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A B S T R A C T 

 

Visual Programming Languages have been frequently utilized in computer science. Context-sensitive 
graph grammars are appropriate formalisms for specifying visual programming languages, since they 
are intuitive, rigorous, and expressive. Nevertheless, some of the formalisms whose contexts are 
implicitly or even incompletely represented in productions, called implicit context-sensitive graph 
grammars, suffer inherent weakness in intuitiveness or limitations in parsing efficiency. Making 
context explicit to productions tends to be a conceivable way to address this issue. Based on the 
formalization of context, this paper proposes an approach to the computation of context for implicit 
context-sensitive graph grammars. The approach is comprised of four partially ordered algorithms. 
Moreover, the complexities of the algorithms are analyzed and the applicability of the approach is 
discussed. Thus, the proposed approach paves the way for the practical applications of context in 
implicit context-sensitive graph grammar formalisms, such as facilitating the comprehension of graph 
grammars and improving parsing performance of general parsing algorithms. 

                                                                                                                   © 2019 KSI Research 
  

 

1. Introduction 
In many fields of computer science, Visual 

Programming Languages (VPLs) have been frequently 
adopted in modeling, representation, and design of 
complex structures. VPLs usually handle those objects 
that do not possess inherent visual representation in a 
visual way [1]. 

Various approaches have been proposed to formally 
specify and parsing VPLs, such as constraint multiset 
grammars [2], symbol-relation grammars [3], picture 
processing grammar [4], visual grammar [5], attributed 
shape grammar [6], compiler techniques [7], etc. As a 
natural extension of formal grammar theory, graph 
grammars offer the mechanisms for formal specification 
and parsing of VPLs [8], just like formal grammars do for 

string languages. However, the extension from one-
dimensional string-based formal grammars to two-
dimensional graph grammars brings about a few novel 
challenges, especially the embedding problem. The 
embedding problem refers to that how to avoid creating 
dangling edges when replacing a subgraph in a graph 
(called host graph) with another graph and connecting the 
remainder and the replacing graph together to produce a 
whole graph. Quite a few graph grammar formalisms have 
been proposed in the literature [8-12]. From the 
perspective of usability, there is still room for these 
formalisms to be ameliorated in expressive power or 
computing efficiency. 

  Most of the existing graph grammar formalisms fall into 
the categories of context-free and context-sensitive. The 
expressive power of a graph grammar lies on the type it 
belongs to as well as the embedding mechanism it chooses 
[13-14]. Among all the categories of embedding 
mechanisms that vary in complexity and power, invariant 
embedding is the least complex one and most commonly 
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employed in graph grammar formalisms. Context-
sensitive graph grammars tend to be more expressive than 
context-free ones, when confined to identical less 
complex embedding mechanisms and invariant 
embedding in particular. As context-free graph grammars 
have difficulty in specifying a large portion of graphical 
VPLs [11-12], recent research in this field focus more on 
context-sensitive graph grammar formalisms and their 
applications [15-22]. 

  Generally, a graph grammar consists of a set of 
productions (rewriting rules), each of which is a pair of 
graphs, called left graph and right graph, together with an 
embedding expression. In context-sensitive graph 
grammars, the contexts pertaining to a production 
generally refer to the neighboring subgraphs of the 
rewritten portion of its left graph in potential host graphs 
[23], which describe the situations under which the 
production can be applied. A host graph is a graph that is 
being rewritten by some graph grammar in the process of 
derivation or parsing. However, the context portion of a 
production, i.e., the remainder of the left graph minus the 
rewritten portion, is commonly not a direct copy of the 
contexts for the sake of conciseness of productions and 
easiness of embedding. 

   As is known, the most representative context-sensitive 
graph grammar formalisms are Layered Graph Grammar 
(LGG) [11] and Reserved Graph Grammar (RGG) [12]. 
In order to solve the embedding problem, LGG identically 
involves in the left and right graphs of a production its 
immediate context and imposing a dangling edge 
condition on redex definition, which guarantees that 
dangling edges never occur in rewritten host graphs. 
Generally, a redex is a subgraph in a host graph that is 
isomorphic to the left or right graph of a production. RGG 
is commonly viewed as an improvement over LGG in 
respect of succinctness of specification and efficiency of 
parsing algorithm. Rather than directly involving contexts 
in productions just as LGG does, RGG formalism invents 
a particular two-level node structure coupled with a 
marking technique to indirectly specify the context of a 
production by identically distributing a set of marked 
vertices into the left and right graphs. The vertices 
establish a one-to-one correspondence between the two 
graphs in terms of their marks. Thus, the embedding 
problem is solved through this mechanism together with a 
dedicated embedding rule. Other context-sensitive 
formalisms include Edge-based Graph Grammar (EGG) 
[23-24], Context-Attributed Graph grammar (CAGG) 
[25], Contextual Layered Graph Grammar (CLGG) [26], 
and Spatial Graph Grammars (SGG) [27]. To tackle the 
embedding problem, EGG identically augment a set of 
marked dangling edges to both the left and right graphs of 
a production, whereas CAGG introduces attributes of 
nodes to establish a correspondence between the two 

graphs of a production. CLGG and SGG are extensions of 
LGG and RGG, respectively. Based on LGG, CLGG 
supports three extra mechanisms, which can be employed 
to define more complex VPLs. SGG extends RGG by 
augmenting its productions with a spatial specification 
mechanism, with which it can explicitly describe both 
structural and spatial relationships for VPLs. 

  According to how the context portion of a production is 
dealt with, the preceding formalisms fall into two 
categories: explicit and implicit [28]. The former 
formalisms indicate those that directly enclose the 
complete immediate contexts as its context portion in a 
production, whereas the latter refers to the ones in which 
the context portion is expressed as specifically tailored 
(i.e., incomplete) immediate contexts, attributes adhered 
to the rewritten portion, or even newly introduced graph 
notations. Apparently, LGG and RGG are typical 
examples of the former and the latter, respectively. 

One of the inherent deficiencies of implicit formalisms 
is that they are not intuitive, which arises from the fact 
that the context portion of a production is not the complete 
immediate contexts. In RGG, the context portion is a set 
of marked vertices. Vertices are explained to be 
connecting points of edges, but their exact meaning is left 
undefined. Therefore, the selection, arrangement and 
marking of vertices within a node become a challenge in 
the design of productions. Moreover, as actual immediate 
contexts are absent in productions, it is rather difficult for 
users to exactly comprehend the language of a given graph 
grammar. Noticeably, similar situations also arise in other 
implicit formalisms. 

  Making context explicit can be a conceivable way to 
address the above issues. Obviously, explicit context is 
helpful in several application scenarios. Context can be 
employed to make up the deficiency in intuitiveness so as 
to facilitate the comprehension and design of implicit 
graph grammars. Furthermore, context can be utilized to 
reduce the search space in general parsing algorithms by 
decreasing the times of backtracking through context 
matching, thus improving the parsing efficiency. In the 
literature [28], a formal definition of context is presented 
and the properties are characterized, which provide a solid 
theoretical foundation for the computation of context. 
Nevertheless, the formalization of context and its 
properties is complex, a direct approach for computation 
is not available. Therefore, an explicit and detailed 
method for context computation is apparently a necessity 
for serving the purpose of context usage in application 
scenarios. 

  In this paper, on the basis of RGG formalism, an 
approach to context computation in implicit graph 
grammar formalisms is proposed. This is a subsequent 
research work on context, and the technical contributions 
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are as follows: It presents a concrete approach for context 
computation, which is comprised of four partially ordered 
algorithms with each one being dependent on its 
predecessors. Moreover, it provides the time complexities 
of the algorithms. Besides, it discusses the applicability of 
the approach. This method can be generalized to be 
applicable to other implicit formalisms. Hence, it paves 
the way for the application of context for the implicit 
context-sensitive graph grammar formalisms. 

  The remainder of the paper is organized as follows: 
Section 2 reviews the RGG formalism and excerpts the 
formal definition of context. Section 3 proposes an 
approach that consists of four algorithms to the 
computation of context. Section 4 addresses the 
complexities of the algorithms. Section 5 discusses the 
applicability of the algorithms. Finally, section 6 
concludes the paper and proposes future research. 

