
production is self-explanatory for what it is for, whereas
the contexts at distinct levels indicate at which situations
it can be applied. These two aspects together clearly show
the intension or meaning of a production, from the point
view of derivation. Consequently, contexts can facilitate
the comprehension of a graph grammar by synthesizing
the meanings of its constituents so as to constitute the
overall characteristics of the members of its language.

 Moreover, context can facilitate the improvement of
parsing performance. A general parsing algorithm is
always a necessity for graph grammar formalisms.
Backtracking is the main cause of high time complexity
of a general parsing algorithm. In the process of parsing a
host graph, when some unexpected (false positive)
redexes are found and the corresponding reductions are
conducted accordingly, then a final graph may be
obtained that is not the initial graph of the involved graph
grammar and to which no more reductions can be done.
This situation gives rise to backtracking. A redex is called
false positive if the situation in which the redex lies does
not match any of the contexts of the production.
Consequently, identifying the false positive redexes so as
to avoid unexpected reductions is an effective way to
improve parsing performance. Apparently, context
matching can serve this purpose.

 Noticeably, the proposed approach to context
computation can be directly applied to practical graph
grammars specifying real-world visual languages, e.g.,
BPMN (Business Process Model and Notation), ER
diagrams, UML diagrams, WebML (Web Modeling
Language), chemical diagrams, and so on, since these
graph grammars are concrete examples of the underlying
formalisms where the specification of nodes and edges in
productions is entirely inherited from the formalisms.

6. Conclusion
 On the basis of RGG, a representative of implicit
context-sensitive graph grammar formalism, this paper
has proposed an approach to the computation of context
according to the formal definition of context, and
presented the time complexities of the partially ordered
algorithms involved. The method can facilitate the
applicability of implicit graph grammars, as contexts of
the productions are essential information for the
comprehension of graph grammars and the improvement
of parsing performance of parsing algorithms. Besides,
the method can be generalized to other implicit context-

sensitive graph grammar formalisms without much effort.

 In the future, further investigation will be conducted to
explore more application scenarios of context, and a
support system for context computation and visualization
in a context-sensitive graph grammar framework will be
developed as well.

Acknowledgments

 This work is supported in part by the National Science
Foundation of China under grants 61170089 and
91318301.

References

[1] Chang S. K. (1987) “Visual Languages: A Tutorial and Survey”.
IEEE Software, 4(1), pp. 29–39.

[2] Marriott K. (1994) “Constraint Multiset Grammars”. IEEE
Symposium on Visual Languages, St. Louis, Missouri, pp. 118–
125.

[3] Ferrucci F., Pacini G., Satta G., et al. (1996) “Symbol-Relation
Grammars: A Formalism For Graphical Languages”. Information
and Computation, 131(1), pp. 1–46.

[4] Chang S. K. (1971) “Picture Processing Grammar and Its
Applications”. Information Sciences, Vol. 3, pp.121–148.  

[5] Lakin F. (1987) “Visual Grammars for Visual Languages”. 7th
National Conference on Artificial Intelligence, pp. 683–688.

[6] You K. C., Fu K. S. (1979) “A Syntactic Approach to Shape
Recognition Using Attributed Grammars”. IEEE Transactions on
Systems, Man and Cybernetics, 9(6), pp. 334–345.

[7] Costagliola G., Deufemia V., Polese G. (2007) “Visual Language
Implementation Through Standard Compiler-Compiler
Techniques”. Journal of Visual Languages and Computing, 18(2),
pp. 165-226.

[8] Rozenberg G. (Ed.) (1997) “Handbook on Graph Grammars and
Computing by Graph Transformation, Vol.1: Foundations”. World
Scientific.

[9] Engels G., Kreowski H. J., Rozenberg G. (Eds.) (1999) “Handbook
of Graph Grammars and Computing by Graph Transformation, Vol.
2: Applications, Languages, and Tools”. World Scientific.

[10] Ehrig H., Kreowski H. J., Montanari U., Rozenberg G. (Eds.)
(1999) “Handbook of Graph Grammars and Computing by Graph
Transformation, Vol.3: Concurrency, Parallelism, and
Distribution”. World Scientific.