2. Preliminaries 
  A graph grammar consists of an initial graph and a 
collection of productions (graph rewriting rules). Each 
production has two graphs called left graph and right 
graph respectively, and can be applied to another graph 
called host graph. Every node in a production is either a 
terminal or a non-terminal node. A graph grammar defines 
a graph language composed of those graphs that can be 
derived from the initial graph by repeated applications of 
the productions and whose nodes are all terminal ones. A 
redex is a subgraph in a host graph that is isomorphic to 
the left or right graph of a production. 

2.1 The RGG Formalism 

  RGG is a context-sensitive graph grammar formalism [9]. 
It introduces a node-edge format to represent graphs in 
which each node is organized as a two-level structure, 
where the large surrounding rectangle is the first level, 
called super vertex, and other embedded small rectangles 
are the second level, called vertices. Either a vertex or a 
super vertex can be the connecting point of an edge. In 
addition to the two-level node structure, the RGG also 
introduces a marking technique that divides vertices into 
two categories: marked and unmarked ones. Each marked 
vertex of a production is identified by an integer that is 
unique in the left or right graph where the vertex lies. A 
production is properly marked if each marked vertex in 
the left graph has a counterpart marked by the same 
integer in the right graph, and vice versa. 

  In the process of a production application, when a redex 
is matched in a host graph, each vertex that corresponds 
to a marked vertex in the left or right graph preserves its 
associated edges connected to nodes outside of the redex, 
which avoids the appearance of dangling edges during the 

subsequent subgraph replacement process provided that 
an additional embedding rule is also enforced. The 
embedding rule states that if a vetex in the right (or left) 
graph of a production is unmarked and has an isomorphic 
vertex in the redex of a host graph, then all the edges that 
are connected to the vertex should be completely inside 
the redex. 

 
Fig. 1. A graph grammar for process flow diagrams. 

  As an example, an RGG specifying process flow 
diagrams, which is slightly adapted from [11], is depicted 
in Figure 1. 

2.2 Partial and Total Precedence 

  In this subsection, we take the RGG as the representative 
of implicit context-sensitive graph grammar formalisms 
to present partial and total precedence relations between 
graph productions. For the sake of clarity and simplicity, 
some basic concepts and notations are listed below. Note 
that graphs are directed ones in the node-edge format and 
only vertices in productions might be marked. 

  RGG: A reserved graph grammar is a triple 𝐴, 𝑃, 𝛺 , 
where 	𝐴  is an initial graph, 	𝑃  a set of graph grammar 
productions, 𝛺 a finite label set consisting of two disjoint 
sets 𝛺& and 𝛺'&(called terminal label set and nonterminal 
label set, respectively). For any production 𝑝 ≔ (𝐿, 𝑅) ∈
𝑃, three conditions are satisfied: 𝑅 is non-empty, 𝐿 and 𝑅 
are over 𝛺, and the size of 𝑅 are not less than that of 𝐿. 

  𝑝 ≔ (𝐿, 𝑅): A production with a pair of marked graphs: 
the left graph 𝐿 and right graph 𝑅. The notations 𝑝. 𝐿 and 
𝑝. 𝑅 represent the left and right graph of a production 𝑝, 
respectively. For any graph 𝐺 , 𝐺. 𝑁 and 𝐺. 𝐸  denote the 
set of nodes and edges, respectively; 𝑛. 𝑉 and 𝑛. 𝑣 denote 
the set of vertices and some vertex 𝑣  of a node 𝑛 , 
respectively; and 𝐺. 𝑉 = 𝑛. 𝑉7∈8.'  is the union of the 
sets of vertices of nodes in 𝐺; for any edge 𝑒, 𝑠 𝑒  and 
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𝑡 𝑒  represent the source and target vertex of 𝑒 , 
respectively, and 𝑙 𝑒  is the label on 𝑒. 𝑃= = 𝑝. 𝐿|𝑝 ∈ 𝑃  
and 𝑃? = 𝑝. 𝑅|𝑝 ∈ 𝑃 . 

  𝐺@ ≈ 𝐺B: 𝐺@ is isomorphic to 𝐺B. 

  Redex: A subgraph 𝑋 ⊆ 𝐻 is a redex of graph 𝐺, denoted 
as 𝑋 ∈ 𝑅𝑑(𝐻, 𝐺), if 𝑋 ≈ 𝐺 under an isomorphic mapping 
𝑓 and any vertex in 	𝑋 that is isomorphic to an unmarked 
vertex in 𝐺 keeps its edges completely inside 𝑋. 

  𝑅𝑑(𝐻, 𝐺): A set of redexes of marked graph 𝐺, which 
are subgraphs of graph 𝐻. 

  𝑀𝑐𝑐 : A mapping from graphs to the sets of maximal 
connected components contained in these graphs. A 
maximal connected component in a graph is a connected 
component being maximal.  

  𝑀𝑐𝑐 𝑃= = 𝐶|𝐶 ∈ 𝑀𝑐𝑐 𝑝. 𝐿 	⋀	𝑝 ∈ 𝑃 , 𝑀𝑐𝑐 𝑃? =
𝐶|𝐶 ∈ 𝑀𝑐𝑐 𝑝. 𝑅 	⋀	𝑝 ∈ 𝑃 . 

  The following definitions excerpted from [28] are 
necessary to understand the notion of context and the 
approach to context computation. 

  Definition 1. Let 𝑔𝑔 ≔ 𝐴, 𝑃, 𝛺  be an RGG, 𝑝@, 𝑝B ∈ 𝑃 
be two productions, 𝐶@ ∈ 𝑀𝑐𝑐(𝑝@. 𝐿)  and 𝐶B ∈
𝑀𝑐𝑐(𝑝B. 𝑅). If ∃𝑋 ⊆ 𝐶B  such that 𝑋 ∈ 𝑅𝑑(𝐶B, 𝐶@), then 
𝐶@ is matched with 𝑋 in 𝐶B, denoted as 𝐶@ ≈ 𝑋 ⊑ 𝐶B; or 
concisely 𝐶@ is included in 𝐶B, denoted by 𝐶@ ⊑ 𝐶B. 

  The definition introduces the notion of inclusion 
between the components of productions, or to be exact, to 
locate a redex of a component of the left graph of one 
production in some component of the right graph of 
another production. 

  Let 𝑈 be some set and 𝑆 = 𝐵,𝑚  a multiset, where 𝐵 is 
the underlying set of elements and 𝑚:	𝐵 → ℕ  is a 
mapping from 𝐵 to the set ℕ of positive natural numbers. 
𝑆 ⊆ℕ 𝑈 if and only if 𝐵 ⊆ 𝑈. In order to unambiguously 
reference to an element from a multiset, we stipulate that 
any two elements in a multiset 𝑆 have distinct identities 
even if they are the same element from the point of view 
of the underlying set 𝐵, and the identities of elements are 
not explicitly represented in context for the sake of 
conciseness. 

  Definition 2. Let 𝑔𝑔 ≔ 𝐴, 𝑃, 𝛺  be an RGG, and 𝑃= 
and 𝑃? the sets of left and right graphs of productions in 
𝑃 , respectively. A set 𝑆@ ⊆ 𝑀𝑐𝑐(𝑃=)  is included in 
another multiset 𝑆B ⊆ℕ 𝑀𝑐𝑐(𝑃?), denoted as 𝑆@ ⊑ 𝑆B, if 
there is a mapping 𝑓: 𝑆@ → 𝑆B such that: 

    • ∀𝐶 ∈ 𝑆@(∃𝑋 ⊆ 𝑓(𝐶)(𝑋 ∈ 𝑅𝑑(𝑓(𝐶), 𝐶))), and 

• ∀𝐶, 𝐶W ∈ 𝑆@ 𝐶 ≠ 𝐶W ∧ 𝑓 𝐶 = 𝑓 𝐶W → ∃𝑋, 𝑋W ⊆
𝑓 𝐶 𝑋 ∈ 𝑅𝑑 𝑓 𝐶 , 𝐶 ∧ 𝑋W ∈ 𝑅𝑑 𝑓 𝐶 , 𝐶W ∧ 𝑋 ∩ 𝑋W =
𝜙 . 

  In the definition, the first condition states that for each 
component in 𝑆@ , there is an image in 𝑆B  under the 
mapping 𝑓  that contains a redex of it; and the second 
expresses that if two different components in 𝑆@ have the 
same image in 𝑆B, then the two corresponding redexes in 
it cannot overlap, which strictly adheres to the redex 
definition in the RGG formalism. 

  Definition 3. Let 𝑔𝑔 ≔ 𝐴, 𝑃, 𝛺  be an RGG, and 
𝑝@, 𝑝B ∈ 𝑃  be two productions, 𝑝@  directly partially 
precedes 𝑝B , denoted as 	𝑝@ ≼] 𝑝B , if ∃𝑆 ⊆ 𝑀𝑐𝑐(𝑝B. 𝐿) 
such that 𝑆 ⊑ 𝑀𝑐𝑐(𝑝@. 𝑅). The direct partial precedence 
relation between them is denoted by the pair 𝑝@, 𝑝B . The 
direct partial precedence relation on the set 𝑃  of 
productions is defined as ≼^= 𝑝@, 𝑝B |𝑝@, 𝑝B ∈ 𝑃 ∧
𝑝@ ≼] 𝑝B . The partial precedence relation between them 
is denoted by the pair 𝑝@, 𝑝B . 

  The direct partial precedence between a pair of 
productions characterizes the fact that a component of one 
production’s left graph is isomorphic to a subgraph 
included in a component of another production’s right 
graph. 

  The partial precedence relation is the closure of the direct 
partial precedence relation on a set 𝑃 of productions. 

  Partial precedence is a kind of relation between a pair of 
components chosen from two distinct productions, 
whereas total precedence describes the same relation 
between two sets of components from the right graphs of 
a subset of productions and the left graph of a single 
production, respectively. 

  Definition 4. Let 𝑔𝑔 ≔ 𝐴, 𝑃, 𝛺  be an RGG, 𝑝 ∈ 𝑃 , 
and a multiset 𝑃W ⊆ℕ 𝑃 . 𝑃W  directly totally precedes 𝑝 , 
denoted as 𝑃W ≺] 𝑝 , if there is a surjective mapping 
𝑓:𝑀𝑐𝑐(𝑝. 𝐿) → 𝑆𝑡 such that: 

  • 𝑆𝑡 ⊆ 𝑀𝑐𝑐(𝑃?W ); 

  • 𝑀𝑐𝑐(𝑝. 𝐿) ⊑ 𝑀𝑐𝑐(𝑃?W ) with respect to 𝑓; 

  • ∀𝑝W ∈ 𝑃W ∃𝐶 ∈ 𝑀𝑐𝑐 𝑝. 𝐿 𝑓 𝐶 ∈ 𝑀𝑐𝑐 𝑝W. 𝑅 . 

  The corresponding direct total precedence relation is 
denoted by the pair 𝑃W, 𝑝 , and 𝑝 and 𝑃W  are called the 
target production and preceding set, respectively. The 
direct total precedence relations on the set 𝑃  of 
productions is defined as ≺^= 𝑃W, 𝑝 |𝑃W ⊆ℕ 𝑃 ∧ 𝑝 ∈
𝑃 ∧ 𝑃W ≺] 𝑝 . 

  A direct total precedence relation specifies that a certain 
graph composed of the right graphs of a subset of 
productions contains a redex of the left graph of another 
production. Note that the third constraint on 𝑓 emphasizes 
that every production in 𝑃W  takes part in 𝑓 with at least 
one of its components in the right graph. If a subset 𝑃W of 
𝑃 forms such a relation with a production	𝑝, then it means 
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that all the right graphs of 𝑃W  must exactly comprise a 
redex of the left graph of 𝑝 with each one containing at 
least one redex of its components. 

  A total precedence relation 𝑀, 𝑝  is composed of a set 
of direct total precedence relations and a set of linking 
relations on it. A compound precedence set consists of 
three parts: a multiset 𝑇  of productions from set 𝑃 , a 
multiset 𝐸 of direct total precedence relations, and a set 𝑅 
of linking relations on 𝐸. A compound precedence set 𝑀, 
together with a production 𝑝 , forms a total precedence 
relation, on condition that a direct total precedence 
relation is established between the first part of 𝑀 and the 
production 𝑝. 

2.3 Definition of Context 

  The sets of partial or total precedence relations with 
respect to a graph grammar establish an order of 
production applications, which can be exploited to 
discover potential situations in which any of the 
productions is applicable for derivation. We refer to these 
situations as contexts. Given two productions 𝑝@ and 𝑝B, 
if 𝑝@ directly partially precedes 𝑝B, then 𝑝@. 𝑅 contains a 
context of 𝑝B or merely a portion of a context, depending 
on whether 𝑝B. 𝐿  consists of only one or at least two 
maximal connected components. As for the former case, 
{𝑝@} ≺] 𝑝B readily holds and a context of 𝑝B immediately 
follows; whereas in the latter case, a subset of productions 
involving 𝑝@  that directly totally precedes 𝑝B  is pursued 
so as to form a complete context for 𝑝B. As a third case, a 
total precedence relation can be sought to build a rather 
deeper complete context. 

  Complete contexts of a production can be stratified in 
terms of the levels of corresponding total precedence 
relations from which they are generated. Roughly, a 
complete context that is built in the light of a precedence 
relation that corresponds to a rooted tree of depth 𝑖  is 
called a level-𝑖 context, 𝑖 ≥ 1, and it degrades to a level-
1 context when the relation is a direct one. 

    A complete context can be employed to extend the 
respective production to which it pertains. This is done by 
augmenting the context simultaneously to the both graphs 
and properly linking the two parts together respectively. 
A production 𝑝 equipped with a level-𝑖 context is often 
abbreviated to a context-	𝑖 𝑝. 

  Definition 5. Let 𝑔𝑔 ≔ 𝐴, 𝑃, 𝛺  be an RGG, 𝑝 ∈ 𝑃 , 
𝑀𝑐𝑐(𝑝. 𝐿) = 𝐶@,⋯ , 𝐶7 , and 𝑃W ⊆ℕ 𝑃 . If 𝑃W ≺] 𝑝  with 
respect to some surjective mapping 𝑓:𝑀𝑐𝑐 𝑝. 𝐿 → 𝑆𝑡 =
𝐷@,⋯ , 𝐷h  and a set of redexes 𝑋 = {𝑋i|𝑋i ∈
𝑅𝑑 𝑓 𝐶i , 𝐶i , 1 ≤ 𝑖 ≤ 𝑛}, then the pair 𝑈, 𝑍  is a level-
1 context of 𝑝 with respect to 𝑃W , 𝑓 , and 𝑋, denoted as 
𝑐𝑡l 𝑃W, 𝑓, 𝑋 , where 𝑈 = 𝐷mW@nmnh , 𝐷mW = 	𝐷m\

𝑋pqpq∈rq , 𝐾m = 𝑙|𝑓 𝐶t = 𝐷m ∧ 1 ≤ 𝑙 ≤ 𝑛 , 𝑍 =
𝑍m@nmnh , and 𝑍m = 𝑒 ∈ 𝐷m. 𝐸| 𝑠 𝑒 ∈ 𝑋pq. 𝑉 ∧ 𝑡 𝑒 ∈

𝐷mW. 𝑉 ∨ 𝑠 𝑒 ∈ 𝐷mW. 𝑉 ∧ 𝑡 𝑒 ∈ 𝑋pq. 𝑉 ∧ 𝑘m ∈ 𝐾m . The 
sets 𝑈  and 𝑍  are called the contextual graph and 
contextual connection, respectively. 
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Fig. 2. The contexts of a production and their extended productions. (a) 
A level-1 context of 𝑝8 . (b) A level-2 context of 𝑝9 . (c) A level-1 
context-equipped 𝑝8. (d) A level-2 context-equipped 𝑝9. 

  Each component 𝐷mW of the contextual graph is the rest 
graph of 𝐷m , a component of the right graph of some 
production that contains one or more redexes 𝑋pq of the 
components 𝐶pq, minus 𝑋pq, and each 𝑍m is the collection 
of edges in 𝐷m that connect 𝐷mW to all the redexes 𝑋pq. 

  Similar to Definition 5, the notion of level-	𝑖 context can 
be recursively defined. 

  Example 1. Two contexts of a production and their 
extended productions. 