[11] Rekers J., Schürr A. (1997) “Defining and Parsing Visual
Languages with Layered Graph Grammars”. Journal of Visual
Languages and Computing, 8(1), pp. 27–55.

[12] Zhang D., Zhang K., Cao J. (2001) “A Context-Sensitive Graph
Grammar Formalism for the Specification of Visual Languages”.
The Computer Journal, 44(3), pp.187–200.

[13] Nagl M. (1979) “A Tutorial and Bibliographical Survey on Graph
Grammars”. International Workshop on Graph Grammars and
Their Application to Computer Science and Biology, Lecture
Notes in Computer Science, Vol. 73, Springer Verlag, pp. 70–126.

[14] Nagl M. (1987) “Set Theoretic Approaches to Graph Grammars”.
International Workshop on Graph Grammars and Their
Application to Computer Science, Lecture Notes in Computer
Science, Vol. 291, Springer Verlag, pp. 41–54.

[15] Shi Z., Zeng X., Zou Y., et al. (2018) “A Temporal Graph
Grammar Formalism,” Journal of Visual Languages and
Computing, Vol. 47, pp. 62–76.

27

Y. Zou et al. / Journal of Visual Language and Computing (2019) 15-28

DOI reference number: 10.18293/JVLC2019N1-017

[16] Kong J., Zhang K., Zeng X. (2006) “Spatial Graph Grammars for
Graphical User Interfaces”. ACM Transactions on Computer-
Human Interaction, 13(2), pp. 268–307.

[17] Zhao C., Kong J., Zhang K. (2010) “Program Behavior Discovery
and Verification: A Graph Grammar Approach”. IEEE
Transactions on Software Engineering, 36(3), pp. 431–448.

[18] Roudaki A., Kong J., Zhang K. (2016) “Specification and
Discovery of Web Patterns: A Graph Grammar
Approach”. Information Sciences, Vol. 328, 528-545.

[19] Liu Y., Zeng X., Zou Y., Zhang K. (2018) “A Graph Grammar-
Based Approach for Graph Layout,” Software: Practice and
Experience, 49(8), pp. 1523–1535.

[20] Kong J., Barkol O., Bergman R., Pnueli A., Schein S., et al. (2012)
“Web Interface Interpretation Using Graph Grammars”. IEEE
Transactions on System, Man, and Cybernetics – Part C, 42(4), pp.
590–602.

[21] Chen L., Huang L., Chen L. (2015) “Breeze Graph grammar: A
Graph Grammar Approach for Modeling the Software
Architecture of Big Data-Oriented Software Systems”. Software:
Practice and Experience, 45(8), pp. 1023–1050.

[22] Liu Y., Zhang K., Kong J., Zou Y., Zeng X. (2018) “Spatial
Specification and Reasoning Using Grammars: From Theory to

Application,” Spatial Cognition & Computation, Taylor & Francis,
18(4), pp. 315–340.

[23] Pfaltz J. L., Rosefeld A. (1969) “Web Grammars”. International
Joint Conference on Artificial Intelligence, pp. 609–619.

[24] Zeng X., Han X., Zou Y. (2008) “An Edge-Based Context-
Sensitive Graph Grammar Formalism”. Journal of Software, 19(8),
pp. 1893–1901. (in Chinese)

[25] Liu Y., Shi Z., Wang Y. (2018) “An Edge-Based Graph Grammar
Formalism and Its Support System”. International DMS
Conference on Visualization and Visual Languages, pp.101–108.

[26] Zou Y., Zeng X., Han X. (2008) “Context-Attributed Graph
Grammar Framework for Specifying Visual Languages”. Journal
of Southeast University (English Edition), 24(4), pp. 455–461.

[27] Bottoni P., Taentzer G., Schürr A. (2000) “Efficient Parsing of
Visual Languages Based on Critical Pair Analysis and Contextual
Layered Graph Transformation”. IEEE Symposium on Visual
Languages, pp. 59–60.

[28] Zou Y, Lü J, Tao X. (2019) “Research on Context of Implicit
Context-Sensitive Graph Grammars”. Journal of Computer
Languages, Vol. 51, pp. 241–260.

28

	Blank Page
	Blank Page
	JVLC2019N1v2.pdf
	Blank Page
	Blank Page
	Blank Page

	Blank Page
	Blank Page
	Blank Page