  Two contexts at distinct levels of a production and their 
respective extended productions are demonstrated in 
Figure 2. A level-1 context of 𝑝8  originated from the 
direct total precedence relation 𝑝2, 𝑝9 ≺] 𝑝8 is shown 
in Figure 2(a), where the left component of the graph is 
𝑅2 (the right graph of production 2), the right one is 𝑅9, 
the subgraph enclosed by the green dashed ellipse is the 
redex of 𝐿8 (the left graph of 𝑝8), and the context consists 
of two parts 𝑈  and 𝑍 : 𝑈  is the rest of the whole graph 
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minus the redex and 𝑍  the set of thick red edges that 
connect 𝑈  to the redex. The corresponding context-
equipped production, context-1 𝑝8, numbered as 𝑝11, is 
depicted in (c), where the two subgraphs surrounded 
respectively by green dashed eclipses are the isomorphic 
image of the underlying production of 𝑝11. 

  Figure 2(b) is a level-2 context of 𝑝9, which is created 
based on the direct total precedence relation 
𝑈𝑑 𝑝5, 𝑝11 ≺] 𝑝9 , or equivalently, the total 
precedence relation 𝑈𝑙 𝑝5, 𝑝11 ≺ 𝑝9 , where 𝑈𝑑 𝑃  
indicates the set of underlying productions of 𝑃 , and 
𝑈𝑙 𝑃  refers to the underlying structure of 𝑃. In this graph, 
the left and right component is 𝑅11 and 𝑅5, respectively, 
the subgraph enclosed by the purple dashed rectangle is 
the isomorphic image of 𝑈𝑑 𝑝11 , and the one 
surrounded by the green dashed eclipse is the redex of the 
left graph of 𝑝9 . In a similar way, the corresponding 
context-equipped production, context-2 𝑝9, is illustrated 
in (d). 

3. Context Computation 
  In this section, an approach is presented for the 
computation of context in the RGG formalism, based on 
the theoretical foundation reviewed in the preceding 
section. 

  The approach consists of four partially ordered 
algorithms, of which the first three deal with the 
computation of the set of direct partial precedence 
relations, the set of direct total precedence relations, and 
the set of total precedence relations with respect to a set 
of productions, respectively, and the last handles the 
computation of the contexts of a single production as well 
as the corresponding extended productions. 

3.1 Computation of Partial Precedence 

Algorithm 1. Computation of partial precedence relations. 
Input. A set 𝑃 of productions. 
Output. The direct partial precedence relation on 𝑃. 
{ 
  𝐶𝑚= = 𝑀𝑐𝑐(𝑝. 𝐿)l∈^ ; 
  𝐶𝑚? = 𝑀𝑐𝑐(𝑝. 𝑅)l∈^ ; 
  Create a two-dimensional array 𝑀 whose two indices range over    
      𝐶𝑚=  and 𝐶𝑚?  respectively such that each element is initialized 
      to an empty set ∅; 
   for each 𝐶 ∈ 𝐶𝑚={ 
      for each 𝐶W ∈ 𝐶𝑚?{ 

𝑀 𝐶, 𝐶W = FindRedex 𝐶W, 𝐶 ; 
      } 
  } 
  return 𝑀; 
} 

  The first algorithm generates the partial direct 
precedence relation on a given set of productions. It 
consists of collecting all the components of the left and 

right graphs of the productions to create one set and 
another respectively, and then finding all the redexes of 
each component of the former in any one of the latter that 
is taken as the host graph. The output is a matrix such that 
each entry is assigned to a set of redexes (maybe empty) 
with respect to a pair of components from the two distinct 
sets that uniquely locate the entry in it. The function 
FindRedex 𝐶W, 𝐶  returns all the redex of 𝐶 found in 𝐶W. 

  For example, consider the RGG in Figure 1, the set of 
direct partial precedence relations regarding 𝑝8 is the set 
that is comprised of the following elements: 
𝑝9, 𝑝8 ,	 𝑝8, 𝑝8 ,	 𝑝7, 𝑝8 , 𝑝2, 𝑝8 , 𝑝4, 𝑝9 ,	 𝑝5, 𝑝9 , 
𝑝6, 𝑝9 ,	 𝑝1, 𝑝9 ,	 𝑝8, 𝑝9 . This set also coincides with 

the set of partial precedence relations of 𝑝8. 

3.2 Computation of Direct Total Precedence 

  The second algorithm figures out the direct total 
precedence relation on a set 𝑃 of productions, on the basis 
of the output of the first algorithm. 

  First, it creates three one-dimensional arrays 𝐿𝑙𝑡 , 𝑅𝑙𝑡 , 
𝑇𝑝𝑑 and 𝐹𝑢𝑛 which share a same index that ranges over 
𝑃, to store the upcoming data. 

  Then, it arranges the components of the left graph of 
each production 𝑝 into an ordered tuple form 𝐿𝑙𝑡 𝑝  in a 
certain order, and for each element in this tuple, it 
generates a corresponding set that gathers all the redexes 
involved in the components from 𝐶𝑚?. 

  Next, it conducts the Cartesian product 𝑅𝑙𝑡 𝑝  of these 
sets of redexes in the same order as their counterparts in 
𝐿𝑙𝑡 𝑝 . As a result, every tuple in 𝑅𝑙𝑡 𝑝  is a redex of 
𝐿𝑙𝑡 𝑝 , since they are of the same length and each 
constituent of the former is a redex of the element of the 
latter to which it corresponds in terms of the tuple order. 

  After that, by replacing each redex in a tuple of 𝑅𝑙𝑡 𝑝  
with the underlying production whose right graph 
includes a component that contains this redex, it acquires 
a direct total precedence relation regarding 𝑝; this process 
repeats until all the relations regarding 𝑝, which comprise 
the set 𝐷𝑡𝑝 𝑝 , are collected. Meanwhile, it establishes a 
mapping ℎ  from 𝐷𝑡𝑝 𝑝  to a partition of 𝑅𝑙𝑡 𝑝  (i.e., a 
collection of disjoint nonempty subset of it that have it as 
their union) such that ℎ maps each tuple to the subset of 
𝑅𝑙𝑡 𝑝 , each of whose elements can be transformed to this 
tuple by the preceding replacement. 

  Note that each element in 𝐷𝑡𝑝 𝑝  is a list of a multiset of 
productions in a predefined order. Nevertheless, a direct 
total precedence relation refers to a relation between a 
multiset of productions without any order and a 
production. To bridge this gap, it performs a partition of 
𝐷𝑡𝑝 𝑝  in terms of such an equivalence relation that two 
lists are equivalent if both of them correspond to a same 
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multiset, which produces 𝐷𝑝𝑠 𝑝  and 𝑙. 

Algorithm 2. Computation of direct total precedence relations. 
Input. A set 𝑃 of productions and the direct partial precedence  
          relation on 𝑃. 
Output. The direct total precedence relation on 𝑃. 
{ 

Let 𝐿𝑙𝑡, 𝑅𝑙𝑡, 𝐷𝑡𝑝,	𝐷𝑝𝑠, 𝐹𝑢𝑛1 and 𝐹𝑢𝑛2 be one-dimensional 
    arrays that share the same index which ranges over 𝑃;  

    for each 𝑝 ∈ 𝑃{ 
        𝑘 = |𝑀𝑐𝑐(𝑝. 𝐿)|; 
        Let 𝑀𝑐𝑐 𝑝. 𝐿 = 𝐶@,⋯ , 𝐶p ; 
        𝐿𝑙𝑡 𝑝 = 𝐶@,⋯ , 𝐶p ; 
        for each 𝐶 ∈ 𝑀𝑐𝑐(𝑝. 𝐿){ 
            𝑅𝑑𝑥 𝐶 = ∅; 

  for each 𝐶W ∈ 𝐶𝑚?{ 
      𝑅𝑑𝑥 𝐶 = 𝑅𝑑𝑥 𝐶 ∪ 𝑀 𝐶, 𝐶W ; 
  } 

        } 
𝑅𝑙𝑡 𝑝 = 𝑅𝑑𝑥 𝐶@ ×⋯×𝑅𝑑𝑥 𝐶p ; 
𝐷𝑡𝑝 𝑝 = ∅; 
for each 𝑘-tuple 𝑡@,⋯ , 𝑡p ∈ 𝑅𝑙𝑡 𝑝 { 

            Generate a 𝑘-tuple 𝑝@,⋯ , 𝑝p  such that 
        𝑡i ∈ FindRedex 𝑀𝑐𝑐 𝑝i. 𝑅 , 𝐶i , 1 ≤ 𝑖 ≤ 𝑘; 
    if 𝑝@,⋯ , 𝑝p ∉ 𝐷𝑡𝑝 𝑝 { 
        ℎ 𝑝@,⋯ , 𝑝p = 𝑡@,⋯ , 𝑡p ; 
        𝐷𝑡𝑝 𝑝 = 𝐷𝑡𝑝 𝑝 ∪ 𝑝@,⋯ , 𝑝p ;  
    } else 
        ℎ 𝑝@,⋯ , 𝑝p = ℎ 𝑝@,⋯ , 𝑝p ∪ 𝑡@,⋯ , 𝑡p ; 
} 
𝐹𝑢𝑛1 𝑝 = ℎ; 
𝐷𝑝𝑠 𝑝 = ∅; 
for each list 𝑞@,⋯ , 𝑞p ∈ 𝐷𝑡𝑝 𝑝 {  
    Create a multiset 𝑆 = 𝑞@,⋯ , 𝑞p ; 
    if 𝑆 ∉ 𝐷𝑝𝑠 𝑝 { 
        𝑙 𝑆 = 𝑞@,⋯ , 𝑞p ; 
        𝐷𝑝𝑠 𝑝 = 𝐷𝑝𝑠 𝑝 ∪ 𝑆 ;  
    } else  
        𝑙 𝑆 = 𝑙 𝑆 ∪ 𝑞@,⋯ , 𝑞p ;  
} 
𝐹𝑢𝑛2 𝑝 = 𝑙; 

} 
return 𝐿𝑙𝑡, 𝑅𝑙𝑡, 𝐷𝑡𝑝, 𝐷𝑝𝑠, 𝐹𝑢𝑛1, 𝐹𝑢𝑛2 ; 

} 

  In this way, it finally achieves the arrays 𝐷𝑝𝑠 and 𝐹𝑢𝑛2 
that can generate the direct total precedence relations 
regarding each production of 𝑃, together with the array 
𝐹𝑢𝑛1 that can produce the set of redexes with respect to 
any of these relations. For example, for each 𝑆 ∈ 𝐷𝑝𝑠 𝑝 , 
𝑆, 𝑝  is a direct total precedence relation, and 

ℎ 𝑄�∈t �  is the set of all the possible redexes. 

  An underlying assumption for the algorithm is that any 
component in 𝐶𝑚=  or 𝐶𝑚? , as well as any redex of a 
component from 𝐶𝑚= in another from 𝐶𝑚?, is uniquely 
identified. This is applicable from the perspective of 
algorithm implementation, as it can be achieved by 
assigning to each node of a production a unique number 
as its identity, and representing each redex as a triple 
𝑆, 𝑓, 𝑖𝑑  with 𝑆  the involved subgraph, i.e., the redex 

itself, 𝑓 the underlying mapping, and 𝑖𝑑 the identifier of 
the right graph that contains the redex. 
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Fig. 3. Some level-1contexts of 𝑝8. 

  For example, consider the RGG illustrated in Figure 1, 
the direct total precedence relations with 𝑝8  being the 
target production are as follows: 𝑝1, 𝑝9 , 𝑝8 , 
𝑝2, 𝑝9 , 𝑝8 , 𝑝4, 𝑝9 , 𝑝8 , 𝑝5, 𝑝9 , 𝑝8 , 
𝑝6, 𝑝9 , 𝑝8 , 𝑝1, 𝑝8 , 𝑝8 , 𝑝2, 𝑝8 , 𝑝8 , 
𝑝4, 𝑝8 , 𝑝8 , 𝑝5, 𝑝8 , 𝑝8 , 𝑝6, 𝑝8 , 𝑝8 , 
𝑝1, 𝑝7 , 𝑝8 , 𝑝2, 𝑝7 , 𝑝8 , 𝑝4, 𝑝7 , 𝑝8 , 
𝑝5, 𝑝7 , 𝑝8 , 𝑝6, 𝑝7 , 𝑝8 . The preceding set of the 

relations includes two productions, each of whose right 
graph contains a component, and these two components 
constitutes a graph that contains a redex of the target 
production’s left graph. Therefore, the number of total 
precedence relations regarding 𝑝8  is 5×3 = 15 . The 
algorithm figures out all the total precedence relations 
with any production from the input production set 
assuming the role of target production. 

  Figure 3 illustrates some of the level-1 contexts 
regarding 𝑝8. These six level-1 contexts correspond to the 
first five direct total precedence relations with 𝑝8 being 
the target production. Note that 𝑝4, 𝑝9 , 𝑝8  accounts 
for two of them, i.e., Figure 3(c) and (d), as there are two 
options for the selection of node “Stat”. Readily, the total 
number of level-1 contexts corresponding to the direct 
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total precedence relations regarding 𝑝8 can be counted as 
6×3 = 18. 

3.3 Computation of Total Precedence 

  The third algorithm describes the procedure of 
constructing all the total precedence relations of depth 
𝑘 + 1  based on those of depth no more than 𝑘 , with 
respect to a set 𝑃 of productions, where 𝑘 ≥ 1. Readily, 
the set of total precedence relations of any depth can be 
recursively generated from the fundamental set of direct 
total precedence relations by using it. 

Algorithm 3. Computation of total precedence relations. 
Input. A set 𝑃 of productions, ≼^  the direct total precedence relation 
          on 𝑃, and the set 𝑇𝑝𝑑 of total precedence relations of depth 
          no more than 𝑘, where 𝑘 ≥ 1. 
Output. The set of total precedence relations of depth 𝑘 + 1. 
{ 
    Let 𝑃𝑡𝑝 and 𝑇𝑝𝑟 be one-dimensional arrays whose indexes range  
        over 𝑃; 
    Let 𝑇𝑝𝑑p  be the set of total precedence relations of depth 𝑘; 
    for each 𝑝 ∈ 𝑃{ 
        𝑃𝑡𝑝 𝑝 = 𝑛𝑢𝑙𝑙 ;  // Initialize the elements of 𝑃𝑡𝑝; 
    } 
    for each 𝑝𝑠 ∈ 𝑇𝑝𝑑{  
        Let 𝑒 = 𝑃W, 𝑝W  be the root element of 𝑝𝑠; 
        𝑃𝑡𝑝 𝑝W = 𝑃𝑡𝑝 𝑝W ∪ 𝑝𝑠 ; 
    } 
    for each 𝑝 ∈ 𝑃{ 
        𝑃𝑡𝑟 𝑝 = ∅; 
        for each 𝑒W = 𝑃WW, 𝑝 ∈≼^{ 
            Let 𝑃WW = 𝑝@,⋯ , 𝑝p ;  //𝑃WW is a multiset; 

  𝐶𝑟𝑡 = 𝑃𝑡𝑝 𝑝@ ×⋯×𝑃𝑡𝑝 𝑝p ; 
  𝐸 = 𝑒W ; 
  𝑅 = ∅; 
  for each 𝑡@,⋯ , 𝑡p ∈ 𝐶𝑟𝑡 such that  
  ∃𝑖, 𝑗 𝑡i ≠ 𝑛𝑢𝑙𝑙 ∧ 𝑡m ∈ 𝑇𝑝𝑑p {  //1 ≤ 𝑖 ≤ 𝑘; 
      Create a mapping 𝑓 with domain 𝑃WW; 
      𝐷 = ∅;  //	𝐷 is a multiset; 
      for each 𝑡i{  //1 ≤ 𝑖 ≤ 𝑘; 
          if 𝑡i = 𝑛𝑢𝑙𝑙   
              𝑓 𝑝i = 𝑛𝑢𝑙𝑙; 
          else { 
              Let 𝑡i = 𝐸i, 𝑅i , and 𝑒i  be the root element; 
              𝑓 𝑝i = 𝑒i; 
              𝐷 = 𝐷 ∪ 𝑒i ; 
              𝐸 = 𝐸 ∪ 𝐸i; 
              𝑅 = 𝑅 ∪ 𝑅i; 
          } 
      } 
      Construct a linking relation 𝑟 = 𝑒W, 𝐷, 𝑓 ; 
      𝑅 = 𝑅 ∪ 𝑟 ; 
      𝑃𝑡𝑟 𝑝WW = 𝑃𝑡𝑟 𝑝WW ∪ 𝐸, 𝑅 ; 
  } 

        } 
    } 
    return 𝑇𝑝𝑟; 
} 

  The algorithm consists of two tasks. First, it partitions 
the set 𝑇𝑝𝑑 into |𝑃| distinct subsets in terms of the root 
node of the rooted tree that each total precedence relation 
(i.e., a precedence structure) forms, which comprise the 

set 𝑃𝑡𝑝. 

  Then, for any production 𝑝 in 𝑃, it constructs the set of 
all the total precedence relations of depth 𝑘 + 1 whose 
root elements share the same head 𝑝. More precisely, this 
set is the union of the subsets, each of which includes 
those relations whose root elements are a same direct total 
precedence relation with 𝑝 as the head. Thus, in terms of 
each of these relations, say 𝑃WW, 𝑝 , the algorithm 
constructs a corresponding subset of all the relations of 
depth 𝑘 + 1 with 𝑃WW, 𝑝  as the root element. 
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Fig. 4. The rooted trees of different depths that correspond to 
precedence structures. 

  To this end, it first conducts the Cartesian product of 
|𝑃WW| selected elements from 𝑃𝑡𝑝 whose indexes exactly 
comprises the multiset 𝑃WW. Second, it screens the ordered 
tuples in the product to make sure that each chosen one 
can be utilized to generate a proper linking mapping from 
𝑃WW to the union of 𝑛𝑢𝑙𝑙  and the set of root elements of 
its constituents, and that the resulting precedence structure 
must be of depth 𝑘 + 1. The latter is guaranteed when one 
constituent of the tuple is of depth 𝑘 . Third, for each 
chosen tuple, it generates the linking relation, which is 
composed of the head 𝑃WW, 𝑝 , the set of tails, i.e., the root 
elements of the constituents of the tuple, and the newly 
created linking mapping, and then constructs the 
consequent precedence structure 𝐸, 𝑅 , where 𝐸  and 𝑅 
comprise all the involved direct total precedence relations 
and relevant linking relations, respectively. 
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  A total precedence relation is commonly represented as 
a precedence structure. A precedence structure can 
visually form a rooted tree. In Figure 4, (a), (b), and (c) 
show three rooted trees that correspond to three 
precedence structures, called 𝑝𝑠@ , 𝑝𝑠B , and 𝑝𝑠� , 
respectively. Apparently, they are of depth 1, 2, and 3, 
respectively. 

  Example 2. A precedence structure  𝑝𝑠� ≔ 𝐸, 𝑅  on 
the production set 𝑃 of the RGG in Figure 1, where: 

  • 𝐸 = 𝑒@, 𝑒B, 𝑒�, 𝑒� , in which 𝑒@ = 𝑝4, 𝑝9 , 𝑝8 , 𝑒B =
𝑝5 , 𝑝4 , 𝑒� = 𝑝4, 𝑝8 , 𝑝9 , 𝑒� = 𝑝2, 𝑝9 , 𝑝8 ; 

  • 𝑅 = 𝑟@, 𝑟B , in which 𝑟@ = 𝑒@, 𝑒B, 𝑒� , 𝑓@  with 
𝑓@ 𝑝4 = 𝑒B  and 𝑓@ 𝑝9 = 𝑒� , 𝑟B = 𝑒�, 𝑒� , 𝑓B  with 
𝑓B 𝑝4 = 𝑛𝑢𝑙𝑙 and 𝑓B 𝑝8 = 𝑒�; 

  • 𝑒� = 𝑒@. 

  In the rooted tree corresponding to 𝑝𝑠�, as depicted in 
Figure 4(c), the four fragments enclosed by red dashed 
rectangles are the elements  𝑒@ , 𝑒B , 𝑒� , and 𝑒� , 
respectively, which are direct total precedence relations, 
i.e., precedence structures of depth 1. 

  The subtree enclosed by the green dashed rectangle 
corresponds to the precedence structure 𝑝𝑠B. 

  Given the set of total precedence relations of depth no 
more than 2 including 𝑝𝑠@ and  𝑝𝑠B (the set of direct total 
precedence relations involved) as input, the algorithm will 
generate a set of total precedence relations of depth no 
more than 3, where 𝑝𝑠� is involved. That is, 𝑝𝑠� is created 
on the basis of  𝑝𝑠@ and  𝑝𝑠B, together with the direct total 
precedence relation 𝑒@. 

3.4 Computation of Context 

  It is known that a total precedence relation, i.e., a 
precedence structure 𝐸, 𝑅 , forms a rooted tree in such a 
way that each direct total precedence relation in 𝐸 
corresponds to a subtree of depth 1 and they are glued to 
each other in terms of the linking relations in 𝑅. 

  The fourth algorithm calculates all the level-	𝑖 contexts 
of a production and respective extended productions in 
terms of a total precedence relation, i.e., a precedence 
structure, with respect to it. Readily, the diagram of a 
rooted tree corresponding to a precedence structure offers 
a more comprehensible perspective for the algorithm. 

  The algorithm is composed of two consecutive tasks. 
The first task is to transform a total precedence relation (a 
rooted tree) into a set of direct total precedence relations 
(rooted trees of depth 1). 

  To this end, the algorithm creates an empty set, adds the 
rooted tree to it, and repeats the subsequent four steps until 
all the elements in it become rooted trees of depth 1. First, 

it randomly selects a rooted tree from the set and locates 
an outmost subtree of length 1 (with the root node, say 𝑝); 
then, it figures out all the possible context-	𝑖 𝑝’s according 
to the subtree, where 	𝑖 ≥ 1 ; next, for each of those 
extended productions, say 𝑝W, it constructs a new tree from 
the original one by pruning the subtree except the root 
(this node is preserved since it is also a leaf of another 
subtree to which this one is linked via a linking relation in 
𝑅) from it and substituting 𝑝W for the root 𝑝, and puts it 
into the set; and finally, it deletes the originally selected 
tree from the set. After that, the set includes only rooted 
trees of depth 1, any of which corresponds to a direct total 
precedence relation. 

Algorithm 4. Computation of contexts and extended productions. 
Input. A set 𝑃 of productions, a total precedence relation 𝑀, 𝑝� = 
          𝐸�, 𝑅�  of depth ℎ. 
Output. The level-	ℎ contexts of 𝑝� and corresponding extended  
           productions. 
{ 
    𝐶𝑝𝑠 = 𝐸�, 𝑅� ;  

while (∃𝑝𝑠 ∈ 𝐶𝑝𝑠 such that 𝑝𝑠 is not a direct total precedence  
relation) { 

        Let 𝑝𝑠 = 𝐸, 𝑅 ; 
        Find an element 𝑒 ∈ 𝐸 such that 𝑒 is not the head of any  
            linking relation in 𝑅; 
        Let 𝑒 = 𝑃W, 𝑝  and 𝑃W = 𝑝@,⋯ , 𝑝p ;  //	𝑘 ≥ 1; 
        Let 𝑟 = 𝑒W, 𝐷, 𝑓 ∈ 𝑅 such that 𝑒 ∈ 𝐷;  
        Let 𝑒W = 𝑃WW, 𝑝WW ; 
        Let 𝐹𝑢𝑛1 𝑝 = ℎ, 𝐹𝑢𝑛2 𝑝 = 𝑙; 
        Let 𝑙 𝑃W = 𝑄@,⋯ , 𝑄h ;  //𝑚 ≥ 1; 
        𝐶𝑝𝑠 = 𝐶𝑝𝑠\ 𝑝𝑠 ; 
        for each 𝑡@,⋯ , 𝑡p ∈ ℎ 𝑄@ ∪ ⋯∪ ℎ 𝑄h { 

  Construct a level-	𝑖 context 𝑈, 𝑍 , 𝑖 ≥ 1; 
  Construct a context-	𝑖 𝑝 with 𝑈, 𝑍 ,	called 𝑝W; 
  𝑃WWW = 𝑃WW\ 𝑝 ∪ 𝑝W ; 
  𝑒WW = 𝑃WWW, 𝑝WW ; 
  𝐷W = 𝐷\ 𝑒 ; 

   Create a linking mapping 𝑓W: 𝑃WWW → 𝐷W ∪ 𝑛𝑢𝑙𝑙  such that  
        𝑓W 𝑝W = 𝑛𝑢𝑙𝑙, and for any other production 𝑝WWW ∈ 𝑃WWW,    
        𝑓W 𝑝WWW = 𝑓 𝑝WWW ; 
        𝑟W = 𝑒WW, 𝐷W, 𝑓W ;  
        𝐸W = 𝐸\ 𝑒, 𝑒W ∪ 𝑒WW ; 
        𝑅W = 𝑅\ 𝑟 ∪ 𝑟W ; 
    Construct a precedence structure 𝑝𝑠W = 𝐸W, 𝑅W ; 
    𝐶𝑝𝑠 = 𝐶𝑝𝑠 ∪ 𝑝𝑠W ; 

         }  
         𝐶𝑝𝑠 = 𝐶𝑝𝑠\ 𝑝𝑠 ; 
     } 
     𝐶𝑛𝑡 = ∅; 
     𝑋𝑑𝑝 = ∅; 
     for each 𝑝𝑠 ∈ 𝐶𝑝𝑠{  
        Construct a level-	ℎ context 𝑈, 𝑍 ;  
        𝐶𝑛𝑡 = 𝐶𝑛𝑡 ∪ 𝑈, 𝑍 ; 
        Construct a context-	ℎ 𝑝� with 𝑈, 𝑍 ,	called 𝑞;  
        𝑋𝑑𝑝 = 𝑋𝑑𝑝 ∪ 𝑞 ; 
    } 
    return 𝐶𝑛𝑡, 𝑋𝑑𝑝 ; 
} 

In the second task, it constructs, for each element in the 
set, a level-	ℎ context and based on it, an accompanying 
extended production as well.
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Fig. 5. Computation of Contexts.  (a) A level-1 context of 𝑝4. (b) A level-1 context of 𝑝8. (c) A context-1 𝑝4. (d) A level-2 context of 𝑝9. (e) A 
context-2 𝑝9. (f) A level-2 context of 𝑝9. (g) A context-2 𝑝9. (h-k) Four level-3 contexts of 𝑝8. (l) A context-3 𝑝8.
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  Example 3. Computation of contexts. 

  Figure 5 depicts some of the contexts and context-
equipped productions with respect to the RGG discussed 
above, which provides a visual demonstration of the 
computation process of Algorithm 4. 

  In each part of Figure 5, the subgraph enclosed by a 
green dashed eclipse is the left or right graph of some 
production, and the subgraph enclosed by a purple dashed 
rectangle or eclipse is the underlying production of a 
context-equipped production. 

  Figure 5(a) shows a level-1 context of 𝑝4, which is the 
output of Algorithm 4 when taking the direct total 
precedence relation 𝑝𝑠@  whose precedence structure is 
given in Figure 4(a) as input. The context-equipped 𝑝4, 
numbered as 𝑝10, is shown in (c). It is also abbreviated to 
context-1	𝑝4. 

  Figure 5(b) presents a level-1 context of 𝑝8, with respect 
to the direct total precedence of 𝑒�  whose precedence 
structure is shown in Figure 4(c). The corresponding 
context-equipped 𝑝8 (named by 𝑝11 above) is given in 
Figure 2(c). Taking the total precedence relation 𝑝𝑠B 
(comprised of 𝑒� and 𝑒�) shown in Figure 4(b) as input, 
Algorithm 4 generates two level-2 contexts of 𝑝9 , as 
depicted in (d) and (f). That is, based on the right graphs 
of 𝑝4 and 𝑝11 (whose underlying production is 𝑝8), the 
algorithm produces all the level-2 contexts of 𝑝9. The 
quantity of contexts depends on the number of options 
when creating the left graph of the given production from 
other productions’ right graphs. Accordingly, two 
context-equipped 𝑝9  are illustrated in (e) and (g), and 
numbered as 𝑝12 and 𝑝13, respectively. 

  The computation of the total precedence relation 𝑝𝑠� is 
on the basis of 𝑝𝑠@ and 𝑝𝑠B. In a similar way, when taking 
the total precedence relation 𝑝𝑠�  as input, Algorithm 4 
generates four level-3 contexts of 𝑝8, as shown in Figure 
5(h)-(k). That is, the contexts are produced based on the 
right graphs of 𝑝10  and 𝑝12 , or of 𝑝10  and 𝑝13 . A 
context-equipped 𝑝8  that corresponds to the level-3 
context in (h) is demonstrated in (l). 

4. Complexity Analysis 
  In this section, the complexities of the proposed 
algorithms in the preceding section are analyzed. 

  Algorithm 1 calls a procedure FindRedex 𝐻, 𝐺  to 
generate the set of subgraphs of 𝐻 that are redexes of the 
marked graph 𝐺 . A procedure similar to the callee was 
proposed in [12] with time complexity 𝑂 |𝐻||8| , where 
|𝐻| or |𝐺| denotes the number of nodes involved in it. 
Then, the time complexity of the algorithm directly 
follows: 

  Proposition 1. The time complexity of Algorithm 1 is 
𝑂 𝑚B𝑛B𝑟� , where 𝑚 is the number of productions in 𝑃, 
𝑛 is the maximal number of components in the left or right 
graphs of productions in 𝑃, and 𝑟 is the maximal number 
of nodes in any of the components. 

  Proposition 2. The time complexity of Algorithm 2 is 
𝑂 𝑚𝑛 7�@𝑟�7 , where 𝑚, 𝑛 and 𝑟 are as in Proposition 
1. 

  Proof. The algorithm mainly consists of a for-loop that 
nests other three sequential for-loops. 

  In the outmost loop, the first nested for-loop also nests 
another for-loop, which takes time 𝑂 𝑚𝑛B . The line next 
to it is the calculation of a 𝑘-ary Cartesian product over 
sets of redexes of components in 𝑝. 𝐿 , each of which 
contains at most 𝑚𝑛×𝑟� elements, where 𝑚𝑛 and 𝑟� are 
the maximal number of elements in 𝐶𝑚?  and 𝑀 𝐶, 𝐶W , 
respectively. Thus, the time complexity is 𝑂 𝑚𝑛𝑟� 7 , 
since 𝑘 equals to 𝑛 in the worst case. 

  In the second nested for-loop, the first line takes 𝑂 𝑛 , 
because the production to which each redex in the ordered 
tuple of 𝑅𝑙𝑡 corresponds is clearly indicated beforehand, 
according to the underlying assumption. Therefore, this 
for-loop takes time 𝑂 𝑛 𝑚𝑛𝑟� 7 . 

  Moreover, the time complexity of the last nested for-
loop is at most 𝑂 𝑛 𝑚𝑛𝑟� 7 , for the cardinality of 
𝐷𝑡𝑝 𝑝  is no more than that of 𝑅𝑙𝑡 𝑝 .  

  In summary, the nested part of the outmost loop takes 
time 𝑂 𝑛 𝑚𝑛𝑟� 7 . Consequently, the time complexity 
of the whole procedure is 𝑂 𝑚𝑛 7�@𝑟�7 , which is the 
product of the time complexity of the outmost for-loop 
and that of its nested part.  ∎ 

Proposition 3. The time complexity of Algorithm 3 is 
𝑂 𝑚7�B𝑛𝑙7 , where 𝑚  and 𝑛  are as in Proposition 1, 
and 𝑙 is the cardinality of 𝑇𝑝𝑑. 

Proof. The algorithm consists of three sequential for-
loops. It is evident that the first two loops take 𝑂 𝑛  and 
𝑂 𝑙 , respectively. 

  The last one is a four-layer nested for-loops. According 
to the structure, its time complexity can be expressed as 
𝑂 𝑑@𝑑B𝑑�𝑑� , where 𝑑@, 𝑑B, 𝑑� and 𝑑� are the maximal 
number of times traversed in the outmost, second, third, 
and inmost for-loop, respectively. We proceed inwards 
from outside of the structure. 

  First, 𝑑@ is the number of productions in 𝑃, that is, 𝑑@ =
𝑚. Next, 𝑑B equals to the cardinality of ≼^, which is no 
more than 𝑚×𝑚7 = 𝑚7�@ . It is obvious that 𝑑�  is 
actually the cardinality of the Cartesian product over 𝑘 
sets from 𝑃𝑡𝑝, where 𝑘 denotes the number of tails in a 
direct total precedence relation. Since 𝑃𝑡𝑝 is a partition of 
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𝑇𝑝𝑑, each element of the former must be a subset of the 
latter. Thus, 𝑑� < 𝑙7. As for the inmost loop, 𝑑� readily 
equals to 𝑛, which is exactly the same as the exponent 
appearing in the preceding inequation. 

  Consequently, the last structure takes 𝑂 𝑚7�B𝑛𝑙7 , i.e., 
the product of the complexities of the four constituents. 
Readily, it is also the time complexity of the algorithm.  
∎ 

Theorem 1. The time complexity of Algorithm 4 is 
𝑂 𝑛! 𝑟�7 B7 ¡¢ , where 𝑛 and 𝑟 are as in Proposition 1, 
and ℎ is the depth of the input total precedence relation. 

Proof. The main part of the algorithm is a two-layer 
structure: a for-loop nested within a while-loop, followed 
by another for-loop. 

  As to the former, the total number of times it is traversed 
is the product of that of the outmost while-loop and of the 
inmost for-loop. We consider the while-loop first. In the 
worst case, the input total precedence relation 𝐸�, 𝑅�  
corresponds to a complete 𝑛-ary rooted tree of depth ℎ. 
Then, the cardinality of 𝐸�, i.e., the number of subtrees of 
depth 1 that compose it, can be expressed as: 

  1 + 𝑛 + ⋯+ 𝑛£¤@ = 7 ¤@
7¤@

                                                        (1) 

  Suppose the number of times the inmost for-loop is 
traversed at the worst case be 𝑤. In each traversal of the 
while-loop, it takes a rooted tree out from 𝐶𝑝𝑠, and then 
puts as many as 𝑤  revised ones that comprise one less 
subtrees back into it. This process is repeated until each 
element in 𝐶𝑝𝑠 becomes a rooted tree of depth 1, i.e., it 
only involves a root element. Consequently, the maximal 
number of times the loop is traversed can be expressed as: 

  1 + 𝑤 + 𝑤B⋯+ 𝑤
¦ ¡¢
¦¡¢ 	¤@ = §

¦ ¡¢
¦¡¢ 	¤@
§¤@

                          (2) 

  Further inference to Formula (2) can be done as follows: 

  §
¦ ¡¢
¦¡¢ 	¤@
§¤@

< §
§¤@

⋅ 𝑤
¦ ¡¢
¦¡¢ ¤@ = §

§¤@
⋅ 𝑤

¦ ¦ ¡¢¡¢
¦¡¢  

  < §
§¤@

⋅ 𝑤B7 ¡¢ = 𝑂 𝑤B7 ¡¢  

Note that 𝑤  exactly equals to the number of extended 
context-1 productions that can be produced from a direct 
total precedence relation, by Definition 5. In the worst 
case, the relation consists of one head and 𝑛  tails, and 
each component of the latter’s right graphs contains 𝑟� 
redexes of any component of the former’s left graph. To 
be exact, of the loop variable 𝑡@,⋯ , 𝑡p  for the for-loop, 
each element 𝑡i  can be any of the 𝑟�  redexes of the 
corresponding component of the left graph in any 
component of any tail’s right graph, where 1 ≤ 𝑖 ≤ 𝑘, and 
𝑘 = 𝑛. Thus, for each permutation of the tails, there are 

𝑟� 7 = 𝑟�7  possible ordered tuples, where 𝑛  is the 
maximal number of choices for selecting one component 
from each tail, and 𝑟� is the maximal number of redexes 
in each component. Furthermore, the number of 
permutations for the tails is 𝑛!. Therefore, 𝑤 = 𝑛! 𝑟�7 . 
Substituting the result for 𝑤  in Formula (2) yields 
𝑛! 𝑟�7 B7 ¡¢. 

  As to the latter, the number of times it is traversed is 
𝑛£¤@×𝑛 = 𝑛£. 

  Consequently, the time complexity of the algorithm is 
𝑂 𝑛! 𝑟�7 B7 ¡¢ .  ∎ 

5. Discussion 

5.1 Applicability of the Algorithms 

  From the perspective of time complexity, the above four 
algorithms seem rather complicated at first glance. 
Nevertheless, they are applicable in practical scenarios 
due to the following three causes. 

  First, the parameters that characterize a graph grammar 
are usually small constants, and cannot change in any 
computation. That is, the parameters are the nature of a 
graph grammar that will not vary with host graphs in 
parsing or derivation processes under different situations. 

  Second, the worst cases theoretically assumed in the 
analysis of the complexities can rarely happen in practice, 
and they are frequently quite small number in practical 
applications. Notice that the number of redexes with 
respect to a direct total precedence relation is surprisingly 
𝑛! 𝑟�7. However, this amount is merely a theoretical upper 
bound that accounts for all the possibly matched 
subgraphs, no matter in which situation all the redexes can 
simultaneously occur. An extreme situation in this case is 
a host graph where all the nodes in the host graph are 
labeled with the same symbol and the directed edges 
between them are completely connected. However, such 
host graphs can rarely be encountered in practice. As an 
example, consider the graph grammar depicted in Figure 
1, the number of redexes with respect to a direct total 
precedence relation is theoretically 2! 4B×� , whereas in 
the practical computation it is less than 10 in most cases. 

  Third, the contexts of a graph grammar can be achieved 
as the output from merely one execution of the algorithms, 
and then they can be repeatedly utilized in the process of 
derivation and parsing of this grammar at any time 
afterwards. 

5.2 Application of Context 

  Context offers a concrete way for designers or users to 
grasp the meaning of an implicit graph grammar by 
directly observing the productions instead of enumerating 
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the members of the language. A context of a production 
characterizes a potential circumstance, under which it can 
be applied for derivation, a means usually employed to 
generate members of the language. Conversely, the 
context can also be regarded as a circumstance under 
which the production can be applied for parsing. Any 
production is self-explanatory for what it is for, whereas 
the contexts at distinct levels indicate at which situations 
it can be applied. These two aspects together clearly show 
the intension or meaning of a production, from the point 
view of derivation. Consequently, contexts can facilitate 
the comprehension of a graph grammar by synthesizing 
the meanings of its constituents so as to constitute the 
overall characteristics of the members of its language. 

  Moreover, context can facilitate the improvement of 
parsing performance. A general parsing algorithm is 
always a necessity for graph grammar formalisms. 
Backtracking is the main cause of high time complexity 
of a general parsing algorithm. In the process of parsing a 
host graph, when some unexpected (false positive) 
redexes are found and the corresponding reductions are 
conducted accordingly, then a final graph may be 
obtained that is not the initial graph of the involved graph 
grammar and to which no more reductions can be done. 
This situation gives rise to backtracking. A redex is called 
false positive if the situation in which the redex lies does 
not match any of the contexts of the production. 
Consequently, identifying the false positive redexes so as 
to avoid unexpected reductions is an effective way to 
improve parsing performance. Apparently, context 
matching can serve this purpose. 

  Noticeably, the proposed approach to context 
computation can be directly applied to practical graph 
grammars specifying real-world visual languages, e.g., 
BPMN (Business Process Model and Notation), ER 
diagrams, UML diagrams, WebML (Web Modeling 
Language), chemical diagrams, and so on, since these 
graph grammars are concrete examples of the underlying 
formalisms where the specification of nodes and edges in 
productions is entirely inherited from the formalisms. 

6. Conclusion 
  On the basis of RGG, a representative of implicit 
context-sensitive graph grammar formalism, this paper 
has proposed an approach to the computation of context 
according to the formal definition of context, and 
presented the time complexities of the partially ordered 
algorithms involved. The method can facilitate the 
applicability of implicit graph grammars, as contexts of 
the productions are essential information for the 
comprehension of graph grammars and the improvement 
of parsing performance of parsing algorithms. Besides, 
the method can be generalized to other implicit context-

sensitive graph grammar formalisms without much effort. 

  In the future, further investigation will be conducted to 
explore more application scenarios of context, and a 
support system for context computation and visualization 
in a context-sensitive graph grammar framework will be 
developed as well. 
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